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II. Types of Magnetism

(1) Diamagnetism: no net atomic magnetic moment

(2) Paramagnetism: non-zero net atomic magnetic moment, disordered

(3) Ferromagnetism: non-zero net atomic magnetic moment, ordered (parallel) 

(4) Antiferromagnetism: non-zero net atomic magnetic moment, ordered (antiparallel) 

(5) Ferrimagnetism: non-zero net atomic magnetic moment, ordered (antiparallel)
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Current, i = = =

An additional postulate, mυr = n(h/2π) (quantized angular momentum) 

Then, magnetic moment due to orbital motion, μorbit = iA =             πr2 = = for n =1
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▶ Origin of net atomic magnetic moment?
- electron motion

orbital motion → electronic moment
spin motion

- nulear motion → nuclear moment : normally, negligibly small

Orbit motion : Bohr model

Introduction

Electron ( charge = e-, mass me)r
v

Spin motion :
1925 yr. fine split in the optical 
spectrum under a magnetic field : 

Anomalous Zeeman Effect 

Magnetic moment due to spin motion, 

μspin =            

=  0.927×10-20 erg/Oe (or emu) : 

→ A fundamental quantity called, 
Bohr magneton, μB
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(1) Diamgnetism

No net atomic moment  : μr < 1, χ < 0
▶ Classical theory, 1905 yr Paul Langevin (see Cullity)

For an e_ in orbital motion,  no net μorbit of paired electrons if Ha = 0,
A net μorbit within atom opposing the flux change(Lentz law) due to accelerated or decelerated orbital motion of e_ if 
Ha > 0.

On the basis of Bohr model, △μorbit =                     = since            =  – erH/2mc

If H is not perpendicular to the orbit plane, △μorbit =

For an atom with Z outer electrons, △μorbit =

For a bulk magnetization, 

where, No = Abogadro's number, ρ = density, 
and W = atomic number

: independent of temperature!

Diamagnetism in superconductors 

- For H < Hc in type I superconductors and H < Hc1 in    

type II superconductors, 

Perfect diamagnetism: μr = 0, χ = ‐1 since B = 0 

Origin: shielding supercurrent in the case of zero-field-cooling 

Meissner effect in the case of field-cooling

- For Hc1 < H < Hc2  in type II superconductors, 

mixed (or vortex) state : B > 0 
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▶ Classical theory, Lamor frequency ωL
The torque causes the orientation of the angular momentum vector L (and thus the orbital magnetic dipole 
moment μorb) to change by dL perpendicular to both B and μorbit. (see Fig. 3.3 in O’Handley)

Since dL = Lsinθdφ = ωLLsinθdt, and the torque dL/dt = μorbitBsinθ as τ = dL/dt =  μorbit×B
Therefore, ωL = μorbitB/L = γoB = eB/2m
An angular rotation of the orbital magnetic moment vector μorbit with ωL // B
An electric current i equivalent to the Lamor precession of an orbit electron

i = (charge)(revolution per unit time) = (– e)/(ωL/2π) = – e2B/4πm
Thus, △μorbit =  iA = (– e2B/4πm)(πr2) = – (e2r2/4m)B 
For the Lamor precession of Z electrons

△μorbit = – Ze2B<r2>/4m
If B is not perpendicular to the orbit plane,

△μorbit = – Ze2B<r2>/6m
Consequently,

χ = Nv△μorbit /H =  – μo NvZe2<r2>/6m
where, Nv = number of atoms per unit volume

(1) Diamgnetism (additional)
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▶ μr > 1, χ > 0 
If H = 0, M = 0 
If H > 0, M > 0 

▶ Experimental 
Systematic measurements of χ : 1895 yr Pierre Curie 

Cuire law 
χ = C: Cuire constant 
Curie-Weiss law : a more general law 
χ = 

▶ Classical theory : Localized electron model 
① Langevin theory
Let the net atomic magnetic moment be m

m = mo + ms
Magnetic potential energy, E = - μom • H (or ‐ m • B)
Assuming all m are identical and non-interacting, 
and m depends on H and thermal agitation, 
According to classical Boltzman statistics, 

Probability having E, P(E) 
P(E) = exp k : Boltzmann constant 

= exp 

1

L(a) 

a

For N atoms/unit volume, and let

Magnetization, M = NmL(a), where 

L(a) =                      Langevin function 

Let Nm = Mo (maximum possible magnetization, 
corresponding to the perfect alignment of all m parallel to H: 
a state of complete saturation) 

Then ,

← 1st approximation

(2) Paramagnetism
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② Weiss theory
Assuming the moments interact each other, 
an interacting field He (called, molecular field or 

exchange field) 
He = αM : Weiss assumption 

α is the molecular field constant 
Htot = H + He

= H + αM

Since from Curie law 

Htot =
Then, 

θ = αC : measure of the strength of the interaction 
→ leading to Curie-Weiss law 

▶ Quantum theory

Localized electron model 

Non-localized electron model : Pauli paramagnetism

(2) Paramagnetism (continued)

Remember the following;

Net atomic moment, m m = gμBJ

where, |J| =                   ħ

g(Lande splitting factor), 1 ≤ g ≤ 2 : empirical values 

In general, Lande equation 

If L = 0, J = S → g = 2 (only spin contribution) 

If S = 0, J = L → g = 1 (only orbital contribution) 

If J = ∞ : random orientation (classical) 
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Localized electron model 

Magnetic potential energy, 

E = ‐ μtotal • B    (μtotal : total magnetic moment of an atom or net atomic magnetic moment)

= ‐ gμB(J/ħ) • B (|J| =  ħ : total angular momentum)

= ‐ gμB(Jz/ħ)B

= ‐ gμBMJB since Jz = MJ ħ (MJ : total magnetic quantum number)

where, MJ can have only 2J + 1 values  

MJ = -J, -(J-1), ..., (J-1), J (J : total angular momentum quantum number)

Therefore, the average magnetization in B is given by 

Applying Boltzman statistics, Nv = N/V,

M = NvgμB where

= NgJμBBJ(x) = MoBJ(x)

BJ(x) is Brilliouin function If J = ∞ → BJ(x) = L(a) : classical distribition

If J =      : one spin /atom, = tanhx

(2) Paramagnetism (continued)
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(2) Paramagnetism (continued)

Comments 

Comparison of quantum picture with classical one                Brillouin function vs Lagevin fun 

(see Fig. 3.15 in O’Handley)                                                               (see Fig. 3.16 in O’Handley)
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(2) Paramagnetism (continued)

Example (see Fig. 3.17 in O’Handley)
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(2) Paramagnetism (continued)

Pauli Paramagnetism (examples: see Fig. 11 in Chap. 4 of Kittel)

- Conduction electron paramagnetism for indistinguishable free electron spins in a metal 

- Only Fermi particles within ±kT/2 of Fermi energy EF can change their energy(i.e., orientation) in response to 
an allpiled field. 

- As T increases, more carriers are excited above the Fermi level and excited carriers are able to be aligned by the 
field. 

For free electrons in weak fields, x(μmB/kT)≪1 in localized electron theory, the susceptibility χPauli

χPauli ≈ = : independent of T

More precisely, by considering the spin imbalance in two free electron bands subject to a weak Zeeman splitting 
( μmB≪EF) : 

χPauli = : independent of T

Temperature independence of χPauli : with increasing temperature, increased free electron spins able to align with 
an external field and increased thermal disordering of those aligned spins are cancelled.
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