=X (4) Magnetostatics

(a) Magnetostatic Effects

» Dependence of magnetization and generated field on the shape (or aspect ratio) of a permanent
magnet (see Fig. 2.1-2 in O'Handley)

» Deferent B-H response for a ring or toroid of a magnet (see Fig. 2.3 in O'Handley)
Why? Due to the existence of surface free poles

H M h
*
H)
H, Ho
— H
Figu.re 2‘.1 'Magnetization curves for a polycrystalline ferromagnetic sample with field
applied in different directions.

Figure 2.2 Dipole fields at a fixed distance from the ends of two permanent magnets
of the same volume but different shapes.

Superconauctors anda vie



{ . (4) Magnetostatics
zZ - - 0@

(b) Demagnetizing Field, H; and Factors, Ny

» Origin for the demagnetizing field: The field from the surface poles that passes through the
interior on the sample

- Relation between the field strength and orientation: Solution of Maxwell's equations
Boundary conditions
Flux density B : (Gauss's theorem)
Field Intensity H : (V XH = J & Stokes theorem)
Results : B is always continuous. However, the tangential component of H is discontinuous by
a transverse surface current.

- Demagnetizing fiend H, and factors N,
H=H_,+H,
H,=-NM
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(b) Demagnetizing Field and Factors (continued)
- Quantitative interpretation of B-H_ loops (see Fig. 2.9 in O'Handley)

Since B; =  (H, + M), where B, = the induction inside the material, H, = internal field,
and H;, = H, - N M, B/u, = H,/Ny — (1 — NyH/N,

B slope =

N

slope = -*I—EF
(a) (b)

Figure 2.9 Schematic representation of demagnetization effect on B-H app 100PS (a) and
on B-H; loops (b). The dashed lines rotated into the vertical axis in each case relate
one loop to the other.
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- Calculation of demagnetization factors N for various ellipsoids (see Fig.2.27 in Cullity)

For a prolate,a=b<c, N,=N,=(47-N,)/2, N, Oascla— o
For a oblate ellipsoid,a<b=c, N,=N,=(4x-N_)/2, N,— 4rascla— o

For a more general ellipsoid, a >>Db, c

N, - (2—2){ln( 2 g

Oblate spheroid




(4) Magnetostatics

- Demagnetization factors for ellipsoids and cylinders
(see Table 2.1 Fig. 2.10 in O'Handley, Fig. 2.28 in Cullity)

TABLE 2.1 Demagnetizing Factors NV for Rods and Ellipsoids Magnetized Parallel 1.0
to Long Axis r 3
- H parallel to long oxis -
Dimensional Ratio Prolate Oblate -
(Length/Diameter) Rod Ellipsoid Ellipsoid .z: -
Q
0 1.0 1.0 1.0 g 3 E
1 0.27 0.3333 0.3333 = - ]
1.5 = 0.233 0.329 £ i .
2 0.14 0.1735 0.2364 i r .
5 0.040 0.558 0.1248 » - -
10 0.0172 0.0203 0.0696 & aail 1
20 0.00617 0.00675 0.0369 ¥ F somdee E
50 000129 0.00144 0.01472 =} ) B Ellipsoids ]
100 0.00036 0.000430 0.00776 - 10
200 0.00090 0.000125 0.00390 [ 100 1
500 0.000014 0.0000236 0.001567 E o .
1000 0.0000036 0.0000066 0.000784 0.000 L u v i o il ¢ 4
2000 0.0000009 0.0000019 0.000392 | 10 100

Dimensional ratio, m = long axis /short axis
Source: Bozorth, TEEE Press, 1993, p. 849,

Figure 2.10  Demagnetization factors for ellipsoids and cylinders with field applied
parallel to long axis, with aspect ratios closer to unity. [Bozorth, © TEEE Press (1993 ).
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(c) Magnetization Curves
Calculation of the M(H) curve for magnetizing a single-domain sample

1) H in a hard direction (against its demagnetizing field) using a known N,

Total magnetostatic energy density, u = u_. + U,

- Magnetostatic energy density U,
u..=— MeH,=—-MHcos& =+(Ny/2)M2cos? O

- The Zeeman energy density Uy,
u,=—- MyeH=-MHcos&

Minimum total energy when du/d& =0
du/d@ = — (NyM2cos© — M H)sin&
Solutions
ForH>H, sin©=0,6=0
For H<H, M(H) =Mcos& = H/N,

Energy

. since NgMcos& = H 05 10 15 20 25 30 35
Stability condition, u" >0 6 (rod)
"w—_ _ 2 20—
u NdMS Cos°0 MSHCOSQ> 0 Figure 2.12 Variation of magnetostatic plus Zeeman energy density with 6 for

increasing values of applied field (arbitrary units). Note how the stable energy minimum

moves from n/2 toward zero as applied field increases.

Applications (see Fig 2.12-13 in O'Handley)
A

m'.n.n"ll'l'l::'ln.'lll'.."l."
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Figure 2.13 Schematic representation of a magnetic material having purely uniaxial
anisotropy in the direction of the easy axis (EA). Dashed lines indicate magnetization
configurations for H = 0. Application of a field H transverse to the EA results in
rotation of the domain magnetizations but no wall motion.

Superconductors and Magnetic Materials Lab.



 AE——————

(c) Magnetization Curves
I1) H along the easy axis of a multidomain sample (see Fig. 2.14-15 in O'Handley)
Apparent (or effective) susceptibility, x,

M= YH.= x(H, — N;M)

‘ 4 (4) Magnetostatics

1.6 T T T T . T T
X, =M/H_ = x/(1+N,) =t ;
w .2+ -
Q
H=0 H>O = " TR R E Ry
5
m = 0.8 -
:l' \ Hi =0 g
d o = B 1
1LOp«-ee- i & 0.4 — 10.2cm x 0.32cm x 25um
l g === 5.1em x 0.32c¢m x 25um
= * 5.1cm x0.32cmx SOum -
M M Hex’r 0] 1 1 i 1 1 | 1
Hg A 0 1.0 2.0 30 4.0
14 7 Field (Oe)
Figure 2.15 Magnetization for transversely annealed amorphous alloy ribbons of
(a) (b) various aspect ratios. [After Clark and Wun-Fogel, 1989.]

Figure 2.14 (@) A demagnetized sample for which shape is a factor responds to an
applied field at the cost of increased demagnetization factor and increased magneto-
static energy; (b), the changing demagnetization factor causes the M- H loop to be less
than linear in the external field.
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(d) Magnetostatic Energy and Thermodynamics
- The potential energy U of interaction of a magnetic dipole (7, with an external field B = ¢ H,
U=-u.B
Extension to a rigid assembly of dipoles (i.e., a macroscopic sample)
Potential energy u per unit volume for magnetization M,
u=- M-B
WhenH,=0,H=H,,
u=—-(1/2)yMeH, = (& /2)NjM2  (in cgs, 21tN M?)

This energy represents the work done in assembling a given state of magnetization in a sample.

For an infinite sheet magnetized perpendicular to its plane,

u = (1, /2)M? (= 21tM2in cgs) since N, = 1 (41T in cgs)
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(d) Magnetostatic Energy and Thermodynamics (continued)

- Consider the magnetization process from the demagnetized state to any point (M, B,).

Energy densities can be defined in three different ways;

u=-MeB=-M;B, : the potential energy

M1
A= .L B(M)dM  : the work done on the sample by the field

A, = J'OBl M (B)dB . the work done by the sample

The internal energy of a magnetic sample is decreased in the presence of a field; the magnetic
sample can do work when exposed to a magnetic field.

If a sample is already magnetized in the absence of a field (i.e., A, = 0) and properly aligned,
u= -MB,= - A




7 < (4) Magnetostatics
Y A

(d) Magnetostatic Energy and Thermodynamics (continued)

The internal energy = its potential energy + the work done on the sample

Bl H1
U= ~MB;+A;= ~A=-["M(B)dB =-4, [ M(H)dH

The second law of thermodynamics
dQ =TdS =dU + PdV
where, dQ = an amount of heat added to a system from the environment,

For a magnetic material,  TdS =dU + PdV - yHVdM — dU = TdS - PdV + p ,HVdM

The internal energy of the material increases as it is magnetized by a field (A,).

When T, V, and M are the independent variables,  When T, P, and H are the independent variables,

Helmholtz free energy, F=U — TS Gibbs free energy, G = F + PV — pMHV
dF = = SdT - PdV + p HVdAM dG = - SdT + VdP — p ,HVdM

Gibbs free energy decreases when a sample of magnetization M is placed in a field (A,).
-_—
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(e) Analytic Magnetostatics

1) Magnetostatic Potential

From Maxwell equations,

VvV xXB =0 if J =0 (no macroscopic current),
ThenB=-V¢.orH=-V ¢,

Since Ve B =, Ve(H + M) =0,
V2@ = VM (Poisson's equation)

Where Y/ +M defines a volume magnetic charge density o, (associated with
a divergence of magnetization)

Thus, the scalar magnetic potential is given by ¢ (r) = — (1/47) m r/imr' dv'’

In regions of no magnetic charges present, V24, =0 (Laplace's equation)

U U U U U U C U VIiAU Ao Ci Al U U \[o U O \/ V
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(e) Analytic Magnetostatics

1) Magnetostatic Potential (continued)
Since surface charges Men (the sources of demagnetization fields) also contribute to
the magnetic potential,
(r-r

r—rf’

H(r) = -V, ¢.(r, 1) = - W4m)|]] d?’r'VM(r')‘(rr__rr.‘? + (U/am) JJ dyrnteM

In 2-D, the field components parallel and perpendicular to the charged surface

Hy = (af2m)In(r/r,), H, = (0/2m)6 [[[ Lnav

where, o(= Men) is the magnetic pole strength per unit surface area

The energy of a given pole distribution, U, = m o Xs\Y,
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(e) Analytic Magnetostatics (continued)
i) Applications of Laplace equation : V2@ =0

- Uniformly Magnetized Sphere
Inside the sphere,
Bin = (21,/3)M, (or 8tM/3 in cgs)
Since B = 1,(H +M) (or B = H + 41tM in cgs)

M 4 M
Thus, H;, =Hy=— 737 (or - 3

), where the demagnetizing factor N, = 1/3
(or 47t/3 In cgs)

Outside the sphere,
Hout = (a3M/3)(2cos Ge,+ sin&Ge )/r3
A dipole field for a magnetic moment 1/, = a3M/3 (see Fig. 2.19 in O'Handley)

- Field Due to Periodic Surface Poles (see Fig. 2.20 in O'Handley)
The magnetostatic energy per unit surface area, U = 2.13M_2d/1t?
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Figurg 2.20 (a), Schematic of cross section of a semi-infinite sample with a periodic
domain structure; (b), field distribution due to magnetic surface charges.
H

()

Figure 2.19 Fields inside and outside a uniformly magnetized sphere: (a) B ﬁelc? whose
lines form continuous loops inside and outside the material; (b) H field, whose lines are
not continuous; some may terminate at the surface poles.

Superconductors and Magnetic Materials Lab.

Seoul National University
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