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Utility Functions

 Utility
• an indicator of person’s overall well-being
• a numeric measure of a person’s happiness
• a way of describing preferences 
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Utility Functions

 Consider the bundles (4,1), (2,3) and (2,2).
 Suppose (2,3)      (4,1) ∼ (2,2).
 Assign to these bundles any numbers that 

preserve the preference ordering;
e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.

 Can call these numbers utility levels.
 If we let U(x1,x2) = x1x2 , this function can be a 

utility function !
 Given some preferences, can we always find 

the corresponding utility function? 


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Utility Functions

 Existence: Suppose preferences are complete, 
reflexive, transitive, strongly monotonic and 
continuous. Then there exists a continuous utility 
function                 which represents those 
preferences
• Continuity means that small changes to a consumption 

bundle cause only small changes to the preference level.
• Lexicographic preference

• Unique?

: nu + →R R
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Utility Functions

 Consider the bundles (4,1), (2,3) and (2,2).
 Suppose (2,3)      (4,1) ∼ (2,2).
 U(x1,x2) = x1x2 , is a utility function 
 Consider V(x1,x2) = U2 = (x1x2) 2

 V(2,3) = 36 > V(4,1) = V(2,2) = 16.
 If we let V(x1,x2) = (x1x2) 2

, this function also 
can be a utility function !


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Utility Functions

 (Positive) Monotonic transformation
• Given a function u, f(u) is monotonic transformation of u

if u1>u2, then f(u1)>f(u2)

 (Positive) Monotonic transformation of a utility 
function is also a utility function that represents the 
same preferences as the original utility function

 Unique up to (positive) monotonic transformation  
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Utility Functions

 Ordinal utility: the magnitude of the utility function 
is only important insofar as it orders(ranks) the 
different bundles; the size of the utility difference 
between two bundles does not matter

 Cardinal utility: the size of the utility difference 
between two bundles is supposed to have some 
sort of significance

 For examining consumers’ choice behavior, the 
ordinality is sufficient in analyzing utility functions 
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Utility Functions & Indiff. Curves

 Consider the bundles (4,1), (2,3) and (2,2).
 Suppose (2,3)      (4,1) ∼ (2,2).
 Assign to these bundles any numbers that 

preserve the preference ordering;
e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.

 Can call these numbers utility levels.
 Note that all bundles in an indifference curve 

have the same utility level.

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Utility Functions & Indiff. Curves

U ≡ 6
U ≡ 4

(2,3) (2,2) ~ (4,1)

x1

x2 


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Utility Functions & Indiff. Curves

U ≡ 6
U ≡ 4
U ≡ 2

x1

x2

• Comparing more bundles will create a larger 
collection of all indifference curves
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Utility Functions & Indiff. Curves

U ≡ 4

U ≡ 6

Higher indifference
curves contain
more preferred
bundles.

Utility

x2

x1

U(2,3) = 6

U(2,2) = 4 
U(4,1) = 4

• Another way to visualize this same information is 
to plot the utility level on a vertical axis.
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Utility Functions & Indiff. Curves

U ≡ 6
U ≡ 5
U ≡ 4
U ≡ 3
U ≡ 2
U ≡ 1

x1

x2

Utility
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Utility Functions & Indiff. Curves

 Comparing all possible consumption bundles 
gives the complete collection of the 
consumer’s indifference curves, each with its 
assigned utility level.

 This complete collection of indifference curves 
completely represents the consumer’s 
preferences.
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1

x2
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Utility Functions & Indiff. Curves

x1
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Indifference Curves from Utility Functions

 U(x1,x2) = x1x2

 Note that U(2,3) = 6 > U(4,1) = U(2,2) = 4

 To find a corresponding I.C.,
let U(x1,x2) = x1x2 =k ,  that is, x2 =k/x1
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Some Examples of Utility Functions

 Perfect substitutes
• Suppose that consumer would require 2 units of good 2 

to give up 1 unit of good 1 (MRS = -2)
• Good 1 is twice as valuable as good 2
• U(x1,x2) = 2x1 + x2

• Suppose that consumer would require ‘a’ units of good 
2 to give up ‘b’ unit of good 1 (MRS = -a/b) 

• Good 1 is (a/b) times as valuable as good 2  
• U(x1,x2) = (a/b)x1 + x2  (Equivalently ax1 + bx2)
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Some Examples of Utility Functions

 Perfect substitutes
• In case that ‘b’ number of good 1 can be substituted for 

‘a’ number of good 2
• MRS = -a/b

x1

x2
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Some Examples of Utility Functions

 Perfect complements
• In case of right shoes & left shoes case, consumer only 

cares about the number of pairs
• The # of pairs = min {x1, x2}
• This can be a utility function

• Suppose that one pair requires ‘1’ unit of good 1 and ‘2’ 
units of good 2 

• The # of pairs = min {x1, 1/2x2}
• Equivalently, U(x1,x2)= 2min {x1, 1/2x2}= min {2x1, x2}
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Some Examples of Utility Functions

 Perfect complements
• Consumer wants to consume the goods in proportion of 

b-to-a; thus (b, a) makes a pair

x2

x1

Slope=a/b
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Some Examples of Utility Functions

 A utility function of the form
U(x1,x2) = f(x1) + x2

is linear in just x2 and is called quasi-linear.
 E.g.  U(x1,x2) =  2x1

1/2 + x2. 

Each curve is a vertically 
shifted copy of the 
others.
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Some Examples of Utility Functions

 Any utility function of the form

U(x1,x2) = x1
a x2

b

with a > 0 and b > 0 is called a Cobb-Douglas 
utility function.

 E.g.    U(x1,x2) = x1
1/2 x2

1/2 (a = b = 1/2)
V(x1,x2) = x1 x2

3           (a = 1, b = 3)
 Well-behaved (nicely monotonic and convex) 

preference
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Some Examples of Utility Functions

All curves are hyperbolic,
asymptoting to, but never
touching any axis.

 Cobb-Douglas Indifference curves
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발표자
프레젠테이션 노트
Cobb-Douglas indifference curves.
Panel A shows the case where c = 1/2, d = 1/2 and panel B shows the case where c = 1/5, d = 4/5.



Some Examples of Utility Functions

 Some examples of monotonic transformation of 
Cobb-Douglas utility function, U(x1,x2) = x1

a x2
b

• 1 2 1 2 1 2( , ) ln[ ( , )] ln lnv x x u x x a x b x= = +

•
1 1

1 2 1 2 1 2 1 2( , ) [ ( , )]
a b a a

a b a b a b a b a bv x x u x x x x x x
−

+ + + + += = =

1
1 2     cc c ax x where

a b
−= =

+
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Marginal Utility

 The marginal utility of commodity i (say, good 1) is 
the rate-of-change in utility associated with a small 
change in the amount of commodity i

Note that the amount of good 2 is held fixed!

 The change in utility: i idU MU dx=
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Marginal Utility and MRS

 Marginal Rate of Substitution
• The rate at which a consumer is just willing to 

substitute a small amount of good j for good i
• To keep utility constant
• To stay on the same indifference curve

 MRS = - MU1/MU2 
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Marginal Utility and MRS

 Given a utility function, 1 2( , )U x x

 By total differentiation, 
1 2 1 2

1 2
1 2

( , ) ( , )U x x U x xdU dx dx
x x

∂ ∂
= +

∂ ∂

 By the condition of MRS, 
1 2 1 2

1 2
1 2

( , ) ( , ) 0U x x U x xdU dx dx
x x

∂ ∂
= + =

∂ ∂

 Rearrangement gives  
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Marginal Utility and MRS

 Consider a function describing I.C.,   2 1( )x x

 Then this function satisfies the following identity

1 2 1( , ( ))U x x x k≡

 By differentiating both sides w.r.t. x1

1 2 1 2 2 1

1 2 1

( , ) ( , ) ( ) 0U x x U x x x x
x x x

∂ ∂ ∂
+ =

∂ ∂ ∂

 Rearrangement gives  
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Example: Marg. Rates-of-Substitution

MRS(1,8) = - 8/1 = -8     

x1

x2

8

6

1 6

U = 36

U(x1,x2) = x1x2;

MRS(6,6) = - 6/6 = -1.
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Monotonic Transformations & MRS 

 Applying a monotonic transformation to a utility 
function representing a preference relation simply 
creates another utility function representing the 
same preference relation.

 What happens to marginal rates-of-substitution 
when a monotonic transformation is applied?
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Monotonic Transformations & MRS: Cobb-
Douglas Example 

So MRS is unchanged by a positive
monotonic transformation.
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