
'

&

$

%

Lecture 9

Regular expression matching

The regular expressions over an alphabet Σ are the strings over the

alphabet Σ ∪ {(,), ∅, |, ∗} such that the following hold

• ∅, ǫ, and a character in Σ are regular expressions.

• If x and y are regular expressions, so is (xy) – concatenation.

• If x and y are regular expressions, so is (x|y) – OR.

• If x is a regular expression, so is x∗, where x∗ = ǫ|x|x2|x3| . . .

For example,

(hot | cold)(apple | blueberry | cherry) pie

the (very)^* hot apple pie

(a|b)^* a

a (a|b)^* b

1

'

&

$

%

Definition 1 A language (set of strings) is regular if it is

described by a regular expression.

Theorem 1 A language is regular if and only if it is accepted by a

finite automaton.

Regular expression matching: Given a regular expression R (all

patterns represented by R) and a text T , find all patterns of R in T .

• Similar to multiple keyword matching

• Difference: size of input is |R| = m and |T | = n. It’s not the

sum of all pattern sizes. In fact, the number of patterns can be

infinite.

Example

R=(a|b)^*aba, T=abcaabaabaabc

two longest occurrences: aaba, aabaaba

|R| = 9

2

'

&

$

%

Applications: Unix commands grep family

We prepend to R the expression (a1|a2|...|az)
∗, where a1, . . . , az are

all symbols of the input alphabet Σ. This prefix allows matching to

begin at any position in T . So we will find end positions of

occurrences. Assume that R contains this prefix.

Finite automata

• Deterministic FA: every state has (at most) one transition on

any input character.

• Nondeterministic FA:

– a state may have more than one transition on an input

character.

– ǫ transitions

An NFA accepts a string if there is at least ONE path from the

start state to an accepting state whose edge labels spell out the

string.

3

'

&

$

%

Running an FA with an input string

◦ At a time, a DFA has only one current state.

◦ An NFA has a set of current states.

Example, p58 of LP: accepts the set of all strings containing an

occurrence of bab or baab.

4

'

&

$

%

Two approaches to regular expression matching

1. Build an NFA, and search T with the NFA.

2. Build a DFA, and search T with the DFA.

◦ Building FA: 1 is easier (size of DFA may be exponential)

◦ Search: 2 is easier

Thompson’s algorithm (approach 1)

1. Construct an NFA from R recursively. See pp22,23 of Aho.

• a character x

• r1|r2

• r1r2

5

'

&

$

%

• r∗

• (r)

Example (a|b)∗aba

6

'

&

$

%

An NFA N constructed as above has the following properties.

• The number of states in N is ≤ 2|R|, since Steps A,B,D create

at most two new states.

• N has one start state and one accepting state, and the

accepting state has no outgoing transitions. This property

holds for each of the sub-NFAs as well.

• Each state has either one outgoing edge labeled by a character

or at most two outgoing ǫ edges.

2. Search T with the NFA.

Run NFA N on input string T .

Let i, f be the initial and acceping states of N .

7

'

&

$

%

• epsilon(Q′): all states that can be reached from a set of states

Q′ by following only ǫ edges.

• goto(Q, x): all states that can be reached from a state in Q by

a transition on x.

◦ Q : the set of current states of N .

◦ j : the current text position.

◦ Initially, Q = epsilon({i}), and current text position is 1.

How to compute the next set of current states.

1. Q’ = goto(Q,T[j])

2. Q = epsilon(Q’)

8

'

&

$

%

Search(N,T)

Q = epsilon({i})

if Q contains f then report "yes" fi

for j = 1 to n do

Q’ = goto(Q,T[j])

Q = epsilon(Q’)

if Q contains f then report "yes" fi

od

end

9

'

&

$

%

Time Analysis

◦ Let |N | denote the number of states in N .

◦ Each of Q and Q′ contains at most |N | states.

Since each state has at most one outgoing transition by a character,

each state in Q adds at most one new state into Q′. Need to

determine whether a state is already in Q′.

• Use arrays of size |N | whose indices are state numbers for Q

and Q′. Then, goto(Q,x) takes O(|N |) time.

• For epsilon(Q’), use a reachability algorithm (DFS or BFS)

(follow ǫ transitions without overlap). It takes O(|N |) time.

The overall time is O(|N |n). Since |N | ≤ 2m, the algorithm takes

O(mn).

10

