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MC Kinetics Parameter Calculation

Assuming that the angular flux and the cross-sections are time-independent,
the effective delayed neutron fraction, 5, and the prompt neutron
generation time, / in the point kinetics equation are defined with the

adjoint flux by
:Bef :ﬂe,]j‘/Fﬂ .................... (1)
A= A'/F; .................... (2)
' ' rg* 1 ' ' ' ' '
Py = IdrjdEdeIdE Idﬂ ¢ (F,E,Q)E;(d(E,E W, (ENZ, (r,ENP(r,E, Q) 3)
, N 1
A= jdrIdEjdm (r’E’Q)TE)¢(r’E’ Q) e (4)
" 1

F=[dr[dE[dQ[dE [ ¢ (r,E, Q) (EEW(ET, (1, EVY(r, B, Q) (5)
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MC Kinetics Parameter Calculation

= The existing methods to calculate the adjoint weighted kinetics parameters in the
forward Monte Carlo calculations can be grouped into two categories according to
the adopted adjoint solution: the constant source adjoint function, ¢;" and
the self-consistent adjoint function, ¢,".

= @ is the solution of

M* ¢; — Zd .................... (6)
while ¢," is the fundamental-mode solution of the adjoint eigenvalue equation:
* k 1 k %
M ¢o = k_F ¢0 .................... (7)

0
where adjoint operators are defined as

Mg’ =[-Q-V+3,(r,E)]¢'(r,E,Q) - [dE'[dQZ (r;E,Q > E', Q) (r,E', ),

1

— y(E',EW(E)X ,(r,E)p (r,E',Q").
45

F'¢" = [dE'[dQ’
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MC Kinetics Parameter Calculation

= Nauchi and Kameyama [1] proposed a kinetics parameter calculation method based
on the adjoint solution of Eq. (6) with vX;as X ;, while Meulekamp and van der
Marck [2] suggested the same method using the adjoint solution of Eq. (6) with X,
as 2.
[1] Y. Nauchi and T. Kameyama, “Proposal of Direct Calculation of Kinetic Parameters

b, fand L Based on Continuous Energy Monte Carlo Method,” J. Nucl. Sci. Technol.,
42[6], pp. 503-514 (2005).

[2] R. K. Meulekamp and S. C. van der Marck, “Calculating the Effective Delayed
Neutron Fraction with Monte Carlo,” Nucl. Sci. Eng., 152, pp. 142-148 (2006).
= Feghhi et al. [3] proposed a method to calculate the importance-weighted neutron
generation time based on a physical interpretation of the adjoint solution of Eq. (7).
Kiedrowski and Brown [4] developed an adjoint-weighted kinetics parameter
calculation method based on the iterated fission probability, which 1s proportional to
the adjoint solution of Eq. (7).

[3] S. A. H. Feghhi, M. Shahriari, H. Afarideh, “Calculation of the importance-weighted
neutron generation time using MCNIC method,” Ann. Nucl. Energy, 35, pp. 1397-1402
(2008).

[4] B. C. Kiedrowski and F. Brown, “Adjoint-Weighted Kinetics Parameters with
Continuous Energy Monte Carlo,” Trans. Am. Nucl. Soc., 100, pp. 297-299 (2009).
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MC Kinetics Parameter Calculation

= A robust MC algorithm for estimating a nuclear parameter can be reduced
more easily from an approach using its physical meaning interpreted in
neutron’s microscopic behavior rather than from its mathematical equations.

» Kobayashi [7] said that ¢" has a physical meaning which can be calculated by
the MC method, although ¢,” has, in general, no clear physical meaning.

(K. Kobayashi, “Physical Meaning of Kinetics Parameter “Lifetime” Used in the New Multi-
Point Reactor Kinetics Equations Derived Using Green’s Function,” Ann. Nucl. Energy,
23[10], pp. 827-841 (1996).)

6 SNU Monte Carlg)za&‘



MC Kinetics Parameter Calculation

= [t is well known that ¢," is better than ¢ as a weighting function in order to
improve the accuracy of the reactivity estimate in the point kinetics equation.

» Then what is the physical meaning of ¢,"?

« Hurwitz [5] said that the iterated fission probability, F(P), is proportional to ¢,
where F(P) is defined by the number of fissions produced in the n-th
generation from a neutron introduced at the location of P as n approaches
infinity.

([5] H. Hurwitz, “Physical Interpretation of the Adjoint Flux: Iterated Fission
Probability,” Naval Reactor Physics Handbook, Vol. 1, pp. 864-869, A. Radkowsky, Ed.,
U.S. Atomic Energy Commission (1964).)

» The importance of a neutron “introduced isotropically’ at location r and energy
E 1s the asymptotic increase in the total neutron population of a critical
reactor per neutron added at time zero from the neutron [6].

([6] A. F. Henry, “Nuclear-Reactor Analysis,” MIT Press (1975).)
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MC Kinetics Parameter Calculation

= We derive the precise physical meaning of using ¢," the fission operator.

= Recently, the kinetics parameter calculation capability has been implemented into
McCARD with both the constant source adjoint function and the self-consistent
adjoint function.

= B,'s weighted by ¢" and ¢" are calculated by the Nauchi and Kameyama’s method
and the Kiedrowski and Brown’s method, respectively.

= However A weighted by ¢ is estimated by an algorithm slightly modified from the
Nauchi and Kameyama’s method and that weighted by ¢," is calculated by an
algorithm consistent to the method using ¢".

= The purpose of this paper is to present a comparison of McCARD results of both
methods with analytic solutions for infinite homogenous 2-group problems and
with measurements for several critical facility systems.
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MC Kinetics Parameter Calculation

= For a nuclear system without external sources, the Green’s function, G can be
defined with the loss and migration operator M as

MG=I, (A.1)
G=G(r,,E,,Q,>r,E,Q), 1=06(-r)0(E-E;)o(Q-Q,),
where I is the identity operator and o'is the Dirac’s delta function.
= Inverting M in Eq. (A.1), G can be written as
G=M"' e (A.2)

= Then using the Green’s function, the direct flux, ¢ for the forward transport equation
expressed as

M¢:%F¢ .................... (A.3)
can be written as
(r,E,Q)=M"'S =GS = [ dr, [ dE, [ dQ, G(r,, E,,Q, > 1. E,Q)S(r,, E(, Q) (A4)
I L e b ooy | o , o
S(rO’EO’QO):ZM:ZIdEIdQ o XEg EW(ENE (5, BN, B, Q). (A.5)

* From Eq. (A.5), G(r,, E,, Q,—T, E, Q2) means the neutron angular flux at r, £, Q
due to a unit fission source neutron located at r,, £, Q.
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MC Kinetics Parameter Calculation

" Ar, E, Q) from the Neumann series solution to the integral transport equation can
be expressed as
1

P(r, E,Q) = S (r.E) ZIdl"jdEOJAdQOKS’j(l",EO,QO — r,E,Q)IdrOT(EO,QO;FO —>r')S(x,, Ey,€2),
JASE) Jj=0

K, (', Ep, @ >1,E,Q) = [dr [dE, [dQ, - [dr  [dE,, [,
xK (r ,E; ,Q  —>1rEQ) K[, E,Q —>r,E,Q)

K@, E\Q ->r,E.Q)=T(E,Q;r' 5>r)C (r;E',Q — E,Q)

S Q.r;r’_l
, [r—r'| r—-r |r —r
T(E,Q;r' >r1) =2 (r,E)exp —jo S| r—s JE |ds

o 2
|l’—l" |r—r'

S (rE,Q - E,Q)
Z,(r,E)

C.(r;E',Q — FE,Q)=
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MC Kinetics Parameter Calculation

= By comparing Eq. (A.4) with Eq. (A.6), the Green’s function can be expressed as

(r,E,Q)=M"'S =GS = [ dr, [ dE, [ dQ, G(r,, E,, @, > 1, E,Q)S(r,, E(, Q) ;  —— (A.4)
| - , , '
P(r,E,Q) = > (r, E) ;Idr jdEOIdQOKs,j(r By, —)r,E,Q)jdroT(Eo,Qo;ro —>r)8(r,, E,,Q,),
.................... (A6)
-
1

G(r,,E,,Q, > r,E,Q)=

dr'K (r',E,,Q, > r,E,QT(E,, Q. :r, >r
ety 2 K B T (Egy Q05,1

= Because of the physical meanings of the kernels in the right hand side (RHS) of Eq.
(A.7), G(ry, E,, Q,—r1, E, Q) can be interpreted as the probability that a neutron
located at r,, E,,, (O, migrates to r, E, Q) with no fission reactions.
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MC Kinetics Parameter Calculation

From the relation of G=M-!, ¢~ of Eq. (6), M*@"=%,, can be written as

gi(rE,2)=(M)'z, =(M7)z,
= [ar'[dE'[dQ' s, (v, E'\Q)-G'(F,E,Q —>r,E,Q)
= [ar'[dE'[dQ 3, (r',E', Q) G(r,E,Q —>r',E',Q).

By using the physical meaning of G derived from Eq. (A.7), ¢ indicates the sum
of the detector responses generated from a neutron of r, E, (2 with no fission
reactions.

For a consistency with the self-consistent adjoint function, we choose vXas X in
Eq. (A.8).

Then ¢* means the number of fission neutrons produced for the next
generation due to the source neutron located at r, E, Q.
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MC Kinetics Parameter Calculation

= Using the physical meaning of ¢", the numerator and denominator of Dy atcycle i
can be reduced as

ﬂ;} _ k;’_lﬂé_lki_l .................... (A.9)
T e — (A.10)

where k/>! is the number of next-generation fission neutrons from a delayed fission
source neutron generated at the previous cycle and f;! is the ratio of the number of
delayed neutrons to the total number of fission neutrons generated at cycle i-1.

= From Egs. (A.9) and (A.10), 5, at cycle i can be calculated by the collision
estimator as
ko vE
_ Jilipia ]\;" 22w szi
B = ki Py jeD' k=1 A (A.11)
f M KV ik .
U o e
M j=1 k=1 Z;J

where i, j, and k are cycle, history, and collision indices, respectively. D' is the
domain of delayed fission neutron sources among all the sources for cycle i.
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MC Kinetics Parameter Calculation

= In the MC steady-state particle transport method, the angular flux, §(r, £, Q) can be
estimated by summing track lengths. This means that a track length sampled for a
neutron at r, £, (2 can represent ¢(r, E, Q).

* Then the numerator of A can be expressed as
=E|gAD-{AlfoAD}] (A.12)
Al 1s the random variable of the track length.
= From Eq. (A.12) and the physical meaning of ¢", A" estimated at cycle i can be

calculated by . ) N
1 M' KV z All] K7 l Vzl]
wk 7 [ - Z ijk' ka ] ____________________ (A.13)
]—1 k=1
= Introducing the flight time, Az, A at cycle i can be estimated by
M VZ’Jk M VZ”k
ljk ijk /LN L/ S——
VET Al (A.14)
Ve EEe it [u g s

= The denominator of RHS of Eq. (A.14) can be calculated as
Fl — kiki—l .................... (A 1 5)
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MC Kinetics Parameter Calculation

By inverting M in the adjoint eigenvalue equation, one can obtain

* 1 * -1 % 1 R
¢0 =—(M ) F ¢0 z—(FM 1) ¢0 .................... (B.l)
kO kO
By introducing the fission operator, H which is defined by
H=FM;

H = j dr’ j dE' j dQ' H(r' ,E',Q' —r,E,Q)-,

where H(r', E’, Q'—r, E, Q) denotes the number of first-generation fission neutrons
born per unit phase space volume about r, £, Q2 due to a parent neutron located at r’,
E’, QQ’, Eq. (B.1) can be expressed as
* 1 % %
¢0 _ k_H ¢0 .................... (B.3)
0
By applying the power method for the eigenvalue equation of Eq. (B.3), an
unnormalized fundamental-mode eigenfunction can be calculated as

P A R 1 (o
¢ =limg, 5 @, =| —H | @ = —n(H ) Donit, = (B.4)
n—o0 kO k()
n is the iteration or generation index. ¢, ," denotes the n-th iterative solution and
Go.iniz. can be an arbitrary non-zero function assumed as a starting distribution.
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MC Kinetics Parameter Calculation

= Because of the definition for H in Eq. (B.2), the integral notation for Eq. (B.4) can
be written as

&, = ki j dr’ j dE' j dQ'H" (r,E,Q >t E, Q). (X E,Q) — (B.5)
0

where H'(r, E, Q—r’, E’, Q) denotes the number of first-generation fission
neutrons born per unit phase space volume about r’, E’, Q’ due to a parent neutron
located atr, E, Q.

= Then when ¢, "(r, E, Q) =1, ¢,"(r, E, Q) of Eq. (B.4) can be interpreted as the
number of fission neutrons produced in the n-th generation due to a unit source
neutron located at r, E, Q) as n approaches infinity.

=  When n is large enough for the iterative solution to converge, ¢, can be
approximated by ¢, ,".

b=dgin>1 (B.6)
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MC Kinetics Parameter Calculation

= Assuming that ¢," becomes converged after n power iterations, in the same way to
derive an algorithm for S, weighted by /S B weighted by ¢y, can be calculated

as

J "

1 &2
ik ~ "~ f
T M 2 IZW &

Igi _ jeD—+ k=1 e — (B.7)

eff kz Uk Vzl]k

k

j=1 k=1 U

= A’ weighted by ¢, can be estimated by

M [ KV ijk (i-n+1) j'k'
I E E wk sz i A
i Zijk (i—n+1) j'k'

k=1 t

A = 1 MK V3 ik , ‘ _ . . | (B.8)
: Z [Z W’Jk l”J;j(w(ln+1)]'lvzgjn+l)]'k'Al(zn+1)]'k’ )
M T\ S 7
* The denominator of RHS of Eq. (B.8) can be calculated by
Fi = kiki—n -------------------- (B.9)

17 SNU Monte Carlg)za&‘



MC Kinetics Parameter Calculation

The MC forward eigenvalue calculations with multi-group cross-section libraries
were conducted for homogeneous infinite mediums characterized by 2-group cross-
sections of Table I, varying the infinite multiplication factor, £;,. In the table, the
differential scattering cross-section of the first group, Z,, is set at 0.181905,
0.247143, or 0.312987 corresponding to kmfof 0.9,1.0,or1.1.

< 2-group cross-sections for the infinite homogeneous problems >

Cross-section First Gr. (g=1) Second Gr. (g=2)
2 0.50 0.50
2 0.025 0.175
1% 2.0 2.0
2o 0.10 0.20
2o (8£8) variable 0.00
X 0.80 0.5
V4 0.20 0.5
Xai 0.80 0.80
a2 0.20 0.20
By (=vy/v) 0.006 0.006
1/v [sec/cm] 2.28626%<10-10 1.29329X<10-6
18 SNU Monte Carlo Lab.



MC Kinetics Parameter Calculation

Parameter Ref. _ MCCARD_ _
Mean ( ) o/X [%] Xx-20 X+20
%, = 0.181905
Kig 0.90000 0.89998 0.001 0.89996 0.90000
By(d") | 5.0519x103 | 5.0528%10-3 0.045 5.0482>%103  5.0574<103
B(d) | 499771073 | 4.9897>x10-3 0.119 4.9778%103 5.0015X103
A(SST) | 4.4431X10° | 4.4432%<10© 0.003 4.4429X106  4.4434>%10
Al | 4.5011<10 | 4.5016><10 0.010 4500710 4.5025><106
Y1 = 0247143
Kiny 1.00000 1.00002 0.001 1.00000 1.00004
B (8" | 5.4600%<10-3 | 5.4595x10-3 0.044 5.4547<103  5.4643<103
By(d) | 54353103 | 5.4348x103 0.106 5.4233<103  5.4463<10-3
A(#T) | 4.0313X10° | 4.0313<10 0.003 4.0310<10°¢ 4.0315x<106
Al | 4.0576X10° | 4.0577<10 0.009 4.0570>10¢  4.0584<106
Y1 = 0.312987
Kiy 1.10000 1.10000 0.001 1.09998 1.10002
By(d") | 5.8017x103 | 5.8034>10-3 0.043 5.7984<10-3  5.8083<10-3
By(d) | 5.7942x103 | 5.7933x10-3 0.106 57811103  5.8055><10-3
A(F") | 3.6888%<106 | 3.6889<10 0.002 3.6887X10°¢ 3.6891x10
A(d)) | 3.6967x106 | 3.6968<10 0.009 3.6961<10°¢ 3.6975%10

19
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MC Kinetics Parameter Calculation

Core (Bopuc weighted by ¢’ (Buc weighted by ¢’
Faclity | Name | Y90 | Mean RSD ) MO | Mean  RSD (%) A
to Exp. to Exp.
Godiva - 0.00640 | 0.00646 0.17 1.01 0.00649 0.42 1.01
1.50U | 0.00771 | 0.00767 0.49 0.99 0.00774 1.32 1.00
TCA 1.83U | 0.00760 | 0.00758 0.53 1.00 0.00762 1.38 1.00
2.48U | 0.00765 | 0.00750 0.47 0.98 0.00748 1.31 0.98
3.00U | 0.00749 | 0.00754 0.44 1.01 0.00764 1.29 1.02

20
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MC Kinetics Parameter Calculation

Core (,Beﬁ/ A)yc weighted by ¢* (ﬂeﬁ/ A)yc weighted by ¢
Facilit il M) ex Rati Rati
Y| Name | Ver | pean rsDE) N9 | Mean  RSD () MO
to Exp. to Exp.
Godiva - 1.11X10% | 1.13X10° 0.17 1.02 1.14X106 0.42 1.03
1.50U 219 191 0.49 0.87 220 1.34 1.01
TCA 1.83U 201 175 0.53 0.87 197 1.39 0.98
2.48U 175 154 0.47 0.88 170 1.32 0.97
3.00U 161 143 0.44 0.89 158 1.29 0.98
#30 126.8 125.5 0.50 0.99 126.6 1.50 1.00
STACY
#33 116.7 111.9 0.56 0.96 116.7 1.40 1.00
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MC Kinetics Parameter Calculation

=  We have derived two types of the MC algorithms for computing the kinetics
parameters weighted by the constant source adjoint function, ¢, and the self-
consistent adjoint function, ¢,", for the MC forward eigenvalue calculations and
implemented them in McCARD.

= From the comparisons with the analytic solutions for the infinite homogeneous 2-
group problems, we demonstrated that the MC estimates of the effective delayed
neutron fraction, f,,, and the prompt neutron generation time, /, agree well within
95% confidence intervals.

= For some critical facility problems, it is demonstrated that 5, and £,,/A weighted
by ¢," agree well with the measurements within 3% errors, while the maximum
error of f,,// from the use of ¢" is 13%.
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