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Solution of the Navier-Stokes Equations

Special Features
The discretization principles described for a generic 
conservation equation apply to the momentum and 
continuity equations (Navier-Stokes Equations).
How the terms in the momentum eqns which differ 
from those in the generic conservation eqn are treated.
Unsteady, advection, and diffusive terms are same or 
similar.
The momentum eqns contain a contribution from the 
pressure which has no analog in the generic eqn Itpressure, which has no analog in the generic eqn.  It 
may be regarded either as a source term (as a body 
force – non-conservatively) or as a surface force 
(conservatively). 
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Special Features – Cont.
Due to the close connection of the pressure and the 
continuity eqn, it requires special attention.
The fact that the principal variable is a vector allowsThe fact that the principal variable is a vector allows 
more freedom in the choice of a grid.

Special Features – Cont.
Discretization of Convective and Viscous Terms

Convective term in differential and integral forms

Viscous terms in differential and integral forms

where for a Newtonian fluid and incompressible flow
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Special Features – Cont.
The part of the viscous term in the momentum eqns which 
corresponds to the diffusive term in the generic conservation 
eqn is

Eq. (7.2)

The extra terms which are non-zero when the viscosity is 
spatially variable in an incompressible flow

q ( )

Eq. (7.4)

This term vanishes for constant μ.

Special Features – Cont.
Discretization of Pressure Terms and Body Forces

“Pressure”:
In FVM treated as a surface force

0 in incompressible flows

In FVM, treated as a surface force

Or alternatively, a non-conservative approach 

Other body forces are easy to treat in FDM.  In FVM, these 
terms are integrated over the CV volume, i.e., the value at CV 
center is multiplied by cell volume. 
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Choice of Variable Arrangement
Select the points in the domain at which the values of the 
unknown dependent variable are to be computed.

Colocated Arrangementg
Store all the variables at the same set of grid points and to use the 
same control volumes for all variables
# of coeffs that must be computed and stored is minimized, because 
many of the terms in each of the equations are essentially identical
Programming is simplified
When multigrid procedures are used, the same restriction and g p ,
prolongation operators can be used for all variables.
Advantages in complicated solution domains, when the boundaries 
have slope discontinuities or the BCs are discontinuous 

Choice of Variable Arrangement – Cont.

The colocated arrangement was out of favor for incompressible flow 
i d h diffi l i i h li dcomputation due to the difficulties with p-v coupling and occurrence 

of oscillations in the pressure, because pressure is obtained from 
mass conservation
Popularity began to rise again, when improved p-v coupling 
algorithms were developed
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Choice of Variable Arrangement – Cont.
Staggered Arrangements

No need for all variables to share the same grid
Several terms that require interpolation with the colocatedSeveral terms that require interpolation with the colocated 
arrangement can be calculated without interpolation
Since the pressure nodes lie at CV face centers and the 
velocity derivatives needed for the diffusive terms are readily 
computed at the CV faces, both the pressure and diffusion 
terms are natuarally approximated by CD approximation 
without interpolationwithout interpolation
Strong coupling between the velocities and the pressure: 
biggest advantage

Choice of Variable Arrangement – Cont.
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Calculation of the Pressure
Soln of the NS eqns is complicated by the lack of an 
independent eqn for the pressure, whose gradient 
contributes to each of the 3 momentum eqnscontributes to each of the 3 momentum eqns
Treat this difficulty by constructing the pressure field so 
as to guarantee satisfaction of the continuity eqn
Note: absolute pressure is of no significance; only the 
gradient of the pressure (pressure difference) affects the 
flowflow
In compressible flows, the continuity eqn can be used to 
determine the density and the pressure is calculated 
from an eqn of state

Calculation of the Pressure – Cont.
Pressure Eqn and its Solution

Momentum eqns determine the respective velocity 
componentsp
Continuity eqn has to determine the pressure
How? Combining the momentum and continuity eqns
Take the divergence of the momentum eqn (1.15)

In Cartesian coordinates,

Laplace operator
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Calculation of the Pressure – Cont.
Pressure Eqn and its Solution – Cont.

Note: RHS of the pressure eqn is the sum of derivatives of 
terms of the momentum eqnsf q
Note: Laplacian operator is the product of the divergence from 
the continuity and gradient from the momentum eqns It is 
essential that the consistency of these operators be maintained, 
i.e., the outer and inner derivatives may be descretized using 
different schemes – they have to be those used in the 
momentum and continuity eqnsy q

Calculation of the Pressure – Cont.
A Simple Explicit Time Advance Scheme

How the numerical Poisson eqn for the pressure is constructed 
The role it plays in enforcing continuityThe role it plays in enforcing continuity
Semi-discretized (discrete in space but not time) momentum 
eqns (because spatial derivative approximation is not important)

: discretized spatial derivative
h th d f th d ti d i t: shorthand for the advective and viscous terms

With the explicit Euler method for time advancement
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Calculation of the Pressure – Cont.
A Simple Explicit Time Advance Scheme – Cont.

Take the numerical divergence of Eq. (7.18)

1st term: divergence of the new velocity field that we want to 
be zero
2nd term: assumed to be zero if continuity was enforced at n
Resulting in the discrete Poisson eqn for the pressure pn

zero

If pn satisfies this discrete Poisson eqn, the velocity field at 
n+1 will be divergence free

Calculation of the Pressure – Cont.
A Simple Explicit Time Advance Scheme – Cont.

If the pressure gradient term had been treated implicitly, we 
would have pn+1 in place of pnp p p
Algorithm for time-advancing the NS eqns

We have shown how solving the Poisson eqn for the pressure 
can assure that the velocity field satisfies the continuity eqn
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Calculation of the Pressure – Cont.
A Simple Implicit Time Advance Scheme 

Backward or implicit Euler method
Because of 
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The corresponding Poisson eqn for the pressure

RHS term cannot be computed until the computation of the 
velocity field at n+1 is complete and vice versa the Poissonvelocity field at n+1 is complete and vice versa the Poisson 
eqn and the momentum eqns have to be solved simultaneously

Calculation of the Pressure – Cont.
A Simple Implicit Time Advance Scheme – Cont.

Eq. (7.22) is a large system of non-linear eqns which must be 
solved for the velocity fieldy

Newton-Raphson iteration or a secant method with the converged 
results from the preceding time step
Linearize the eqns about the result at the preceding time step

Then
For small Δt, i
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Therefore Δui Δuj: 
2nd order in Δt

Rewrite Eq. (7.22) 
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Calculation of the Pressure – Cont.
A Simple Implicit Time Advance Scheme – Cont.

Still a large system of eqns A reasonable strategy is to use the local 
lineaization based on Eq. (7.24) and update the eqns by the ADI method 

i h ld diusing the old pressure gradient

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods

If the pressure gradient term is not included in the source term,

On each outer iteration, 

: current estimate of the solution 
Implicit methods are preferred for steady and slow transientImplicit methods are preferred for steady and slow-transient 
flows
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Since the pressure used in these iterations was obtained from 
the previous outer iteration or time step, the velocities p p,
computed from Eq. (7.30) do not normally satisfy the 
discretized continuity eqn  the velocities need to be 
corrected; this requires modification of the pressure field
The velocity at node P obtained from Eq. (7.30)

is not the final value for iteration m; it is a predicted value

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Rewrite 앞페이지붉은박스

: velocity field from which the contribution of pressure 
gradient has been removed
Next, correct the velocities so that they satisfy the continuity 
eqn by correcting the pressure field

The corrected velocities and pressure are linked by
Pm that satisfies ( )

0
m
i
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Continuity enforced by inserting Eq. (7.34) into (7.33) discrete Poisson 
eqn for pressure

After solving for pressure, Eq. (7.35), the final velocity field at the new 
iteration,       , is calculated from Eq. (7.34)
Now the velocity field satisfies the continuity eqn, but the velocity and 
pressure fields do not satisfy the momentum eqn (7.30)  begin another 
outer iteration and the process is continued until a velocity field that 
satisfies both the momentum and continuity is obtained.
Projection methods – divergence-producing part of the field is projected 
out.
Iteration: First construct velocity field that does not satisfy continuity, then 
correct it by subtracting pressure gradient.

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

A pressure-correction is used instead of the actual pressure

Substitute the correction into the momentum eq (7.30)

where

No contribution of Q

Application of Eq. (7.33) to corrected velocities and use of Eq. 
(7.37) produces pressure-correction eqn HW #7

Unknown neglected
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Once the pressure correction is obtained, the velocities are 
updated using Eqs (7.36) and (7.37) – SIMPLE algorithmp g q ( ) ( ) g

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

A more gentle way of treating the last term in Eq. (7.39) –
approximate it rather than neglecting itpp g g

Approximate it from Eq. (7.38)

Insert it in Eq. (7.37) and rearrange

Weighted mean of 
the neighbor values

Insert it in Eq. (7.37) and rearrange
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

With this approximation, the coeff        in Eq. (7.39) is 
replaced by                     and the last term disappears –p y pp
SIMPLEC algorithm

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Another method is derived by neglecting      in the first 
correction step as in SIMPLE, but following the correction p , g
with another corrector step – second correction to the velocity 

2nd pressure-correction eqn

Corresponding to (7.37)

Corresponding to (7.39)

Eq. (7.38)

Essentially an iterative method for solving Eq. (7.39) with the 
last term treated explicitly – PISO algorithm
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Another similar method – the pressure-correction eqn (7.39) is 
solved first with the last term neglected as in SIMPLE.  The g
pressure correction so obtained is used only to correct the 
velocity field so that it satisfies continuity, i.e., to obtain       .  
The new pressure field is calculated from the pressure eqn 
(7.35) using      instead of        .  - SIMPLER

Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Due to the neglect of the last term in Eq. (7.39), SIMPLE does 
not converge rapidly.g p y
Convergence can be improved if one adds only a portion of p’
to pm-1
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Calculation of the Pressure – Cont.
Implicit Pressure-Correction Methods – Cont.

Solution algorithm for this class of methods

Calculation of the Pressure – Cont.
Other Methods

Fractional step methods
In projection methods, the pressure is used to enforce continuity.  The p j , p y
pressure is also used in computing the velocity field in the fist step of 
the method explicitly.
The fractional step method provides an approach that does not use 
pressure in the predictor step. Essentially an approximate 
factorization.
Euler explicit advancement of the NS eqns

Ci: convective terms
Di: diffusive terms
Pi: pressure terms
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Calculation of the Pressure – Cont.
Other Methods – Cont.

Fractional step methods – Cont.

In the 3rd step, Pi is the gradient of a quantity (pseudo-pressure 
or pressure-like variable) that obeys a Poisson eqn.
A particular fractional step method Crank-Nicolson

: operator representing the discretized convective, diffusive, and 
source terms

Calculation of the Pressure – Cont.
Other Methods – Cont.

Fractional step methods – Cont.
Zero

Pressure eqn for the new pressure

Upon solution of the pressure eqn the new velocity field is obtained

Zero 
divergence

Upon solution of the pressure eqn, the new velocity field is obtained 
from Eq. (7.57)
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Calculation of the Pressure – Cont.
Other Methods – Cont.

Fractional step methods – Cont.
SIMPLE-type preferred for steady flow, while fractional step for yp p y , p
unsteady flow

Calculation of the Pressure – Cont.
Other Methods – Cont.

Streamfunction-vorticity methods
For incompressible 2D flows with constant fluid properties, N-S eqns p p p , q
can be simplified by introducing the streamfunction ψ and vorticity ω

Reason for introducing the streamfunction is that for flows with 
t t d th ti it i id ti ll ti fi d d dconstant ρ, μ, and g, the continuity eqn is identically satisfied and need 

not be dealt with explicitly
Subsitute Eqs. (7.62) into (7.63) leads to a kinematic eqn  
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Calculation of the Pressure – Cont.
Other Methods – Cont.

Streamfunction-vorticity methods – Cont.
Differentiate the x and y momentum eqns w.r.t. y and x, respectively, y q y , p y,
and subtract from each other dynamic eqn for vorticity HW #7

Pressure disappears in either of these eqns N-S eqns have been 
eliminated by a set of just 2 PDEs
The 2 eqns are coupled through the appearance of ux and uy in the 
vorticity eqn and by the vorticity ω acting as the source term in thevorticity eqn and by the vorticity ω acting as the source term in the 
Poisson eqn for ψ

Calculation of the Pressure – Cont.
Other Methods – Cont.

Streamfunction-vorticity methods – Cont.
Given an initial velocity field, the vorticity is computed by y , y p y
differentiation
The dynamic vorticity eqn is then used to compute the vorticity at the 
new time step
Having the vorticity, it is possible to compute the streamfunction at the 
new time step by solving the Poisson eqn
Having the streamfunction, the velocity components are easily obtained 
by differentiationby differentiation
Repeat for the next time step



20

Calculation of the Pressure – Cont.
Other Methods – Cont.

Streamfunction-vorticity methods – Cont.
Problem with BCs
Less popular in recent years because its extension to 3D flows is 
difficult
Difficulties in dealing with variable fluid properties, compressibility, 
and BCs

Calculation of the Pressure – Cont.
Other Methods – Cont.

Artificial compressibilty methods
Whether methods developed for compressible flows can be adapted to p p p
the solution of the incompressible flows
Compressible flow eqns – hyperbolic, while incompressible flow eqns –
mixed parabolic-elliptic
Difference from the lack of time derivative term in incompressible 
continuity eqn – compressible version contains the time derivative of 
density
Most straight-forward means of giving the incomressible eqnsMost straight forward means of giving the incomressible eqns 
hyperbolic character is to append a time derivative to the continuity eqn 
– Time derivative of pressure is a clear choice, because density is 
constant and velocity appears in momentum eqns
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Calculation of the Pressure – Cont.
Other Methods – Cont.

Artificial compressibilty methods – Cont.

The larger β, the more incompressible the eqns
Fully implicit Euler scheme

Linearize the velocity field at the new time level

Insert Eq. (7.70) into (7.69) obtain an eqn for the new pressure 

Remaining Sections
Practical implementation of the methods
Read through!


