

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

http://artlab.re.kr

Mass and Energy Transfer-2

Changha Lee

School of Chemical and Biological Engineering Seoul National University

Energy Fundamentals

✓ To analyze energy flows:

- Define system
- 1st and 2nd laws of thermodynamics

Open System:

- Both energy and material flow across boundaries
- e.g. lake: H₂O & sun energy flow

Closed System:

- Only energy flows across boundaries
- e.g. closed bottle: only heat flow

1st Law of Thermodynamics

✓ Energy cannot be created or destroyed.

• Energy balance equation:

Energy In = Energy Out + Change in Internal Energy

- Commonly, change in Internal Energy is due to temperature changes (although it can also involve phase changes such as freezing or evaporation)
- Change in internal energy due to change in body T
 = m c ΔT

where, m = mass of body

c = specific heat

The energy required to raise T of unit mass by 1 degree

 ΔT = temperature change in the object or system under consideration

1st Law of Thermodynamics

- When substance changes state...
 - e.g. freezing or boiling
- Change in internal energy = mH_L
 - H_L = latent heat
- Internal energy changes due to phase changes:
 - solid → liquid latent heat of fusion
 - liquid \rightarrow gas latent heat of vaporization

Total Change in Internal Energy = $m c \Delta T + m H_L$

TABLE 4

Important Physical Properties of Water		
Property	SI Units	USCS Units
Specific heat (15°C)	4.184 kJ/kg°C	1.00 Btu/lb°F
Heat of vaporization (100°C)	2,257 kJ/kg	972 Btu/lb
Heat of vaporization (15°C)	2,465 kJ/kg	1,060 Btu/lb
Heat of fusion	333 kJ/kg	144 Btu/lb
Density (at 4°C)	1,000 kg/m ³	62.4 lb/ft ³ (8.34 lb/gal)

1st Law of Thermodynamics

- H_L (fusion, 0°C water) = 333 kJ/kg
- H_L (vaporization, 100°C water) = 2,258 kJ/kg
- slope = c = 4.184 kJ/kg°C

Example – Global Precipitation

Over entire globe (area = 5.1x10¹⁴ m²), precipitation averages 1 m/yr.
 What energy is required to evaporate all precipitation if water at 17°C?

(Put this amount in the context of the world's energy consumption = $4.7 \times 10^{17} \text{ kJ/yr}$)

- Use 1st Law of Thermodynamics:
 - Energy In = Energy Out + Change in Internal Energy
 - In this case, no energy out (assume no losses)
 - Thus, all energy input used for evaporation
- Energy In = Change in Internal Energy
 - $= mc\Delta T + mH_L$
 - $= (5.1 \times 10^{14} \text{ m}^2)(1 \text{ m/yr})(1000 \text{ kg/m}^3)$
 - (4.184 kJ/kg°C)(100 17 °C)
 - + (5.1 x 10¹⁴ m²)(1 m/yr)(1000 kg/m³)(2258 kJ/kg)

Energy In = 1.33 x 10²¹ kJ/yr

• This is 2,800 times larger than world energy consumption!

Open systems

• In open systems, mass flows across boundaries

mass flow = m' = dm/dt = $\rho \times Q$ (M/L³) (L³/T)

• Change in internal energy due to flow:

m' c $\Delta T = \rho Q c \Delta T$

m' = mass flow rate across boundaries

Example

A brewery wants to cool a stream of wort that flows at 5 gpm (gal/min), from a temperature of 200°F to 80°F. The heat capacity of the wort is 1.2 times that of water, and the specific gravity is 1.1. the cooling system (water) has a flow rate of 30 gpm and is initially at 50°F. What is the final temperature of the cooling water?

Ideally, all heat from wort goes to H₂O

• Energy balance: rate of change of internal energy equal for wort and H_2O

 $(m' c \Delta T)_{wort} = (m' c \Delta T)_{water}$

2nd Law of Thermodynamics

$\sqrt{\mbox{The entropy of a system tends to increase}}$

- Entropy: measure of disorganization in the universe
 - Reflection system's thermal energy not available for conversion into mechanical work
- Macroscopic consequences:
 - When converting heat to work, waste heat
 - Heat engine cannot be 100% efficient

2nd Law of Thermodynamics

• Define efficiency =

2nd Law of Thermodynamics

• Theoretically, most efficient engine is "Carnot engine"

• Carnot engine (ideal) efficiency:
$$\eta = 1 - \frac{T_c}{T_h}$$

- T_c, T_h : absolute temperature
- T_h increases, η increases
- T_c decreases, η increases

Typical Power Plant

- Pressurized steam boiler : 600°C
- Cooled to ambient temperatures : 20°C
- Converting to absolute temperature: 600°C + 273 = 873K 20°C + 273 = 293K
- $\eta_{max} = 1 293/873 = 66\%$
- average US thermal plant: 33% efficient
- nuclear plant: 33%
- new fossil-fuel plants: 40%

Coal–Fired Power Plants

- Energy content of coal or other fuel
- Used to produce heat to boil water
- Resulting steam to 'move' turbines → electricity

The Impact

A 3 MW coal-fired plant is 40% efficient.
 This coal has 2% S, heat content of 2.5 x 10⁴ J/g.

If 80 % of S is converted to SO_2 , what is the rate of SO_2 emission?

• Determine heat input into plant:

• Determine rate of coal burned:

• Determine rate of SO₂ emission:

Example

• A 15 W fluorescent bulb provides same light as a 60 W incandescent bulb. Over the 9,000 hr lifetime, what would be saved in carbon, SO₂, and particulate emissions by using a fluorescent bulb, using the following power plant:

 SO_2 emission = 2.8 g SO_2 /kWh C emission = 280 g C/kWh Particulate emission = 0.14 g PM/kWh (acid rain) (global warming) (health)

• Power saved by using fluorescent bulb

• Emissions Saving: