Uncertainty Quantification

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

Contents

- 1. Error vs. Uncertainty
- 2. Nuclear Covariance Data
- 3. Uncertainty Quantification Methodology
 3.1 Sensitivity & Uncertainty Analysis
 3.2 Stochastic Sampling Method

Gaussian Distribution

- Telescopes and sampling errors
 - The mathematician Gauss (1777-1855) was also a keen astronomer. He acquired a new telescope, and decided to use it to produce a more accurate calculation of the diameter of the moon.
 - To his surprise, he discovered that every time he took a measurement, his answer was slightly different.
 - He plotted the results and found that they formed a bell shaped curve, with most results close to the central average but the occasional one quite inaccurate.
 - Gauss quickly realized that any measurement he took was a 'sample' prone to error but which could be used as an estimate of the correct answer. The more readings he took, the closer the average would be to the correct reading.
 - He established that errors in readings belonged to a famous **bell curve** (or **normal distribution** or **Gaussian distribution**).

Normal Distribution

• The probability density function of the normal distribution with the mean value μ and the variance parameter σ^2 can be expressed as

PDF of the normal distribution

• From the measurements Q_i (*i*=1,...,*N*), the variance can be estimated by

$$\sigma^{2} \left[\bar{Q} \right] = \frac{1}{N(N-1)} \sum_{i=1}^{N} \left(Q_{i} - \bar{Q} \right)^{2}; \quad \bar{Q} = \frac{1}{N} \sum_{i=1}^{N} Q_{i}$$

Error vs. Uncertainty

When we measure a physical quantity with an instrument or obtain a numerical value, we want to know how close the estimated value is to the true value.

• The difference between the estimated and true values is the **error**.

$$\mathrm{Error} = Q_{\mathrm{est}} - Q_{\mathrm{true}}$$

Unfortunately, the true value is unknown and unknowable.

- We can only **estimate** the error.
- The <u>estimate of the error is called the **uncertainty**.</u>

Uncertainty can be expressed in either absolute or percentage terms for typically 95% confidence interval, for example,

5 Volts ± 0.5 Volts, 5 Volts $\pm 10\%$, etc.

Types of Errors: Bias & Random Error

- Random, Stochastic or Precision Error
 - tend to be random in nature by effects of uncontrolled variables
- Bias or Systematic Error (Accuracy)
 - Error that remains with repeated measurements by a faulty equipment or consistent human errors
 - difference between your measurement (mean value) and the truth.

$$\sigma^{2}\left[\overline{Q}\right] = E\left[\left(\overline{Q} - Q_{\text{true}}\right)^{2}\right]$$

$$= E\left[\left\{\left(\overline{Q} - E\left[\overline{Q}\right]\right) + \left(E\left[\overline{Q}\right] - Q_{\text{true}}\right)\right\}^{2}\right]$$

$$= E\left[\left(\overline{Q} - E\left[\overline{Q}\right]\right)^{2}\right] + E\left[\left(E\left[\overline{Q}\right] - Q_{\text{true}}\right)^{2}\right] + 2E\left[\left(\overline{Q} - E\left[\overline{Q}\right]\right)\left(E\left[\overline{Q}\right] - Q_{\text{true}}\right)\right]$$

$$= \sigma_{S}^{2}\left[\overline{Q}\right] + Bias^{2}$$

Nuclear Data Uncertainty

"It is now possible to model and analyze any nuclear system regardless of its complexity, to any degree of accuracy from the computational point of view. *The uncertainties that we do have today in analyzing nuclear systems are due to uncertainties in the nuclear data and not in the computational method*." [1]
 [1] Yigal Ronen, (Ed.), *CRC Handbook of Nuclear Reactors Calculations*, CRC

Press, Inc., Boca Raton, FL (1986).

- The nuclear data uncertainties are inevitable because they are generated from experimental results.
- Most of experimental uncertainties in the current measurements of nuclear data are systematic. Systematic uncertainties are characterized by inducing strong correlations in the nuclear data.
 - As an example, fission cross sections of some actinide nuclides are determined as relative values to those of ²³⁵U, of which uncertainties are known 2-3%.
 - Thus, the uncertainties in the fission cross sections of these nuclides will be larger than and <u>correlated to the uncertainties of ²³⁵U</u>.
 - The ν values of actinides are true with respect to 252 Cf ν which has an uncertainty of ~0.5-1%.

Estimated^a Capabilities of LWR Parameter Accuracy

Parameter	Accura cy [%]	Parameter	Accura cy [%]
 Steady-state power distribution Within a fuel pin Fuel pin relative assembly Axial, within an assembly 	$^{\pm 8}_{\pm 2-4}_{\pm 4-8}$	Fuel burnupPeak pelletFuel assemblyDischarge batch	$^{\pm 5}_{\pm 4}_{\pm 3-5}$
 Radial, between assemblies Overall, pellet to average Steady-state reactivity Initial k_{off} 	$\pm 2-5 \\ \pm 5-9 \\ \pm 0.3$	Isotopic composition ^b local (pellet) • ²³⁵ U depletion • ²³⁹ Pu/U ratio • Net fissile atoms produced/U	$egin{array}{c} \pm 5 \ \pm 4 \ \pm 4 \end{array}$
• Reactivity lifetime	±2-6	Discharged batch • ²³⁵ U depletion • ²³⁹ Pu/U ratio • Net fissile atoms produced/U	$^{\pm 5}_{\pm 5}_{\pm 5}$

a. Estimates are for generic designs, not appropriate for any specific reactor.

b. Assuming that the burnup is known in predictive comparison.

<from C. R. Weisbin et al., Ann. Nucl. Energy, 9, 615 (1982) >

Theses uncertainties are mainly due to uncertainties in nuclear data dominated by experimental results.

Uncertainties in the Design Parameters of Fast Demonstration Reactors

		Uncertainty ^a (%)	
Parameter	FRG	SNR-300	CRBR
	(1972)	(1978)	(1980)
$k_{ m eff}$	1.1	0.4	0.7
Peak/average power	2.7	2.5	~4.7 ^b
Control rod worth	6	4-10	5
Doppler coefficient	6-12	15	10°
Sodium void reactivity	12-18	15	20

a. 1 σ level.

b. Includes many engineering uncertainties; only about 2% comes from ability to calculate power dist.

c. Mainly from SEFOR experiments.

[1] Yigal Ronen, (Ed.), CRC Handbook of Nuclear Reactors Calculations, CRC Press, Inc., Boca Raton, FL (1986).

Evaluated Nuclear Data

ENDF/B-VII.1 Covariance Data

Source of covariances for ENDF/B-VII.1

New ORNL, LANL, BNL evaluations

IAEA/IJS evaluations

COMMARA-2.0

Neutron standards

Туре	Number
Light materials	12
Structural & fission products	105
Actinides	20
Minor actinides	53
Total	1 90

MF	ENDF/B-VII.0	ENDF/B-VII.1
$\nu_{t,p,d}$ 31	2	73
Resonances 32	10	55
Cross-sections 33	24	183
Angular distr. 34	0	68
Energy distr. 35	0	64
Total	36	443

1,2H, 4He, 6,7Li, 9Be, 10,11B, natC, 15N, 16O, 19F, 23Na, 24,25,26Mg, 27Al, 28,29,30Si, 35,37Cl, 39,41K, 46,47,48.49.50Ti, natV, 50,52,53,54Cr, 55Mn, 54,56,57Fe, 59Co, 58,60Ni, 89Y, 90,91,92,93,94,95,96Zr, 95Nb, 92,94,95,96,97,98,100Mo, 99Tc, 101,102,103,104,106Ru, 103Rh, 105,106,107,108Pd, 109Ag, 127,129I, 131,132,134Xe, 133,135Cs, 139La, 141Ce, 141Pr, 143,145,146,148Nd, 147Pm, 149,151,152Sm, 153,155Eu, 152,153,154,155,156,157,158,160Gd, 166,167,168,170Er, 169,170Tm, 180,182,183,184,186W, 191,193Ir, 197Au, 203,205Tl, 204,206,207,208Pb, 209Bi, 225,226,227Ac, 227,228,229,230,231,232,233,234Th, 229,230,232Pa, 230,231,233,234,235,236,238U, 234,235,236,237,238,239Np, 236,237,238,239,240,241,242Pu, 240,241,242m,243Am, 240,241,242,243,244,245,246,247,248,249,250Cm, 245,246,247,248,249,250Bk, 246,248,249,250,251,252,253,254Cf, 251,252,253,254,254m,255Es, 255Fm

11

v Uncertainty of ²³⁵U in ENDF/B-VII.1

(44 & 187 energy groups) for **190** materials can be downloaded from http://www.nndc.bnl.gov/exfor/endfb 7.1 covariances.jsp

Mission of Nuclear Data S/U Analysis

$N^{i}(\mathbf{r},t) + \Delta N^{i}, x_{r}^{i}(\mathbf{r},E,\mathbf{\Omega}) + \Delta x_{r}^{i}$

 $k + \Delta k, \ \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) + \Delta \Phi,$

 $\kappa \Sigma_f(\mathbf{r}, E, \mathbf{\Omega}, t) \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) + \Delta P$

Uncertainty Quantification – Sampling Method

$$\overline{x} \pm \sigma_x, \qquad \clubsuit \quad \overline{z} = f(x, y) \quad \clubsuit \quad \overline{z}, \sigma_z ??$$

Because of the input data uncertainties, there can be an infinitely different set of inputs, (x_i,y_i) (i=1,2,...). This may result in different z's as many as the number of input sets.

$$\begin{array}{cccc} (x_1,y_1) & \longrightarrow & z = f(x,y) & \longrightarrow & z_1 \\ \hline (x_2,y_2) & \longrightarrow & z = f(x,y) & \longrightarrow & z_2 \\ \vdots & & & \vdots \\ \hline (x_i,y_i) & \longrightarrow & \overline{z_i = f(x_i,y_i)} & \longrightarrow & z_i \\ \vdots & & & & (1) & & \vdots \end{array}$$

• Then from the results, the variance of *z* can be estimated by

$$\sigma_z^2 \equiv \sigma^2 \left[\overline{z}\right] = \frac{1}{N(N-1)} \sum_{i}^{N} \left(z_i - \overline{z}\right)^2; \ \overline{z} = \frac{1}{N} \sum_{i}^{N} z_i \quad \dots \quad (2)$$

• This methodology is called the **stochastic sampling method** or Brute force method.

Uncertainty Quantification – S/U Analysis

• Let's assume that \overline{z} is determined from the best estimates of input variables as

$$\overline{z} = f(\overline{x}, \overline{y}) \tag{3}$$

• The Taylor series expansion of Eq. (1), $z_i = f(x_i, y_i)$ to the first order of input variations about their mean values, $(z_i - \overline{z})$ in Eq. (2), the sample variance formulation, leads to

• The substitution of Eq. (4) into Eq. (2) results in

$$\sigma_z^2 \approx \frac{1}{N(N-1)} \sum_{i}^{N} \left((x_i - \overline{x}) \left(\frac{\partial f}{\partial x} \right) + (y_i - \overline{y}) \left(\frac{\partial f}{\partial y} \right) \right)^2$$

$$= \frac{1}{N(N-1)} \left\{ \sum_{i}^{N} (x_i - \overline{x})^2 \left(\frac{\partial f}{\partial x} \right)^2 + \sum_{i}^{N} (y_i - \overline{y})^2 \left(\frac{\partial f}{\partial y} \right)^2 + 2 \sum_{i}^{N} (x_i - \overline{x}) (y_i - \overline{y}) \left(\frac{\partial f}{\partial x} \right) \left(\frac{\partial f}{\partial y} \right) \right\}$$

$$= \sigma_x^2 \left(\frac{\partial f}{\partial x} \right)^2 + \sigma_y^2 \left(\frac{\partial f}{\partial y} \right)^2 + 2 \operatorname{cov}[x, y] \left(\frac{\partial f}{\partial x} \right) \left(\frac{\partial f}{\partial y} \right)$$

$$= 15$$
SNU Monte Carlo Lab.

Error Propagation Examples

$$\sigma^{2} \left[f(x, y) \right] = \sigma_{x}^{2} \left(\frac{\partial f}{\partial x} \right)^{2} + \sigma_{y}^{2} \left(\frac{\partial f}{\partial y} \right)^{2} + 2 \operatorname{cov}[x, y] \left(\frac{\partial f}{\partial x} \right) \left(\frac{\partial f}{\partial y} \right)$$

Function	Variance
f = aA	$\sigma_f^2 = a^2 \sigma_A^2$
$f = aA \pm bB$	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 \pm 2ab \operatorname{cov}_{AB}$
f = AB	$\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_A \sigma_B}{AB}\rho_{AB}$
$f = \frac{A}{B}$	$\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_A \sigma_B}{AB}\rho_{AB}$

Current Nuclear Data UQ Approaches

- Approach #1 Sensitivity and Uncertainty (S/U) Analysis
 - Determination of sensitivity coefficients:

$$S_k = \frac{\Delta k / k}{\Delta \alpha / \alpha}$$

- $k_{\text{eff}} \text{ uncertainty: } \sigma_k^2 = \sum_{(\alpha\alpha')} S_{k,\alpha}^T C_{\alpha\alpha'} S_{k,\alpha'}$
- Examples:
 - McCARD based on Monte Carlo Perturbation Techniques for the sensitivity calculations
 - ✓ TSUNAMI, SUSD3D
- Approach #2 Stochastic Sampling (S.S.)
 - Probability procedure to sample input parameters (e.g. nuclear data) according to their variances/covariances
 - Examples:
 - GRS: initially Monte Carlo sampling for system codes by SUSA tool now also using XSUSA to make nuclear data sampling coupled with SCALE-6
 - ✓ NRG Total MC: sampling and perturbation are done directly to theoretical nuclear model parameters
 - ✓ AREVA: produce sets of randomly perturbed ENDF-formatted data libraries The TALYS and NUDUNA codes are available.

S/U vs. S.S

	Sensitivity / Uncertainty	Stochastic Sampling
Pros	- reveal individual uncertainty contribution to the total system uncertainty (in k _{eff})	 free of low-order approximations easy to implement, existing statistical tools applicable to any choice of "input → output"
Cons	 inherently "local" because of low-order Taylor expansions implementation complexity increases dramatically if high-order expansion is required to account for non-linear effects 	 high computational cost decomposition of individual uncertainty contribution is not trivial