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The two conventional MC perturbation techniques - the correlated sampling and
differential operator sampling (DOS) methods - have been applied [1] to estimate
the temperature coefficient of the coolant in a D,O test reactor.

([1] H. Rief, “Generalized Monte Carlo Perturbation Algorithms for Correlated Sampling and
a Second-Order Taylor Series Approach,” Ann. Nucl. Energy, 11, 455 (1984).)

Nagaya and Mori [2] strengthened the two conventional methods by taking into
account the fission source perturbation (FSP).

([2] Y. Nagaya, T. Mori, “Impact of Perturbed Fission Source on the Effective Multiplication
Factor in Monte Carlo Perturbation Calculations,” J. Nucl. Sci. Technol., 42[5], 428 (2005).
Recently, the MC perturbation techniques based on the adjoint flux estimated in the
MC forward calculations have been developed and successfully applied for the
density perturbation problems [3] and the nuclear data sensitivity and uncertainty
(S/U) analyses [4].

([3] B. Kiedrowski, F. B. Brown, P. P. H. Wilson, “Adjoint-Weighted Tallies for k-Eigenvalue
Calculations with Continuous-Energy Monte Carlo,” Nucl. Sci. Eng., 168, 226 (2011).)

([4] H. J. Shim, C. H. Kim, "Adjoint Sensitivity and Uncertainty Analyses in Monte Carlo
Forward Calculations," J. Nucl. Sci. Technol., 48[12], 1453 (2011).)

It 1s notable that the first-order DOS method with FSP (DOS/FSP method hereafter)
is equivalent to the first-order adjoint weighted perturbation (AWP) method [4].
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The steady-state Boltzmann transport equation can be written in an operator notation
as

1
T¢= P’ Fp — (A.1)
The net loss operator T and the fission production operator F are defined by
T¢=[Q-V+5,(r.E)] §(r,E,Q)~[dE [dQT,(r;E.Q — E,.Q)4(r,E.Q) — (A2)
F¢ _ jdE,I 4O’ ;{(E — E) V(E,)zf (r,E')¢(r,E',Q') .................... (A3)
T

2, X, and X are the total, scattering and fission cross-sections, respectively. vis the
mean number of fission neutrons produced from a fission reaction. c is the energy
spectrum of fission neutrons.
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By operating AFT-! on its both sides of Eq. (A.1), it can be expressed as the
following eigenvalue equation.

1

S=—HS (A.4)
k
where the fission source density (FSD) § and the fission operator H are defined as
1
= E Fo (A.5)
H — FT—] .................... (A.6)

Note that § satisfies j S(P)dP =1 where P denotes the state vector of a neutron in
the six-dimensional phase space, (r, E, Q).

HS in Eq. (A.4) implies
HS = de'H(P' N P)S(P') .................... (A.7)

where H(P' — P) means the number of first-generation fission neutrons born per
unit phase space volume about P, due to a parent neutron born at p".
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In order to derive an MC perturbation algorithm,
we apply the solution of the collision density
equation to the perturbation formulation.
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The integral equation for the collision density y(P) defined by Z(r,E) X P) can be
written as

w(P) = j dr'T(E, Q¥ = 1)S(r',E,Q)+ j dP'K_(P' > P)y(P) — (B.1)

K. 1s defined by the product of the scattering collision kernel, C, and the transition
kernel [B.1] (or the free flight kernel), 7

K (P >P)=T(E,r ->r)-C(;E,Q >EQ);, - (B.2)

CS(FI;E',Q'—)E,Q): Zvr Zr(r"E”’gz)
r#fis. Zt(raE)

Z E r-r _ !
T(E,Q;r’—)l‘): t(r, 2) exp| — | |Z ( R —— r- E)dS r l‘, [ — (B.4)
r—r" 0 ‘r r' ‘r—r‘

fr(E',Q'—>E,Q) .................... (B3)

v, 1s the average number of neutrons produced from a reaction type » and f,1s the
probability that a collision of type by a neutron of direction €' and energy £’ will
produce a neutron in direction interval dQ about Q with energy in dE about E.

([B.1] I. Lux, L. Koblinger, “Monte Carlo Particle Transport Methods: Neutron and Photon
Calculations,” CRC Press (1991).)
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For further derivations, we define the fission collision kernel by

Y(E'> E) V(ENZ,(r,E)

C,(r;E,Q - E,Q) =
47 z(r,E"

From the Neumann series solution of Eq. (B.1) [B.1], the angular flux &(P) can be
expressed as

1 C .
(P) = s @.D) JZ::;%(P)’ .................... (B.6)
w,(P)= j dPK, (P, —>P) j dr'T(E',Q;r' >r1)S(',E,Q)), o (B.7)

where the j-th scattering transport kernel, K| ; is defined by
K, ,(P, > P)=0(P, - P),
K, (P, —>P)=K (P, —>P), (B.8)

K, ,(P,>P)=[dP, - [dPK (P, —>P)--K (P, —>P);j =273

and E,=E', Q,=9Q.
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= By inserting Eq. (B.6) into Eq. (A.3), the definition of S of Eq. (A.5) can be written
as

Fg=[dE'[do % (E;_’ B s (L, ENG(r, B, Q)

4 %
1 > .
H(P) = o) zw (P);

] 0
= Ff wmp S(P)= % [dE"[dQ'C, (B, Q" > E,.Q)Y v (r, E", Q") — (B.9)
j=0

= Insertion of Eq. (B.7) into Eq. (B.9) leads to

HSZJ‘dP'H(P,—)P)S(P,), .................... (B]O)
H(P' = P)S(P') =

i j dE" j dQ'C,(r;E", Q" — E, Q) j dP K, (P, >1,E",Q") j dr'T(E',Q;r' > 1,)S(P)
=0
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By Taylor’s series expansion, the variation of a tally QO due to a deviation of a input
parameter a, denoted by Aa, can be expressed as

Olar+Ba) - Ola) = 50(a) = ZldQ af =Y ~U,(Aa) (1)

where

_d'o
U = e (2)

And the tally QO can be written using the corresponding detector response g and the
collision density ¥ in the MC simulation as follows:

Q:J‘g(P)\P(P)dP .................... (3)

where P denotes the six-dimensional phase space vector (r, £, Q).
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= Using the Neumann series solution of the collision density equation, the first order
sensitivity U, can be expressed as

_d_Q: S
U= =20 )
Ore¢
Y=L dPg(P)w,-(P)]
oT( ' ' (- PR ’
== dPg(P)(IdPOKS,j(PO —>P)_[drT(E,Q X' —1,)S(r ,E,Q))} ____________________ (5)
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= In the differential operator sampling (DOS) method augmented by the fission source
perturbation method, Eq. (5) can be written as

1 0og(P) n Z]: oK (P —>P)
qgP) ox T K (Pk —P) ox &
N 1 OT(E',Q";r' > r,) N 1 oS(P)

T(E,Qr' > Ox S(P) ox |
{gP)K (P, —>P)---K (P, > P)T(E,Q;r' > 1,)S(P)}

U,,=[dP-[ap,[ar'

"

~ [ap---[ap,| dr'{ul%PHiu“(P“ > Pk>+uls<P’>}

{gP)K (P, —>P)---K (P, > P)T(E',Q;r' > 1,)S(P)}
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where

u'(P)= L g® (7)
q(P) ox
= first order sensitivity response of 0
1 oK.(P_,—>P)
K@®_, —>P) ox
1 OT(E",Q;r" > r,)
|T(E,Qr' —>r,) Ox
= first order sensitivity response of transport kernel
ulS (PI) = 1 aS(P’) .................... (9)
S(P") ox

= first order sensitivity response of fission source distribution

(k = 1929)
u™ (P, > P,)=A

(k=0)

and Pj:P.
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= In the MC adjoint-weighted perturbation method, the variation of k due to a change
of parameter x 1s expressed by

Ak, <@ ,AHS, >
k, <d¢ ,HS, >

12
—
e
[E
|

= Using the iterated fission probability concept for the adjoint flux, Eq. (C.1) is
written as

Ak, = i <H",AHS,> = — (C.2)

0
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= Now, consider an MC algorithm for how to calculate (Ak,) in the course of the
cycle-by-cycle FSD and eigenvalue estimates. To do so, note that, when expressed
explicitly in terms of the transport kernels, HS of Eq. (C.2) 1s given by

HS =) [dE"[dQ'C (i E",.Q" - E,Q)[dPK, (P, > 1, E",Q")[dr'T(E,,Qy;r' > 1,)S(r, E,, Q)
j=0

= Then AHS in Eq. (C.2) can be expressed as

AHS = (Axa—Hj S

ox
=AxY [dE"[dQ"[dP, .- dP,[dr'
p=0
@a%{cf (E",Q" > E,Q)K, (P, > 1,E", Q") K (P, > P)T(E,, Q' > 1)} S(r', E,,Q,)

:AxgjdE"de”dep_l [ dP,[dr' u? (v, E,, Q) > P)

®{Cf(r;E”,Q" > E,QK (P _, >r,E"Q")K (P, > P)T(E,Qyr'—> ro)} S, E,,Q,);
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u’(r',E,,Q, >P)= uf(r;E",Q" — E, Q)

2 (C.4)
+ug (P >, E" Q")+ > u, (P, > P ) +u (E,,Qur >,
k=0
(r;E", Q' — E,Q) ! 0C,(GE. Y > EQ) (C.5)
u\r, L, R - T e )
! Cf(r;E”,Q”—>E,Q) ox
u,(P, >P )= % ! ok® >k (C.6)
;P =>P) Ox
u (E,, Q1 —>1,)= l ’ OT(E),Qyr' —>r) (C.7)
T(Ey, Q1 = 1) Ox
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In Monte Carlo random walk process, when the k-th track starts with a neutron
undergoing reaction type “a” with isotope i " at energy E, , and €, , 1s scattered to £,
and €, and continues for a track length 4, and collides, the sampled scattering
collision kernel and the sampled free flight kernel can be written as

C,, =C, (r,_E 1, > E Q)

N

A T N
Ve TSE) T Frr R Bt (10)
2 (F
Tk ET(E,(,Qk;l'k_1 —)rk):fﬂ(—zk)exp[_zt(Ek)/‘tk] .................... (11)

(s

Using Eqgs. (10) and (11), the first order sensitivity of the transport kernel of Eq. (8)
for the k-th track can be calculated by

(1 oC
1 s,k+ 1 aT;c (k:Lz,)
1K Cop Ox T, ox
uk = 1’ aT .................... (12)
_— Tk (k = ())
| 1, Ox
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= For a deviation of a capture xs of nuclide i, Eq. (12) can be calculated using

1 oC,, 1
C., oa - i Ni,O';,(E_) i
‘ Va 2,(E,_ f)l Jo (B8 = E; L)
N’é‘lzé‘a]/f (E Q E Q)
vV, ———— PEPLL P g V9L LT '
> (F |
® ( ’“) :f(;g)a""’a‘”_zgs )
.y . E /! G{l B ! -
t( k—l) .................... (13)
N
—-exp|-X,(E)A :
1 or, I 7 PR EA ol |
T da Z(E) 2,(£) ZZ(E)_}%N
r SCok exp[-2,(E) A, ] —~AN'"=—=%exp[-Z,(E,)4, | Ly
k A (14)

= For a deviation of v, of nuclide i in the MC eigenvalue calculations, u’* becomes
Zero.
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For q(P) (=v2/2,) which denotes a response function for the collision estimator of
k. the first order sensitivity u/ 4 from the k-th track can be calculated by

e

e __ L0E) 3 (Vf(rk,Ek)Zf(rk,Ek)j ____________________ (150
v, (r,E )X, (r, E,) ox 2 (r,E,)
For a deviation of a capture xs of nuclide i, Eq. (15) can be written as
g, N’
w' = _m ____________________ (15b)
And for a deviation of v, of nuclide i, u’ 4" can be calculated by
go__ L (15¢)

’ V}(rk’Ek)
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= In the MC power method, S for the next cycle i, S, 1s updated as

S = LHSi—l; .................... (16)

i—1

k ,=<HS ,> (17)

= From Egs. (16) and (17), the sensitivity of S, to the parameter x can be written as

os;, _ 1 (6H s +H oS, , j _HS_ (< oH S si<H oS, >j
L\ Ox ox

ox k,_ Ox L Ox
:L a—HSl.1+H%—SZ(<a—HSH>+<H%>j .................... (18)
k_, | Ox Ox ox Ox
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» Then 'S in Eq. (9) can be written as

i@S ! (6HS1_1+H8S,._IJ_ 1 (< 8HS”>+<H8 il >j
S, ox k S0 ox k., Ox

= 11 (aHSll Hag“) 1 (<8HSII>+<H L >)

%-HS X X 1 X X
i—1
= ! 6_HSH_ 1 < °H S, >
HSZ. | Ox <HS, ,> ox
- ISi—l_;<HL%Si—I >
<HS, , > S, Ox

1 6H
i—l S -1~
HSZ | ax <HS _, > 8x
1 1 aSz 1 HSi—l _ 1 < 1 aSi_l HSi—l > (19)
HS, | <HS > \S§,. , oOx
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Generation i-1 (Obtained in the previous cycle) —l

—
- Wo.i

L 1 oS
Generation i Given initial weight factor for Ea—’
Random walk process L ;o

--------------------------------------------------------------------------------------------------------------------------------------------
*

0 Score 1st-order weight factor w’ , at each fission site. 5
0 Score wy,w,, at each collision. | 1 oC,, 10T
: Wf,n = "4 Lyens

N Collision estimate for k

-------------------------------------------------------------------------------------------------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

® Estimate akPS’i - Est akPS’i = I ZWO’ W
oa Oa o

® Normalize 1st-order weight factor : W},n
Number of fission neutrons at site »

—
|*Wo,i+1 an annwfn

T Number of particles generated in generation i
Generation i+1 s 1 05, —%
Given initial weight factor for r Wy
i+1 a
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= Recall that HS is given by

HS = i-.'d ”J' dQ"Cf (r;E”,Q” N E, Q)J- dPOKS’j (PO N I',E”, Q”)
j=0

@J'dr'T(EO,QO;r'_)rO)S(rf,EO,QO) .................... (B.11)

= Then HS for a perturbed system can be expressed as

H'S =3 [dE"[dQ'C)(r;E",Q" — E,Q)[ dP,K (P, >T,E", Q")
J=0
® [dr'T' (B, Q1 > 1)SE.E.Q) (20)

= From Egs. (B.11) and (20), AHS can be calculated by
AHS =H' S —HS

= C.(r;E"Q">EQ) /A K(P, —>P ) T'(E.Q.:r
-3 arfarfam far| e T e Ty
= C,(r;E"Q"—> E,Q) K.P, —>P, ) T(E,Qyr —r)

®C,(rE", Q"> E,QK, (P, > 1, E",Q"T (E),Qy;r" > 1S, E), Q)

p=0
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= In order to investigate the accuracy of the new MC perturbation techniques, their
results were compared with those calculated by direct subtractions for Godiva
critical assembly problems.

= The Godiva geometry is a bare uranium sphere with a radius of 8.741 cm. The
original density is 18.74 g/cm? and the composition is 94.73 wt% U?3> and 5.27 wt%

U238
[ ] Perturbed region
1.803 cm
Vacuum boundary condition
(a) Uniform perturbation (b) Central perturbation (c) Outer perturbation
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(b) Central perturbation

Ak
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