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(a) Magnetostatic Effects 
▶ Dependence of magnetization and generated field on the shape (or aspect ratio) of a permanent 

magnet (see Fig. 2.1-2 in O'Handley) 
▶ Deferent B-H response for a ring or toroid of a magnet (see Fig. 2.3 in O'Handley) 

Why? Due to the existence of surface free poles
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(b) Demagnetizing Field, Hd and Factors, Nd
▶ Origin for the demagnetizing field: The field from the surface poles that passes through the 

interior on the sample

- Relation between the field strength and orientation: Solution of Maxwell's equations 
Boundary conditions 
Flux density B : (Gauss's theorem) 
Field Intensity H : (∇×H = J & Stokes theorem) 

Results : B is always continuous. However, the tangential component of H is discontinuous by 
a transverse surface current. 

- Demagnetizing fiend Hd and factors Nd

H = Ha + Hd

Hd = - NdM
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(b) Demagnetizing Field and Factors (continued)
- Quantitative interpretation of B-Ha loops (see Fig. 2.9 in O'Handley) 

Since Bi = μo(Hi + M), where Bi = the induction inside the material, Hi = internal field, 

and Hi = Ha- NdM, Bi/μo = Ha/Nd - (1 - Nd)Hi/Nd
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(4) Magnetostatics

- Calculation of demagnetization factors N for various ellipsoids (see Fig.2.27 in Cullity) 

For a prolate, a = b < c,   Na = Nb = (4π - Nc)/2,  Nc→ 0 as c/a→∞

For a oblate ellipsoid, a < b = c,   Nb = Nc = (4π - Na)/2,  Nc→ 4π as c/a→∞

For a more general ellipsoid, a >> b, c

Na ~ }1)4){ln(( 2 −
+ cb
a

a
bc
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- Demagnetization factors for ellipsoids and cylinders 

(see Table 2.1 Fig. 2.10 in O'Handley, Fig. 2.28 in Cullity)
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(c) Magnetization Curves
Calculation of the M(H) curve for magnetizing a single-domain sample 

i) H in a hard direction (against its demagnetizing field) using a known Nd
Total magnetostatic energy density, u = ums + uH

- Magnetostatic energy density ums
ums = -M•Hd = -MHdcosθ = +(Nd/2)Ms

2cos2θ
- The Zeeman energy density uH

uH = -Ms•H = - MsHcosθ

Minimum total energy when du/dθ = 0
du/dθ = - (NdMs

2cosθ -MsH)sinθ
Solutions

For H > Hs sinθ = 0, θ = 0 
For H < Hs M(H) = Mscosθ = H/Nd

since NdMscosθ = H
Stability condition, u" > 0

u" = - NdMs
2cos2θ - MsHcosθ > 0 

Applications (see Fig 2.12-13 in O'Handley) 
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(c) Magnetization Curves 
ii) H along the easy axis of a multidomain sample (see Fig. 2.14-15 in O'Handley) 

Apparent (or effective) susceptibility, χe

M = χHi = χ(Ha - NdM) 

χe = M/Ha = χ/(1 + Nd)
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(d) Magnetostatic Energy and Thermodynamics
- The potential energy U of interaction of a magnetic dipole μm with an external field B = μoH, 

U = - μm•B

Extension to a rigid assembly of dipoles (i.e., a macroscopic sample)

Potential energy u per unit volume for magnetization M, 

u = -M•B

When Ha = 0, H = Hd ,

u = -(1/2)μoM•Hd = (μo/2)NdM2 (in cgs, 2πNdM2)

This energy represents the work done in assembling a given state of magnetization in a sample.

For an infinite sheet magnetized perpendicular to its plane,

u = (μo/2)M2 ( = 2πM2 in cgs) since Nd = 1 (4π in cgs)

(4) Magnetostatics
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(d) Magnetostatic Energy and Thermodynamics (continued)
- Consider the magnetization process from the demagnetized state to any point (M1, B1). 

Energy densities can be defined in three different ways; 

u = -M•B = -M1B1        :  the potential energy

A1 = :  the work done on the sample by the field 

A2 = :  the work done by the sample

The internal energy of a magnetic sample is decreased in the presence of a field; the magnetic  
sample can do work when exposed to a magnetic field.

If a sample is already magnetized in the absence of a field (i.e., A1 = 0) and properly aligned,

u = -M1B1 = - A2 

∫
1

0
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M
dMMB

∫
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0
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(d) Magnetostatic Energy and Thermodynamics (continued)
The internal energy = its potential energy + the work done on the sample

u = -M1B1 + A1 = - A2 = - = - µo

The second law of thermodynamics
dQ = TdS = dU + PdV

where, dQ = an amount of heat added to a system from the environment, 

For a magnetic material, TdS = dU + PdV - μoHVdM→ dU = TdS - PdV + µoHVdM

The internal energy of the material increases as it is magnetized by a field (A1). 

When T, V, and M are the independent variables,      When T, P, and H are the independent variables,

Helmholtz free energy, F = U - TS Gibbs free energy, G = F + PV - µoMHV
dF = - SdT - PdV + µoHVdM dG = - SdT + VdP - µoHVdM

Gibbs free energy decreases when a sample of magnetization M is placed in a field (A2).  

∫
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(e) Analytic Magnetostatics
i) Magnetostatic Potential 
From Maxwell equations,

▽×B = 0 if J = 0 (no macroscopic current),  

Then B = -▽φm'  or H = -▽φm

Since ▽• B = μo▽•(H + M) = 0, 

▽2φm = ▽•M (Poisson's equation) 

Where ▽•M defines a volume magnetic charge density ρm (associated with 
a divergence of magnetization)

Thus, the scalar magnetic potential is given by  φm(r) = - (1/4π)

In regions of no magnetic charges present, ▽2φm = 0 (Laplace's equation)

(4) Magnetostatics
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(e) Analytic Magnetostatics

i) Magnetostatic Potential (continued) 
Since surface charges M•n (the sources of demagnetization fields) also contribute to
the magnetic potential,

H(r) = -▽rφm(r, r')  = - (1/4π) +  (1/4π)∬d2r'n'•M 

In 2-D, the field components parallel and perpendicular to the charged surface

H// = (σ/2π)ln(r2/r1), H⊥ = (σ/2π)θ

where, σ(= M•n) is the magnetic pole strength per unit surface area

The energy of a given pole distribution, Um, =         ρmφmdV

(4) Magnetostatics
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(e) Analytic Magnetostatics (continued)
ii) Applications of Laplace equation :▽2φm = 0 

- Uniformly Magnetized Sphere 
Inside the sphere, 

Bin = (2μo/3)M, (or 8πM/3 in cgs) 
Since B = μo(H +M) (or B = H + 4πM in cgs)

Thus, Hin = Hd = - (or - ), where the demagnetizing factor Nd = 1/3 
(or 4π/3 in cgs) 

Outside the sphere,

Hout = (a3M/3)(2cosθer+ sinθeθ)/r3

A dipole field for a magnetic moment μm = a3M/3 (see Fig. 2.19 in O'Handley) 

- Field Due to Periodic Surface Poles (see Fig. 2.20 in O'Handley) 
The magnetostatic energy per unit surface area, U = 2.13Ms

2d/π2

(4) Magnetostatics
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