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Finite Volume Methods

Introduction
Integral form of the conservation equation

Th l ti d i i bdi id d i t fi it bThe solution domain is subdivided into a finite number 
of small CVs by a grid, which defines the CV 
boundaries, not the computational nodes.
2 Approaches

Define CVs by a suitable grid and assign the computational 
node to the CV center Usual approachnode to the CV center Usual approach
Define nodal locations first and construct CVs around them, so 
that CV faces lie midway between nodes.
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Introduction – Cont.

Advantages
1st approach: nodal values represents the mean over the CV to1 approach: nodal values represents the mean over the CV to 
higher accuracy (2nd order)
2nd approach: CDS approximations of derivatives at CV faces 
are more accurate when the face is midway between 2 nodes.

Introduction – Cont.
Variants of FVM

Cell-vertex schemes
Dual-grid schemesDual grid schemes
Details in Chap 8 and references

To obtain an algebraic equation for a particular CV, the 
surface and volume integrals need be approximated 
using quadrature formulae.
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Flux Vector
In the study of transport phenomena (heat transfer, mass transfer and fluid dynamics), flux is defined as the 
amount that flows through a unit area per unit time. Flux in this definition is a vector. 

Flux definition and theorems
Flux is surface bombardment rate. There are many fluxes used in the study of transport phenomena. Each

f fl h i di i i f l i h di i h i l Si f htype of flux has its own distinct unit of measurement along with distinct physical constants. Six of the most
common forms of flux from the transport literature are defined as:
Momentum flux, the rate of transfer of momentum across a unit area (N·s·m-2·s-1). (Newton's law of
viscosity,)
Heat flux, the rate of heat flow across a unit area (J·m-2·s-1). (Fourier's law of conduction)
Chemical flux, the rate of movement of molecules across a unit area (mol·m-2·s-1). (Fick's law of diffusion)
Volumetric flux, the rate of volume flow across a unit area (m3·m-2·s-1). (Darcy's law of groundwater flow)
Mass flux, the rate of mass flow across a unit area (kg·m-2·s-1). (Either an alternate form of Fick's law that
includes the molecular mass, or an alternate form of Darcy's law that includes the density)
Energy flux, the rate of transfer of energy through a unit area (J·m-2·s-1). The radiative flux and heat flux aregy f , gy g ( )
specific cases of energy flux.
These fluxes are vectors at each point in space, and have a definite magnitude and direction. Also, one can  
take the divergence of any of these fluxes to determine the accumulation rate of the quantity in a control 
volume around a given point in space. For incompressible flow, the divergence of the volume flux is zero.

Surface Integrals
CV surfaces

2D: four (e,w, n, s)
3D: six (e w n s t b)3D: six (e,w, n, s, t, b) 
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Surface Integrals – Cont.
net flux through CV boundary = sum of integrals over 
CV faces

f : component of convective               or diffusive                    
flux vector in the direction normal to CV face.
CVs do not overlap, each CV face is unique to 2 CVs which lie 
on either side of it.
Let’s consider a typical CV face, e.

Surface Integrals – Cont.
To calculate the surface integral in Eq. (4.2), we need to know 
f everywhere on Se.  However, only the nodal (CV center) 
values are calculated.  Use 2 levels of approximation:

The integral is approximated in terms of the variable values at one or 
more locations on the cell face.
The cell-face values are approximated in terms of the nodal (CV center) 
values.

Midpoint rule - simplest
Integral is approximated as a product of f at cell-face center and cell-
face area. The cell-face center value is in itself an approximation to theface area.  The cell face center value is in itself an approximation to the 
mean value over the surface.
2nd order accuracy
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Surface Integrals – Cont.
Trapezoidal rule

Need to evaluate the flux at CV corners
2nd order accuracy

Simpson’s rule
4th order accuracy

In order to preserve the accuracy level, the values of f have to 
be computed with the same level of accuracy.

Volume Integrals
Simplest 2nd order accurate approximation 

Product of mean value (approximated as CV center value) and 
CV volume

Eq. (4.6) is exact if q is either constant or varies linearly 
within the CV; otherwise, it contains a 2nd order error.

Higher order approximation requires q at more 
locations.  These values have to be obtained by 
interpolating nodal values or by using shape functions.
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Volume Integrals – Cont.
In 2D

4th order approximation by bi-quadratic shape function 

The coefficients are obtained by fitting the function to q’s at 
nine locations (nw, w, sw, n, P, s, ne, e, se). 
In 2D for Cartesian grids,

On a uniform Cartesian grid, 

Interpolation & Differentiation
The approximations to the integrals require the variable values 
at locations other than CV centers.
The integrand f involves the product of several variables 
and/or variable gradients at those locations

Convective flux
Diffusive flux

To calculate the convective and diffusive fluxes, the value of φ
and its gradient normal to the cell face at one or more 
locations on the CV surface are needed.



7

Interpolation & Differentiation – Cont.
Upwind interpolation (UDS)

Approximating φe by its value at the node upstream of ‘e’
Equivalent to using a backward- or forward differenceEquivalent to using a backward or forward difference 
approximation for 1st derivative

Unconditionally satisfy the boundedness condition, i.e., never 
yield oscillatory solutions.
Numerically diffusiveNumerically diffusive

Interpolation & Differentiation – Cont.
Upwind interpolation (UDS) – Cont.

Why diffusive Leading truncation error

Leading truncation error resembles a diffusive flux

with
Numerical diffusion is magnified in multidimensional

UDS

Numerical diffusion is magnified in multidimensional 
problems if the flow is oblique to the grid; produces diffusion 
in the direction normal to the flow as well as in the streamwise 
direction.
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Interpolation & Differentiation – Cont.
Linear interpolation (CDS)

Linear interpolation between two nearest points

with

Eq. (4.13) is 2nd order accurate (HW)

The leading truncation error term is proportional to the square 
of the grid spacing

Leading truncation error

of the grid spacing.
May produce oscillatory solutions.
Equivalent to central difference approximation of 1st

derivative in FDM

Interpolation & Differentiation – Cont.
Linear interpolation (CDS) – Cont.

With assumption of a linear profile between P and E, it offers 
the simplest approximation of the gradient, p pp g ,

with truncation error

When ‘e’ is midway between P and E, the approximation is of 
2nd-order accuracy, since 1st term vanishes and leading error 
term is proportional to           .
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Interpolation & Differentiation – Cont.
Quadratic upwind interpolation (QUICK)

Approximate the variable profile between P and E by a 
parabola need data at one more point

D, U, and UU: E, P, and W or P, E, and EE

3rd-order truncation error (HW), on a uniform Cartesian grid 
with ux > 0 (flow from P to E), 

Although QUICK is slightly more accurate than CDS, both 
converge asymptotically in a 2nd-order manner and the 
differences are rarely large.

Interpolation & Differentiation – Cont.
Higher-order schemes

Interpolation of order higher than 3rd makes sense only if the 
integrals are approximated using higher-order formulae. If g pp g g
one uses Simpson’s rule in 2D for surface integrals, one has to 
interpolate with polynomials of at least degree three, which 
leads to interpolation errors of 4th order.
4th-order CDS

For a uniform Cartesian grid,For a uniform Cartesian grid,

Te determine derivative, differentiate it once
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Interpolation & Differentiation – Cont.
Higher-order schemes – Cont.

On a uniform Cartesian grid,

Once variable values and its derivative are obtained at cell-
face centers, one can interpolate on the cell faces to obtain 
values at CV corners. 4th-order scheme produces too large a 
computational molecule for implicit treatment.

Interpolation & Differentiation – Cont.
Higher-order schemes – Cont.

Another approach is to obtain the polynomial coefficients by 
fitting it to the variable values and 1st derivatives at 2 nodes on g
either side of cell face.

Approximate the derivatives at P and E

The resulting approximation of the cell-face value
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Interpolation & Differentiation – Cont.
Higher-order schemes – Cont.

The problem is that they contain 1st derivatives at CV centers, 
which are not known. Although we can replace these by g p y
2nd-order approximations, the resulting computational 
molecules will be much larger. 
One should bear in mind that a higher-order approximation 
does not guarantee a more accurate solution on any single grid; 
high accuracy is achieved only when the grid is fine enough to 
capture all of the essential details of the solution.p

Implementation of BCs
Fluxes through CV faces coinciding with the domain 
boundary require special treatment

Convective fluxesConvective fluxes
Inflow boundary: prescribed
Walls and symmetry boundary: zero
Outflow boundary: upwind

Diffusive fluxes
Specified, e.g., adiabatic surface with zero heat flux
If gradient itself is specified it is used to calculate the flux and anIf gradient itself is specified, it is used to calculate the flux, and an 
approximation for the flux in terms of CV center values can be used to 
calculate the boundary value of the variable.
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Algebraic Equation System
By summing all the flux approximations and source 
terms, we produce an algebraic equation which relates 
the variable value at CV center to neighbor CV values.the variable value at CV center to neighbor CV values. 
The algebraic equation for a particular CV has the form 
Eq. (3.42).

Examples
Read through!


