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Gaussian Distribution

 Telescopes and sampling errors

• The mathematician Gauss (1777-1855) was also 
a keen astronomer. He acquired a new telescope, 
and decided to use it to produce a more accurate 
calculation of the diameter of the moon.

• To his surprise, he discovered that every time he 
took a measurement, his answer was slightly 
different.

• He plotted the results and found that they formed 
a bell shaped curve, with most results close to the 
central average but the occasional one quite 
inaccurate.

• Gauss quickly realized that any measurement he took was a ‘sample’ prone 
to error but which could be used as an estimate of the correct answer. The 
more readings he took, the closer the average would be to the correct reading.

• He established that errors in readings belonged to a famous bell curve (or 
normal distribution or Gaussian distribution).
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 The probability density function of the normal distribution with the mean value m
and the variance parameter s2 can be expressed as

 From the measurements Qi (i=1,…,N), the variance can be estimated by

Normal Distribution
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Error vs. Uncertainty

 When we measure a physical quantity with an instrument or obtain a 
numerical value, we want to know how close the estimated value is 
to the true value.

 The difference between the estimated and true values is the error.

est trueError Q Q 

Unfortunately, the true value is unknown and 
unknowable.

 We can only estimate the error.

 The estimate of the error is called the uncertainty.

Uncertainty can be expressed in either absolute or percentage terms for 
typically 95% confidence interval, for example,

5 Volts ±0.5 Volts, 5 Volts ±10%, etc.
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 Random, Stochastic or Precision Error

• tend to be random in nature by effects 
of uncontrolled variables

 Bias or Systematic Error (Accuracy) 

• Error that remains with repeated 
measurements by a faulty equipment or 
consistent human errors

• difference between your measurement 
(mean value) and the truth.

Types of Errors: Bias & Random Error
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 “It is now possible to model and analyze any nuclear system regardless of its 
complexity, to any degree of accuracy from the computational point of view. The 
uncertainties that we do have today in analyzing nuclear systems are due to 
uncertainties in the nuclear data and not in the computational method.” [1]

[1] Yigal Ronen, (Ed.), CRC Handbook of Nuclear Reactors Calculations, CRC 
Press, Inc., Boca Raton, FL (1986).

 The nuclear data uncertainties are inevitable because they are generated from 
experimental results.

 Most of experimental uncertainties in the current measurements of nuclear data are 
systematic. Systematic uncertainties are characterized by inducing strong 
correlations in the nuclear data.

• As an example, fission cross sections of some actinide nuclides are determined 
as relative values to those of 235U, of which uncertainties are known 2-3%.

• Thus, the uncertainties in the fission cross sections of these nuclides will be 
larger than and correlated to the uncertainties of 235U.

• The n values of actinides are true with respect to 252Cf n which has an 
uncertainty of ~0.5-1%.

Nuclear Data Uncertainty
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Parameter
Accura
cy [%]

Steady-state power distribution
• Within a fuel pin
• Fuel pin relative assembly
• Axial, within an assembly
• Radial, between assemblies
• Overall, pellet to average

±8
±2-4
±4-8
±2-5
±5-9

Steady-state reactivity
• Initial keff

• Reactivity lifetime
±0.3
±2-6

Estimateda Capabilities of LWR Parameter Accuracy

Parameter
Accura
cy [%]

Fuel burnup
• Peak pellet
• Fuel assembly
• Discharge batch

±5
±4
±3-5

Isotopic compositionb local (pellet)
• 235U depletion
• 239Pu/U ratio
• Net fissile atoms produced/U

±5
±4
±4

Discharged batch
• 235U depletion
• 239Pu/U ratio
• Net fissile atoms produced/U

±5
±5
±5

a. Estimates are for generic designs, not appropriate for any specific reactor.
b. Assuming that the burnup is known in predictive comparison.  
<from C. R. Weisbin et al., Ann. Nucl. Energy, 9, 615 (1982) >

Theses uncertainties are mainly due to uncertainties in nuclear data 
dominated by experimental results.
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Uncertainties in the Design Parameters
of Fast Demonstration Reactors

Parameter

Uncertaintya (%)

FRG
(1972)

SNR-300
(1978)

CRBR
(1980)

keff 1.1 0.4 0.7

Peak/average power 2.7 2.5 ~4.7b

Control rod worth 6 4-10 5

Doppler coefficient 6-12 15 10c

Sodium void reactivity 12-18 15 20

a. 1 s level.
b. Includes many engineering uncertainties; only about 2% comes from ability to calculate power dist.
c. Mainly from SEFOR experiments.
[1] Yigal Ronen, (Ed.), CRC Handbook of Nuclear Reactors Calculations, CRC Press, Inc., Boca Raton, FL (1986).
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Evaluated Nuclear Data

BNL: ENDF/B

NEADB: JEFF 
JAEA: JENDL 

CIAE: CENDL 

IPPE: BROND 

ENDF6 Format Evaluated Nuclear Data Libraries

NRG: TENDL

IAEA: FENDL 

main libraries
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ENDF/B-VII.1 Covariance Data

Type Number
Light materials 12
Structural & fission products 105
Actinides 20
Minor actinides 53
Total 190

MF ENDF/B-VII.0 ENDF/B-VII.1
nt,p,d 31 2 73

Resonances 32 10 55

Cross-sections 33 24 183

Angular distr. 34 0 68

Energy distr. 35 0 64

Total 36 443

Source of covariances for ENDF/B-VII.1
New ORNL, LANL, BNL evaluations
IAEA/IJS evaluations
COMMARA-2.0
Neutron standards

1,2H, 4He, 6,7Li, 9Be, 10,11B, natC, 15N, 16O, 19F, 23Na, 24,25,26Mg, 27Al, 28,29,30Si, 35,37Cl, 39,41K, 46,47,48.49.50Ti, 
natV, 50,52,53,54Cr, 55Mn, 54,56,57Fe, 59Co, 58,60 Ni, 89Y, 90,91,92,93,94,95,96Zr, 95Nb, 92,94,95,96,97,98,100Mo, 99Tc, 
101,102,103,104,106Ru, 103Rh, 105,106,107,108Pd, 109Ag, 127,129I, 131,132,134Xe, 133,135Cs, 139La, 141Ce, 141Pr, 
143,145,146,148Nd, 147Pm, 149,151,152Sm, 153,155Eu, 152,153,154,155,156,157,158,160Gd, 166,167,168,170Er, 169,170Tm, 
180,182,183,184,186W, 191,193Ir, 197Au, 203,205Tl, 204,206,207,208Pb, 209Bi, 225,226,227Ac, 227,228,229,230,231,232,233,234Th, 
229,230,232Pa, 230,231,233,234,235,236,238U, 234,235,236,237,238,239Np, 236,237,238,239,240,241,242Pu, 240,241,242m,243Am, 
240,241,242,243,244,245,246,247,248,249,250Cm, 245,246,247,248,249,250Bk, 246,248,249,250,251,252,253,254Cf, 
251,252,253,254,254m,255Es, 255Fm
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n Uncertainty of 235U in ENDF/B-VII.1

The plots of the ENDF/B-VII.1 
covariance matrices  
(44 & 187 energy groups)  for 190
materials  can be downloaded from
http://www.nndc.bnl.gov/exfor/endfb

7.1_covariances.jsp
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Mission of Nuclear Data S/U Analysis
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Uncertainty Quantification – Sampling Method
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 Because of the input data uncertainties, there can be an infinitely different set of 
inputs, (xi,yi) (i=1,2,…). This may result in different z’s as many as the number of 
input sets. 

 Then from the results, the variance of z can be estimated by

 This methodology is called the stochastic sampling method or Brute force method.
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 Let’s assume that      is determined from the best estimates of input variables as

 The Taylor series expansion of Eq. (1),                          to the first order of input 
variations about their mean values,                in Eq. (2), the sample variance 
formulation, leads to 

 The substitution of Eq. (4) into Eq. (2) results in 

Uncertainty Quantification – S/U Analysis
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Error Propagation Examples
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Current Nuclear Data UQ Approaches
 Approach #1 Sensitivity and Uncertainty (S/U) Analysis

• Determination of sensitivity coefficients: 

• keff uncertainty: 

• Examples: 

 McCARD based on Monte Carlo Perturbation Techniques for the sensitivity 
calculations

 TSUNAMI, SUSD3D

 Approach #2 Stochastic Sampling (S.S.)

• Probability procedure to sample input parameters (e.g. nuclear data) according to their
variances/covariances

• Examples: 

 GRS: initially Monte Carlo sampling for system codes by SUSA tool

now also using XSUSA to make nuclear data sampling coupled with SCALE-6

 NRG Total MC:  sampling and perturbation are done directly to theoretical nuclear 
model parameters

 AREVA: produce sets of randomly perturbed ENDF-formatted data libraries

The TALYS and NUDUNA codes are available.
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S/U vs. S.S

Sensitivity / Uncertainty Stochastic Sampling

Pros - reveal individual uncertainty contribution 
to the total system uncertainty (in keff)

- free of low-order approximations
- easy to implement, existing statistical tools
- applicable to any choice of “input  output”

Cons - inherently “local” because of low-order 
Taylor expansions
- implementation complexity increases 
dramatically if high-order expansion is 
required to account for non-linear effects

- high computational cost
- decomposition of individual uncertainty 
contribution is not trivial


