

Flow property φ . The mean Φ is defined as: $\begin{array}{l}
\varphi = \frac{1}{\Delta t} \int_{0}^{\Delta t} \varphi(t) dt \\
\text{At should be larger than the time scale of the slowest turbulent fluctuations.} \\
\text{Time dependence: } \varphi(t) = \Phi + \varphi'(t) \\
\text{Write shorthand as: } \varphi = \Phi + \varphi' \\
\overline{\varphi}' = \frac{1}{\Delta t} \int_{0}^{\Delta t} \varphi'(t) dt = 0 \quad \text{by definition} \\
\text{Information regarding the fluctuating part of the flow can be obtained from the root – mean - square (rms) of the fluctuations :$ $<math display="block">
\begin{array}{l}
\varphi_{rms} = \sqrt{(\overline{\varphi'})^2} = \left[\frac{1}{\Delta t} \int_{0}^{\Delta t} (\varphi')^2 dt\right]^{1/2}
\end{array}$

Boussinesq Hypothesis - Cont.

Using the suffix notation where i, j, and k denote the x-, y-, and z-directions respectively, viscous stresses are given by:

$$\tau_{ij} = \mu \ e_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Similarly, link Reynolds stresses to the mean rate of deformation:

$$\tau_{ij} = -\rho \overline{u_i' u_j'} = \mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$

Compar	rison RANS Tu	rbulence Models
Model	Strengths	Weaknesses
Spalart- Allmaras	Economical (1-eq.); good track record for mildly complex B.L. type of flows.	Not very widely tested yet; lack of submodels (e.g. combustion, buoyancy).
STD k-ε	Robust, economical, reasonably accurate; long accumulated performance data.	Mediocre results for complex flows with severe pressure gradients, strong streamline curvature, swirl and rotation. Predicts that round jets spread 15% faster than planar jets whereas in actuality they spread 15% slower.
RNG k-ε	Good for moderately complex behavior like jet impingement, separating flows, swirling flows, and secondary flows.	Subjected to limitations due to isotropic eddy viscosity assumption. Same problem with round jets as standard k - ϵ .
Realizable k-ε	Offers largely the same benefits as RNG but also resolves the round-jet anomaly.	Subjected to limitations due to isotropic eddy viscosity assumption.
Reynolds Stress Model	Physically most complete model (history, transport, and anisotropy of turbulent stresses are all accounted for).	Requires more cpu effort (2-3x); tightly coupled momentum and turbulence equations.
		SRUTT Secul National University Towing Tank

Approach	Strengths	Weaknesses
Standard wall- functions	Robust, economical, reasonably accurate	Empirically based on simple high- Re flows; poor for low-Re effects, massive transpiration, PGs, strong body forces, highly 3D flows
Non-equilibrium wall-functions	Accounts for pressure gradient (PG) effects. Improved predictions for separation, reattachment, impingement	Poor for low-Re effects, massive transpiration (blowing, suction), severe PGs, strong body forces, highly 3D flows
Two-layer zonal model	Does not rely on empirical law-of-the- wall relations, good for complex flows, applicable to low-Re flows	Requires finer mesh resolution and therefore larger cpu and memory resources

