Lecture 6

Two-Dimensional Pattern Matching

Problem: Given pattern P[1..m, 1..m] and text T[1..n, 1..n], find all occurrences of P in T.

- Symbols from alphabet Σ .
- $\circ\,$ Can be generalized to rectangular arrays.
- Applications: computer vision, multimedia systems where 2D images are stored in a database.

Baker-Bird Algorithm

1

Text position (i, j) is an occurrence if P[1..m, 1..m] = T[i - m + 1..i, j - m + 1..j].

1. Row-matching step

Consider P as a set of its rows.

Example

p_1	aabba
p_2	aaabb
p_3	ababa
p_4	aabba
p_5	aaabb

Give a number to each distinct row:

$$\circ r(p_1) = r(p_4) = 1$$

 $\circ r(p_2) = r(p_5) = 2$
 $\circ r(p_3) = 3$

Build an $n \times n$ array R: R[i, j] is $r(p_k)$ such that $T[i, j - m + 1..j] = p_k; 0$ if there is no such p_k .

Example: R[i, j] is one of 0, 1, 2, 3.

How to compute R: Aho-Corasick

- Build the data structure (tree + failure function) with the rows of P. Time $O(|\Sigma|m^2)$.
- For each row of T, run the AC search algorithm. Time O(n) for each row; overall $O(n^2)$.

3

2. Column-matching step

Given R, find all occurrence positions.

We need to check if all rows of P appear vertically.

- 1. Let $P' = r(p_1)r(p_2)\cdots r(p_m)$. Example: P' = 12312.
- 2. For each column of R, run the KMP algorithm with P' as the pattern.
- Time: KMP preprocessing O(m). O(n) for each column of R; overall $O(n^2)$. The total time: $O(|\Sigma|m^2 + n^2)$. (my paper – $O(m^2 + n^2)$ like KMP)
- Extra space: O(|Σ|m²) for AC, O(m) for KMP. O(n²) for R, but we can use only O(n): Compute R row by row. At the same time, run n KMP algorithms, one for each column of R. Interleave computing R and running KMP (if R[i, j] is computed, run j-th KMP one more step). Thus extra space is O(|Σ|m² + n).

Example text:

Τ:	aabbaaabba	R:	0000100021
	aaabbaaabb		0000210002
	ababaababa		0000300003
	aabbaaabba		0000100021
	aaabbaaabb		0000210002
	baaabbabab		0000021000
	aababaabba		0000030001
	aaabbaaabb		0000210002
	baaabbaaab		0000021000

 $\mathbf{5}$