
'

&

$

%

Randomized Algorithms

For the average-case analysis of an algorithm, we need to assume

some probability distribution on the space of all input instances of

the problem

For sorting, we assume that all n! permutations of n numbers are

equally likely — we are on a shaky ground in assuming a particular

distribution.

A different approach: randomized algorithm (vs. deterministic

algorithm)

• do not assume about the distribution of instances

• incorporate randomization into the algorithm itself.

1

'

&

$

%

Las-Vegas Algorithms

Given I to P , a Las-Vegas algorithm uses some (r) random

numbers, but except for choosing random numbers it proceeds

completely deterministically.

LV’s solution is always correct as in deterministic alg.

We say that LV solves P in expected time T (n) if for every I such

that |I| = n, LV solves I in expected time ≤ T (n).

By expected time we mean the average of all solution times of I by

LV for all possible choice sequences of r random numbers (which

we assume to be equally likely). Note the difference in assumption

from average-case analysis.

2

'

&

$

%

Monte-Carlo Algorithms

A Monte-Carlo algorithm may produce an incorrect solution.

Let e > 0. We say that MC solves P with confidence greater than

1 − e if for every I the probability that MC will produce an

incorrect solution is ≤ e.

3

'

&

$

%

Randomized Quicksort

Quicksort(A,p,r)

if p < r then

q = Partition(A,p,r)

Quicksort(A,p,q-1)

Quicksort(A,q+1,r)

fi

Partition(A, p, r)

1. Select a pivot element x (A[p] in the original quicksort; a

random element of A[p..r] in the randomized quicksort).

2. All elements in A[p..q − 1] are ≤ x.

3. All elements in A[q + 1..r] are ≥ x.

4. The pivot element x is placed in A[q].

The expected time T (n) of Randomized Quicksort is O(n logn).

4

'

&

$

%

Randomized Selection

Problem: Given an array A[1..n] and i, find the ith smallest

element.

As in Quicksort, partition the input array recursively. Selection

works only on one side of the partition.

Select(A,p,r,i)

if p = r then return A[p] fi

q = Partition(A,p,r)

k = q - p + 1

if i = k then return A[q]

else if i < k then return Select(A,p,q-1,i)

else return Select(A,q+1,r,i-k) fi

The expected time of Randomized Select is O(n).

5

'

&

$

%

Verification of Polynomial Identities

Let p(x1, . . . , xn) be a polynomial in variables x1, . . . , xn over an

arbitrary field F . The degree of p, denoted by deg(p), is

max(i1 + · · ·+ in) over all multinomials xi1
1 · · ·xin

n .

Problem: verify whether a multivariate polynomial is identically

zero.

Example: Given a matrix X containing x1, . . . , xn, det(X) is a

polynomial in variables x1, . . . , xn.

• Straightforward method: expand the polynomial into the sum

of multinomials and check whether all coefficients are zero. But

it takes lots of operations.

• Monte-Carlo algorithm: take a random point over a finite set I

and evaluate the polynomial at the point.

6

'

&

$

%

Theorem 1 Let p(x1, . . . , xn) be a polynomial in variables

x1, . . . , xn over a field F such that p is not identically zero. Let I

be any finite subset of F . Then the number of elements in In which

are zeros of p is at most |I|n−1 deg(p).

Proof . By induction on n. When n = 1, the number of zeros of

polynomial p is at most deg(p). Thus the number of zeros in I is at

most deg(p).

Assume the theorem holds for all polynomials with at most n − 1

variables. Let d be the degree of x1 in p(x1, . . . , xn). We have

p(x1, . . . , xn) = xd
1q(x2, . . . , xn) + r(x1, . . . , xn) for some

polynomials q, r. Let (a1, . . . , an) ∈ In be a zero of p. There are

two types of zeros of p.

• If q(a2, . . . , an) = 0, then p can be equal to zero for all x1 ∈ I

(when r is identically zero). The total number of such zeros is

at most |I|(|I|n−2 deg(q)) since q has at most |I|n−2 deg(q))

7

'

&

$

%

zeros by induction hypothesis.

• If q(a2, . . . , an) 6= 0, for each of such tuple (a2, . . . , an), p is of

degree d in x1. So p has at most d zeros in I. Considering all

tuples, there are at most |I|n−1d such zeros.

Therefore, the total number of zeros in In is

≤ |I|n−1(d + deg(q)) ≤ |I|n−1 deg(p). 2

Example: Let I be a finite subset of F containing 0, and

p = x1 · · ·xn. The number of zeros is the number of all tuples

minus the number of tuples without 0, i.e., |I|n − (|I| − 1)n. Since

(|I| − 1)n =
∑

n

i=0

(

n

i

)

(−1)i|I|n−i, the number of zeros is

n
∑

i=1

(

n

i

)

(−1)i+1|I|n−i ≤ n|I|n−1.

8

'

&

$

%

Corollary 1 Let p(x1, . . . , xn) 6= 0 and I be a finite subset of F .

The probability that a random tuple (a1, . . . , an) ∈ In is a zero of p

is ≤ deg(p)/|I|.

Algorithm

1. Choose a finite subset of F whose size is at least 2 deg(p).

2. Select a random tuple v from In.

3. Evaluate p at v. If p(v) 6= 0, clearly p is not identically zero.

Otherwise, declare that p is identically zero.

The error probability of such a method is ≤ 1/2. Repeat the

experiment k times. If p(v) 6= 0 at least once, p is not identically

zero. Otherwise declare p is identically zero. The error probability

is ≤ 1/2k.

9

'

&

$

%

Choosing a Large Number

Problem: Given n numbers, find a number that is a median or

larger.

• Straightforward method: find a median by Deterministic Select

or Randomized Select (LV algorithm). O(n) time.

• Monte-Carlo algorithm: choose k numbers randomly, and

return their maximum.

The error probability is ≤ 1/2k.

10

