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Lecture 14

Online search problem

◦ An online player is searching for the maximum (or minimum)

price in a sequence of prices.

◦ At each time period i, the player obtains a price quotation pi.

Then the player must decide whether to accept pi or continue

sampling more prices.

◦ The game ends when the player accepts some price pj , and the

return is pj .

One-way trading problem

◦ The online player is a trader whose goal is to trade some initial

wealth D0 in a currency (dollars) to some other asset or

currency (won).

◦ The price is the exchange rate.
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◦ We simplify the problem and ignore transaction fees.

Theorem 1 (1) Let alg1 be any randomized one-way trading

algorithm. Then there exists a deterministic one-way trading

algorithm alg2 such that for any price sequence σ,

alg2(σ) = E[alg1(σ)]. (2) Let alg2 be any deterministic one-way

trading algorithm. Then there exists a randomized one-way trading

algorithm alg1 such that E[alg1(σ)] = alg2(σ) for all σ.

Proof . (2) If alg2 trades a fraction si of its initial wealth at the

ith period, alg1 trades its entire wealth at the ith period with

probability si. 2

Randomization cannot improve the competitive performance in

one-way trading.
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Competitive Search Algorithms

• Assume that prices are drawn from some real interval [m, M ]

for 0 < m ≤ M .

• Set ϕ = M/m and call ϕ the global fluctuation ratio.

• Assume that time is discrete and the horizon is finite. The

duration (the number of periods) is denoted by n.

• We distinguish between known and unknown duration (the

player is informed immediately before the last period).
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Reservation-Price-Policy

Suppose m and M are known to the player.

The optimal deterministic search algorithm is RPP. Call p∗ the

reservation price.

RPP: Accept the first price ≥ p∗ =
√

Mm.

Theorem 2 RPP is
√

ϕ-competitive.

Proof . By a balancing argument, p∗ should be chosen to equate

the return ratio (offline to online) in the following two events:

◦ the posteriori maximum price pmax is ≥ p∗ (the ratio will be

M/p∗)

◦ pmax < p∗ (the ratio is pmax/m). It follows that M/p∗ = p∗/m.

2
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RPP is optimal for infinite and finite durations and when duration

is known or unknown.

A dramatic improvement is obtained by using randomization (so,

randomization is advantageous for online search).

For simplicity, assume that ϕ = 2k for some integer k. For

0 ≤ i ≤ k − 1, RPPi denotes the deterministic RPP with

reservation price m2i.

EXPO: Choose RPPi with probability 1/k.

Theorem 3 EXPO is c(ϕ) log ϕ-competitive, where c(ϕ) → 1 when

ϕ → ∞.

The bound of the above theorem holds even if the player does not

know the values of m and M and knows only ϕ. Here, however,

RPPi has reservation price p12
i.
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Threat-Based Policy

Let c be any competitive ratio that can be attained by some

one-way trading algorithm. First, assume that c is known to the

trader.

The threat-based algorithm consists of two rules.

1. Consider converting dollars to won only when the current rate

is the highest seen so far.

2. When converting dollars, convert just enough to ensure that a

competitive ratio c would be obtained if an adversary dropped

the exchange rate to the minimum possible rate and kept it

there throughout the game (threat).

How to follow Rule 2.
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We describe the optimal threat-based algorithm Threat.

◦ Assume a known duration n and known m and M .

◦ Assume that the optimal competitive ratio c∗ is known.

By Rule 1, we can assume that the exchange rate sequence consists

of an initial segment (of length k < n) of successive maxima. In

order to realize a threat, the adversary chooses k and

pk+1 = · · · = pn = m.

For 0 ≤ i ≤ n, let Di and Wi be the number of remaining dollars

and the number of accumulated won, respectively, immediately

after the ith period. Initially, D0 = 1 and W0 = 0.

Let si = Di−1 − Di be the number of dollars traded at the ith

period, 1 ≤ i ≤ n. Hence, Wi =
∑i

j=1 sjpj .
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According to Rule 2, si must be chosen such that for any 1 ≤ i ≤ n,

pi

Wi + mDi
≤ c∗, (1)

where Wi + mDi is the return of Threat if an adversary drops the

exchange rate to m and pi is the return of OPT in such a case.

Since Wi = Wi−1 + sipi and Di = Di−1 − si in (1) and we take the

minimum amount for si, we get,

si =
pi − c∗(Wi−1 + mDi−1)

c∗(pi − m)
. (2)

From (2) at i = 1,

s1 =
1

c∗
p1 − mc∗

p1 − m
.

From (2) with Wi−1 + mDi−1 = pi−1/c∗ (from (1)),

si =
1

c∗
pi − pi−1

pi − m
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for i > 1.

Theorem 4 Let c∗n(m, M) denote the optimal competitive ratio for

the n-day game. Then c∗n(m, M) is the unique root of the equation

c = n

(

1 −
(

m(c − 1)

M − m

)1/n
)

.

Trading with unknown duration: c∗∞(m, M) is the unique root of

the equation

c = ln
M − m

m(c − 1)
.

One-way trading in which the trader knows only the global

fluctuation ratio ϕ = M/m but not m and M . For duration n,

c∗n(ϕ) = ϕ

(

1 − (ϕ − 1)

(

ϕ − 1

ϕn/(n−1) − 1

)n)

.
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For unknown duration,

c∗∞(ϕ) = ϕ − ϕ − 1

ϕ1/(ϕ−1)
.

Table: Competitive ratios for search and one-way trading

algorithms (unknown duration)

value of ϕ

algorithm 1.5 2 4 8 16 32

RPP (m, M known) 1.22 1.41 2 2.82 4 5.65

EXPO (only ϕ known) 1.5 2 2.66 3.42 4.26 5.16

Threat (only ϕ known) 1.27 1.50 2.11 2.80 3.53 4.28

Threat (m, M known) 1.15 1.28 1.60 1.97 2.38 2.83
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Portfolio Selection

A market of s securities (assets) - stocks, bonds, foreign currencies,

or commodities.

Let Pi = (pi1, . . . , pis) denote a vector of prices, where pij is the

number of units of the jth security that can be bought for one

dollar at the start of the ith period. The local currency (cash) may

or may not be one of the s securities. The price of case is

constantly equal to 1.

The change in security prices during the ith period is represented

as a column vector Xi = (xi1, . . . , xis), where

xij =
pij

p(i+1)j
.

The quantity xij is called the relative price of security j for the ith

period. Thus, an investment of d dollars in the jth security at the

start of the ith period yields dxij dollars by the end of the ith
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period. Any sequence of price vectors or relative price vectors is

called a market sequence.

An investment in the market, or portfolio, is specified as the

proportion of dollar wealth currently invested in each of the s

securities, i.e., B = (b1, . . . , bs), where bi ≥ 0 and
∑

i bi = 1.

Consider a portfolio B1 = (b11, . . . , b1s) invested at the start of the

1st period. By the start of the 2nd period, this portfolio yields

Bt
1 · X1 =

s
∑

j=1

b1jx1j

dollars per initial dollar invested. At this stage the investment can

be cashed and adjusted by reinvesting the entire current wealth in

some other proportion B2, etc.

Assume an initial wealth of $1. Then the compounded return of a

sequence of portfolios B = (B1, . . . , Bn) with respect to a market
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sequence of relative prices X = (X1, . . . , Xn) is

R(B, X) =
n
∏

i=1

Bt
i · Xi.

A portfolio selection algorithm is any sequence of portfolios

specifying how to reinvest the current wealth from period to period.

(Transaction fees are ignored in this model.)

Trading strategies

• Buy-and-hold: Typically mutual fund managers select and buy

some portfolio and then hold it for a relatively long time.

• Market timing: Some financial agents use aggressive strategies

that buy and sell securities very frequently.
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Constant Rebalancing

Constant rebalancing: a fixed portfolio B = (b1, . . . , bs) is used for

each trading period.

This constant rebalancing algorithm CRB is a market timing

strategy.

Optimal offline constant rebalancing algorithm CR-OPT: CR-OPT

= CRB∗ , where for a market sequence X = (X1, . . . , Xn) the fixed

portfolio B∗ used by CR-OPT is

B∗ = arg max
B

∏

1≤i≤n

B · Xi.

Consider a market consisting of cash and one stock. Suppose that

the relative prices of the stock follow the sequence: 1
2 , 2, 1

2 , 2, . . .
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The optimal offline BAH strategy, which buys the stock after the

1st period and sells after any even period, will double its

investment.

Calculate the return of CRB with B = ( 1
2
, 1

2
).

• After 1st period, price (1, 1
2 ). value ( 1

2 , 1
4 ) - total 3

4

• After rebalancing, value ( 3
8 , 3

8).

• After 2nd period, price (1, 2). value ( 3
8 , 6

8 ) - total 9
8

After n periods, CRB exponentially increases its initial investment

by a factor of ( 9
8 )n/2.
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Statistical Adversaries

Two-way trading

fixed-fluctuation model:

◦ All price relatives xi are in {α, α−1}, where α > 1.

◦ Add the restriction that each feasible sequence of price

relatives is of length n and the number of downward (i.e.,

profitable) α−1 fluctuations is exactly k, 0 ≤ k ≤ n. Hence the

number of upward α fluctuations is n − k.

◦ Call the adversary that produces such feasible sequences the

(α, n, k) adversary.

◦ The optimal offline return for each feasible market sequence is

exactly φ = αk.
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There is an optimal online algorithm S∗∗ against the (α, n, k)

adversary.

◦ Whenever the market is stable, S∗∗ performs remarkably well.

◦ Even if the market exhibits a slight unfavorable trend, S∗∗ still

yields exponential returns.

So, how to trade?
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Risk Management

To manage the risk associated with decision making under

uncertainty means to control the inherent tradeoff between risk and

reward (e.g., risk-free 10% gain vs. 100% gain with risks)

al-Binali’s framework: extend pure competitive analysis by

introducing two ingredients: risk and forecast.

◦ For an online algorithm alg, C(alg) denotes the competitive

ratio of alg.

◦ Let c∗ = infalg C(alg) be the optimal competitive ratio for this

problem.

◦ Define the risk R(alg) to be C(alg)/c∗.

◦ Define a forecast as any subset F of the allowable input

sequences. For example, the set of market sequences allowable

for the (α, n, k) adversary is a forecast.

18



'

&

$

%

The online player specifies a risk tolerance T . This means that the

player is willing to use only algorithms from the set

T = {alg : R(alg) ≤ T}.
Fix a forecast F . An optimal algorithm in this framework is an

algorithm from T that minimizes the competitive ratio, restricted

to input sequences from F .

CF (alg) = sup
σ∈F

OPT (σ)

alg(σ)
.

An optimal T -tolerant algorithm alg∗ with respect to a forecast F

satisfies

CF (alg∗) = inf
alg

{CF (alg) : alg ∈ T }.

• By posing reasonable forecasts the player can boost

performance significantly as long as input sequences conform to

the forecast.

• Regardless of forecast, the player always keeps the risk within
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the desired tolerance.

One-way trading with known duration n and known m and M .

Fix any ∆ ∈ [0, M − m] and consider the forecast F : the exchange

rate will increase to at least m + ∆ within the trading period:

F = {(p1, . . . , pn) : ∃i such that pi ≥ m + ∆}.

For a tolerance T , the optimal T -tolerant algorithm is the following

two-stage threat-based algorithm ThreatT .

• In the first conservative stage, ThreatT operates under the

threat that the prediction is incorrect and attempts to achieve

a competitive ratio of Tc∗.

• If the forecast comes true (i.e., the exchange rate swings above

m + ∆), ThreatT first computes the optimal restricted ratio

infalg CF (alg) and now trades, using this restricted ratio, under

the threat that the exchange rate drops to m.
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Table: Restricted competitive ratio c∗F

T j c∗F

1.01 10 1.140

1.01 20 1.143

1.05 10 1.114

1.05 20 1.115

1.1 10 1.0979

1.1 20 1.0975

∆ = 0.35, m = 1, M = 1.5, n = 30, pj ≥ m + ∆.
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