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2 SNU Monte Carlo Lab.

 The two conventional MC perturbation techniques - the correlated sampling and 
differential operator sampling (DOS) methods - have been applied [1] to estimate 
the temperature coefficient of the coolant in a D2O test reactor.

([1] H. Rief, “Generalized Monte Carlo Perturbation Algorithms for Correlated Sampling and 
a Second-Order Taylor Series Approach,” Ann. Nucl. Energy, 11, 455 (1984).)

 Nagaya and Mori [2] strengthened the two conventional methods by taking into 
account the fission source perturbation (FSP).
([2] Y. Nagaya, T. Mori, “Impact of Perturbed Fission Source on the Effective Multiplication 
Factor in Monte Carlo Perturbation Calculations,” J. Nucl. Sci. Technol., 42[5], 428 (2005).

 Recently, the MC perturbation techniques based on the adjoint flux estimated in the 
MC forward calculations have been developed and successfully applied for the 
density perturbation problems [3] and the nuclear data sensitivity and uncertainty 
(S/U) analyses [4].
([3] B. Kiedrowski, F. B. Brown, P. P. H. Wilson, “Adjoint-Weighted Tallies for k-Eigenvalue 
Calculations with Continuous-Energy Monte Carlo,” Nucl. Sci. Eng., 168, 226 (2011).)

([4] H. J. Shim, C. H. Kim, "Adjoint Sensitivity and Uncertainty Analyses in Monte Carlo 
Forward Calculations," J. Nucl. Sci. Technol., 48[12], 1453 (2011).)

 It is notable that the first-order DOS method with FSP (DOS/FSP method hereafter) 
is equivalent to the first-order adjoint weighted perturbation (AWP) method [4].

Background of MC Perturbation Techniques
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 The steady-state Boltzmann transport equation can be written in an operator notation 
as

 The net loss operator T and the fission production operator F are defined by

St, Ss, and Sf are the total, scattering and fission cross-sections, respectively. n is the 
mean number of fission neutrons produced from a fission reaction. c is the energy 
spectrum of fission neutrons.

A. Steady-State Boltzmann Transport Equation
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 By operating lFT-1 on its both sides of Eq. (A.1), it can be expressed as the 
following eigenvalue equation.

where the fission source density (FSD) S and the fission operator H are defined as

Note that S satisfies                       where P denotes the state vector of a neutron in 
the six-dimensional phase space, (r, E, W).

 HS in Eq. (A.4) implies

where                     means the number of first-generation fission neutrons born per 
unit phase space volume about P, due to a parent neutron born at    .

A. Steady-State BTE (Contd.)
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In order to derive an MC perturbation algorithm, 
we apply the solution of the collision density 
equation to the perturbation formulation. 
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 The integral equation for the collision density y(P) defined by St(r,E)(P) can be 
written as

Ks is defined by the product of the scattering collision kernel, Cs and the transition 
kernel [B.1] (or the free flight kernel), T:

nr is the average number of neutrons produced from a reaction type r and  fr is the 
probability that a collision of type r by a neutron of direction       and energy      will 
produce a neutron in direction interval dW about W with energy in dE about E.

([B.1] I. Lux, L. Koblinger, “Monte Carlo Particle Transport Methods: Neutron and Photon 
Calculations,” CRC Press (1991).)

B. Collision Density Equation
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 For further derivations, we define the fission collision kernel by

 From the Neumann series solution of Eq. (B.1) [B.1], the angular flux (P) can be 
expressed as

where the j-th scattering transport kernel, Ks,j is defined by

and 

B. Collision Density Equation (Contd.)
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 By inserting Eq. (B.6) into Eq. (A.3), the definition of S of Eq. (A.5) can be written 
as

 Insertion of Eq. (B.7) into Eq. (B.9) leads to

B. Collision Density Equation (Contd.)
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 By Taylor’s series expansion, the variation of a tally Q due to a deviation of a input 
parameter α, denoted by Δα, can be expressed as

where

 And the tally Q can be written using the corresponding detector response g and the 
collision density Y in the MC simulation as follows:

where P denotes the six-dimensional phase space vector (r, E, W).

Perturbation of a Tally Q
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 Using the Neumann series solution of the collision density equation, the first order 
sensitivity U1 can be expressed as

Perturbation of a Tally Q (Contd)
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 In the differential operator sampling (DOS) method augmented by the fission source 
perturbation method, Eq. (5) can be written as

Differential Operator Sampling (DOS)
+ Perturbed Source Effect (PSE)
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where

and             .

First Order DOS + PSE (Contd.)
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 In the MC adjoint-weighted perturbation method, the variation of k due to a change 
of parameter x is expressed by

 Using the iterated fission probability concept for the adjoint flux, Eq. (C.1) is 
written as

Cf. k Sensitivity Formulation
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 Now, consider an MC algorithm for how to calculate (k0) in the course of the 
cycle-by-cycle FSD and eigenvalue estimates. To do so, note that, when expressed 
explicitly in terms of the transport kernels, HS of Eq. (C.2) is given by

 Then HS in Eq. (C.2) can be expressed as

Cf. k Sensitivity Formulation (Contd)
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Cf. k Sensitivity Formulation (Contd)
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 In Monte Carlo random walk process, when the k-th track starts with a neutron 
undergoing reaction type “a” with isotope i’ at energy Ek-1 and Ωk-1 is scattered to Ek

and Ωk, and  continues for a track length λk and collides, the sampled scattering 
collision kernel and the sampled free flight kernel can be written as 

 Using Eqs. (10) and (11), the first order sensitivity of the transport kernel of Eq. (8) 
for the k-th track can be calculated by

Algorithm of the First Order DOS + PSE Method
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 For a deviation of a capture xs of nuclide i, Eq. (12) can be calculated using

 For a deviation of νf of nuclide i in the MC eigenvalue calculations, u1K becomes 
zero.

First Order DOS + PSE Algorithm (Contd.)
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 For qf(P) (=νΣf/Σt) which denotes a response function for the collision estimator of 
keff, the first order sensitivity u1qf from the k-th track can be calculated by

 For a deviation of a capture xs of nuclide i, Eq. (15) can be written as

 And for a deviation of νf of nuclide i, u1qf can be calculated by

First Order DOS + PSE Algorithm (Contd.)
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 In the MC power method, S for the next cycle i, Si is updated as 

 From Eqs. (16) and (17), the sensitivity of Si to the parameter x can be written as

Source Perturbation Algorithm
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 Then u1S in Eq. (9) can be written as

Source Perturbation Algorithm (Contd)
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Dr. Nagaya’s Algorithm
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 Recall that HS is given by

 Then HS for a perturbed system can be expressed as

 From Eqs. (B.11) and (20), HS can be calculated by

Correlated Sampling Method
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 In order to investigate the accuracy of the new MC perturbation techniques, their 
results were compared with those calculated by direct subtractions for Godiva 
critical assembly problems.

 The Godiva geometry is a bare uranium sphere with a radius of 8.741 cm. The 
original density is 18.74 g/cm3 and the composition is 94.73 wt% U235 and 5.27 wt% 
U238.

U235 Number Density Perturbation for Godiva Problems

Vacuum boundary condition

8.741 cm 6.938 cm

1.803 cm

(a) Uniform perturbation (b) Central perturbation

Perturbed region

(c) Outer perturbation
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Number Density Perturbation of Godiva

(b) Central perturbation
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