Enthalpy and Entropy

How to know Δu , Δh ?

- u and h is not measurable directly.
- u and h is associated with heat capacity
- The heat capacity is measurable from experiment!

Heat Capacity	Specific heat capacity	Molar heat capacity	
$C = Q/\Delta T$	$c = q/\Delta T$	$c = q / \Delta T$	
Extensive Property	Intensive Property	Intensive Property	
J/K	J/K·g (cal/g·K)	J/K·mol	

Heat Capacity and U, H

Correlation for Δh **from experiment**

$$\frac{c_P}{R} = A + BT + CT^2 + DT^{-2} + ET^3[K]$$

(Ideal gas condition) \rightarrow good approximation with at low P

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

 c_P and c_v

For solids and liquids

•
$$C_P \approx C_v$$

 $c_P \equiv \left(\frac{\partial h}{\partial T}\right)_P = \left(\frac{\partial (u + Pv)}{\partial T}\right)_P = \left(\frac{\partial u}{\partial T}\right)_P + \left(\frac{\partial RT}{\partial T}\right)_P = \left(\frac{\partial u}{\partial T}\right)_P + R$

• For ideal gas,

$$\begin{pmatrix} \frac{\partial u}{\partial T} \end{pmatrix}_{P} = \frac{du}{dT} = \left(\frac{\partial u}{\partial T} \right)_{v}$$
$$c_{P} = c_{v} + R$$

c_v of Gases

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Δh with Phase change

SNU NAOE Y. Lim

http://industries-news.blogspot.kr/2010/06/fundamentals-of-refrigeration-and-air.html

Enthalpy of reaction

- Standard enthalpy of formation, Δh_f^o
 - Change of enthalpy when one mole of substance is formed from its pure element in nature at standard condition, 25°C, 1 atm

• Standard enthalpy of reaction, Δh_{rxn}^o

- Change of enthalpy by a chemical reaction
 - $\Delta h_{rxn}^o < 0$: exothermic reaction
 - $\Delta h_{rxn}^o > 0$: endothermic reaction

Example 2.11

- In: 10 mol/s of hexane @25°C
- Out: 100°C vapor
- Q=? (435 kJ/s in the textbook)

18PR				

Example 2.15

- Propane in an adiabatic chamber at 25°C.
- (a) React with stoichiometric amount of oxygen (T=4910K in textbook)

• (b) React with stoichiometric amount of air (T=2370K in textbook)

 (c) React with stoichiometric amount of air and the product contains 90% CO2 and 10% CO (T=2350K in textbook)

HHV vs LHV?

Understanding of Entropy, S

- Difficult to understand the concept.
 - Think about Enthalpy
 - H is hard to understand, because it is close to the mathematical notion, not natural discovery such as T or P.
 - Same for Entropy!
 - It was born as a notion, and cannot be explained clearly until 19th century.
 - It can be defined by two kinds of view:
 - The classical thermodynamics definition
 - The statistical mechanics definition.

Statistical understanding of S

S is a measure of the number of possible configurations(Ω) of the individual molecules.

 $S = k_B \ln \Omega$ Where k_B is the Boltzmann constant - If you have a system with 4 molecule in a room,

Statistical understanding of S

• When there are 100 molecules,

All the system moves to maximize its entropy

∆S>0

Actually there are 6.022×10^{23} gas molecules in $0.224m^3$

Low entropy (Possible but very rare)

High entropy

Second Law

 Entropy can be defined by two different points of view, but it is proved as same.

$$-dS = \frac{dQ_{rev}}{T}$$

 $-S = k_B \ln \Omega$

• 2nd law says:

If you want to know how it can be same, you need read more references: Textbook (Chapter 3.3, 3.11) and

Arieh Ben-Naim, A Farewell to Entropy : Statistical Thermodynamics Based on Information, Chapter 5, World Scientific Publishing Company, 2008. (you can find an e-book from SNU library)

$$-ds \equiv \frac{\delta q_{rev}}{T} \rightarrow \Delta s \equiv \int \frac{\delta q_{rev}}{T} = \frac{q_{rev}}{T} = constant)$$

•
$$\Delta s_{univ} = \Delta s_{sys} + \Delta s_{surr} \ge 0$$

- For a reversible process, $\Delta s_{univ} = 0$
- For an irreversible process, $\Delta s_{univ} > 0$

Why entropy is important?

- Actually, all the real processes are irreversible, but we cannot know the exact path of the real process.
- We can "assume" an ideal reversible (dS=0) process for each equipment and this is the best case for the equipment.
- Then we can compare the real result with the ideal best case, then can say its "efficiency"

Entropy for a reversible process

Reversible, isothermal

•
$$\Delta s_{sys} = \frac{q_{rev}}{T}$$

•
$$\Delta s_{surr} = -\frac{q_{rev}}{T}$$

• $\Delta s_{univ} = \Delta s_{sys} + \Delta s_{surr} = 0$

•
$$\Delta s_{sys} \neq 0$$
, $s_{surr} \neq 0$

Reversible and Adiabatic=Isentropic

•
$$\Delta s_{sys} = \frac{q_{rev}}{T} = 0$$

•
$$\Delta s_{surr} = -\frac{q_{rev}}{T} = 0$$

•
$$\Delta s_{univ} = \Delta s_{sys} + \Delta s_{surr} = 0$$

• $\Delta s_{sys} = 0, s_{surr} = 0$

➡ Isentropic

How to get Δs from T, P, v without q_{rev} ?

- Entropy is a state function
- For a real(irreversible) process from state 1 to 2, we can construct a hypothetic reversible process from 1 to 2 to get Δs

$$\Delta s_{real(blue)} = s_2 - s_1$$
$$= \Delta s_{rev(red)}$$

Entropy of irreversible Process

$$P \text{ (bar)}$$

$$q_{A,rev} = -w_{rev} = + \int_{v_1}^{v_2} P dv = \int_{v_1}^{v_2} \frac{P_1 v_1}{v} dv$$

$$= P_1 v_1 \ln\left(\frac{v_2}{v_1}\right) = 5545 (J/m \text{ ol})$$

$$1 = \frac{2}{0.04} = 0.08 \text{ (}w(m^3 \setminus \text{mol})^2$$

How to get Δs for an irreversible process?

