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III. Magnetic Anisotropy & III. Magnetic Anisotropy & 
MagnetoelasticMagnetoelastic EffectsEffects

참고참고:: Chap. 6, 7 & 12 in O’Handley,
Chap. 7, 8, 10 & 11 in Cullity

Chap. 5 & 6 in Jiles
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(2) Magnetoelastic Effects

- Isotropic effect : volume magnetostriction

- When the magnetic ordering is produced by an  
applied field, they are called forced magnetostriction. 

- On a smaller scale, the volume expansion can show an 
anisotropy for T < Tc, that is, the linear strain is different 
in different directions relative to the direction of 
magnetization. 

- The magnetization vector M is associated with a stress 
which causes a mechanical deformation of the material. 

The dimension of a ferromagnetic material 
changes when it is magnetized. The resulting strain 
is called, the magnetostriction λ

Observations
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(2) Magnetoelastic Effects (continued)

▶ Joule (or Anisotropic) Magnetostriction, λ =△l/l

The anisotropic strain associated with the direction of magnetization was first observed in iron by Joule on 1842 yr.
- Field dependence of anisotropic strain (see Fig. 7.2 in O’Handley) for strain measured 
parallel to the field, e// = (△l/l)//
perpendicular to the field, e⊥ = (△l/l)⊥

- λ ranging from zero (< 10-7) 
to nearly ± 10-4 in 3d metals and alloys 
to over 10-3 in some 4f metals,
intermetallic compounds, and alloys.

▶ Two Ways in describing 
Anisotropic Magnetostriction

- Saturation magnetostriction, λs :
the strain produced at magnetic saturation

- Magnetoelastic coupling coefficient, Bij :
the magnetic stress causing λs

▶ The Magnetic Stress Tensor, 
called Magnetoelastic Coupling CoefficientBij
- The components Bij, can be related to its 
magnetostrictive strains by a analogy with Hooke's law: 

Bij∝− cijklλkl
For Ni, B1 = 6.2MPa, Young's modulus, E = 200GPA, 
λ = 30×10-6
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(2) Magnetoelastic Effects (continued)

▶ The Inverse Effect
- Stressing or straining a magnetic material 
→ a change in its preferred magnetization direction
can be produced. (see Fig. 7.3 in O'Handley): 
inverse Joule effects, Villari effects, piezomagnetism, 
or stress-induced anisotropy. 
- If λs > 0, it is easier to magnetize a material 
in the tensile stress (σ > 0) direction. 

- It is harder to magnetize a material in a direction 
for which λs < 0 and σ > 0 or for which λs > 0 and σ < 0.

▶ Torsional Effects
- A current passing through a magnetic material 
in the direction of M causes a twisting of the magnetization around the current axis.

- If λs≠ 0, a torsional motion of the sample occurs: Wiedemann effect. 
- Inverse Wiedemann effect, named after Matteucci: a mechanical twisting of the sample causes a voltage to appear
along the sample length, consistent with Faraday's law and the strain-induced magnetization change. 
- The existence of anisotropic magnetoelastic(ME) effects → the existence of a coupling between the magnetization 
direction and mechanical strains. 
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(2) Mangetoelastic Effects (continued)

Two Main Types of Magnetostriction
- Spontaneous Magnetostriction λs : arising from the ordering of magnetic moments into domains below Tc
- Field-induced Magnetostriction λ : arising from the reorientation of λs under the action of a magnetic field 

In both cases, λ = △l/l

▶ Spontaneous magnetostriction λo in isotropic materials (see Fig. 5.6 in Jiles) 

Consider spherical volumes of unstrained solid above Tc (in the disordered phase) for a isotropic material. 
- Below Tc, spontaneous magnetization appears within the domains and associated spontaneous strain e
(or magnetostriction λo)         

e(θ) = ecos2θ
where θ is the angle between the strain measuring direction and the direction of spontaneous magnetization 
The average deformation throughout the solid, assuming randomly oriented domains

→ No change in shape although the sample changes in dimensions. 

▶ Saturation Magnetostriction λs
The maximum fractional change in length from a demagnetized to a saturated magnetization state along the magnetic field 
direction, 

λs = e − λo = 2e/3 
λs can be increased even after the magnetization has reached technical saturation by a forced magnetization.
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(2) Magnetoelastic Effects (continued)
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(2) Mangetoelastic Effects (continued)

Field Dependence of Joule Magnetostriction
The anisotropic magnetostrictive strain e (sometimes called, magnetostriction λp) relative to the direction
of magnetization  (see Fig 7.2 in O'Handley)

▶ For an isotropic material (see Fig 7.4 in O'Handley)

e =λ0 = (3/2)λs(cos2θ −1/3 )

where e = △l/l is the strain measured at an angle θ
relative to the saturation magnetization direction, 
and the saturation magnetostriction coefficient λs is 
a measure of the strain on changing the direction of 
magnetization in the material.

- For the hard-axis magnetization process
in a first-order uniaxial material,

M = MsH/Ha or m(= M/Ms) = h(= H/Ha).  
e = λs(m2 −1/3 ) → e∝ H2

Above saturation, 
e// = (3/2)λs(1 − 1/3) = λs, e⊥ = λs(0 − 1/3) = −1/2λs

(longitudinal magnetostriction)   (transverse magnetostriction) 

Hence, for isotropic materials, e// − e⊥= 3/2λs or λs = 2/3(e// − e⊥)
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- The magnetostrictive strain of a material with a 180° domain wall (see Fig. 7.5 in O'Handley) 

(2) Mangetoelastic Effects (continued)

A 180°domain wall motion does not produce any magnetostrictive change in dimensions.

- Some data (see Table 7.1, Fig. 7.6-9 in O'Handley) 

- Surface Magnetostriction (see Chap 16 in O'Handley)
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▶ For anisotropic materials

A general equation for the saturation magnetostriction in 

a single domain, single cubic crystal in a direction defined 

by the cosines β1, β2, β3, relative to the crystal axes, 

when it is magnetized from the demagnetized sate to 

saturation in a direction defined by α1, α2, α3:

λs = (3/2)λ100(α1
2β1

2 + α2
2β2

2 + α3
2β3

2 - 1/3) 

+ 3λ111(α1α2β1β2 +α2α3β2β3 + α3α1β3β1)

(2) Mangetoelastic Effects (continued)
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- The spontaneous strains along crystal axes for T < Tc: 
e111 = 3/2λ111 and e100 = 3/2λ100

From the above equation, 
(a) it is possible to calculate the dimensional change of a single domain due to a rotation of its Ms vector out   

of   the easy axis. 
(b) it is possible to circumvent, in magnetostriction measurements, the uncertainty about the demagnetized state. 

Ex) (see Fig. 8.3-4 in Cullity) 

(2) Mangetoelastic Effects (continued)
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λs = (3/2)λ100( α1
2β1

2 + α2
2β2

2 + α3
2β3

2 - 1/3) + 3λ111(α1α2β1β2 +α2α3β2β3 + α3α1β3β1)

- The magnetostriction of an isotropic material, λθ = (3/2) λs(cos2θ −1/3 ) can be derived from the above 
equation by putting      λ100 = λ111 = λs

- The saturation magnetization in the same direction as the field (i.e., saturation magnetization), 
since α1 = β1, α2 = β2, and α3 = β3,

λs = λ100 + 3(λ111 - λ100)(α1
2α2

2 +α2
2α3

2 + α3
2α1

2) 

- Experimental curves for magnetostriction in various directions in a Fe crystal(see Fig 8.5 in Cullity) and 
in a Ni crystal (see Fig. 8.6 in Cullity) 

- For a polycrystalline sample, λs = 2/5λ100 + 3/5λ111 (proof: homework)
The magnetostriction at an angle θ to the magnetization with no preferred orientation (or magnetically isotropic), 

λθ = 3/2λs(cos2θ −1/3 ) 

- Experimental curves for polycrystalline samples (see Fig. 8.13 in Cullity or Fig. 5.7 in Jiles)

(2) Mangetoelastic Effects (continued)
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(2) Mangetoelastic Effects (continued)
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▶ The magnetization energy um, expanded in a Maclaurin series
- A coupling between the magnetization direction and mechanical deformations in a material, which depends on the

direction of magnetization relative to the crystal axes. 
um = Um/Vo

= fo + K1αi
2αj

2 + K2αi
2αj

2αk
2 + …

(dependent only on the direction of magnetization) 
+ cijkleijekl + Hijkmnleijeklemn + …

(pure elastic energy and the strain dependence of the c terms) 
+ Bijeijαiαj + … + Dijkleijeklαiαjαkαl + …

(dependent on the direction cosines of the magnetization) 
- For a cubic material, the first-order terms, 

u = um + ume + uel

= Uo/Vo + K1(α1
2α2

2 +α2
2α3

2 + α3
2α1

2) + K2(α1
2α2

2α3
2) +…

+ (1/2)c1l(e2
xx + e2

yy + e2
zz) + cl2(exxeyy + eyyezz+ ezzexx) 

+ (1/2)c44(exxeyy + eyyezz+ ezzexx) + const × eij

+ B1(α1
2exx + α2

2eyy + α3
2ezz) + B2( α1α2exy + α2α3eyz +α3α1ezx)  (see Table 7.2 in O'Handley) 

Phenomenology

(2) Mangetoelastic Effects (continued)
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Mainly due to the spin-orbit coupling 

A crude picture (see Fig. 8.14 in Cullity) 

There is a close physical connection between crystal anisotropy and magnetostriction. 

- First-Order Anisotropy Due to an External Strain 

Effects of Imposed Strain 

- Second-Order Anisotropy Due to an Magnetostriction

Physical Origin

Magnetoelastic Contribution to Anisotropy

(2) Mangetoelastic Effects (continued)
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▶ △E Effect

- Effect of added magnetic strain due to the magnetostrictive strain, which is important for acoustic waves, 
vibrations, and damping. 

-The total strain etot of a ferromagnetic sample 
under stress σ

etot = σ/EM + (3/2)λs[cos2θ ― 1/3] 

where EM is Young's modulus for fixed M 
(no magnetic contribution) and θ is the angle 
between M and the strain measuring direction. 
(see Fig. 7.13 in O'Handley) 

ΔE Effect and Thermodynamics of Magnetomechanical Coupling

(2) Mangetoelastic Effects (continued)
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-For a hard-axis magnetization process, since 

1/Eeff = 1/EH = ∂etot/∂σ = 1/EM - {3λsH2/(Ha
eff)3}(∂Ha

eff/∂σ) 

Since Ha
eff=Ha- 3λsσ/Ms, 

▶ Thermodynamics of Magnetomechanical Cupling

The magnetoelastic contribution to the internal energy of a magnetic material : - VσMλ

-The expansion coefficients in a set of orthogonal harmonic functions are chosen so that the anisotropy energy is   
invariant under all point operations of the crystal symmetry. 

- Symmetry-based 
cubic magnetostriction coefficients : 
λ100 ≈ 2/3λγ,2 or λγ,2 ≈ 3/2λ100 , λ111 ≈ 2/3λε,2 or λε,2 ≈ 3/2λ111

hexagonal magnetostriction coefficients: (see eqn. (7.37) in O'Handley) 

(2) Mangetoelastic Effects (continued)
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- Case studies 
Ni single crystals (see Fig. 7.17 in O'Handley) 
Rare earth metals (see Fig. 7.18-19 in O'Handley) 
Yttrium iron garnet(YIG) (see Fig. 7.20 in O'Handley) 
Amorphous magnetic alloys (see Fig. 7.21 in O'Handley) 

- λ(T) drops much more sharply with increasing temperature than does M(T). 
- Theoretical interpretations: C. Zener, Phys. Rev. 96, 1335 (1954); E.R. Callen and H.B. Callen, Phys. Rev. 129, 
578(1963), and 139A, 255(1965) 

(2) Mangetoelastic Effects (continued)

Temperature Dependence
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- Strain Gauges : 
Measurement of resistance variation due to a dimensional change in a metal foil (e.g., Ni-Cr alloys) and conversion 

into measured strain. 
Capacitance bridges; measurement of the relative change in resonant frequency 

- Small-Angle Magnetization Rotation : 
Effective for ribbon-shaped samples such as metallic glass strips 

- Strain-Modulated FMR 
- Thin-Film Techniques 

(ref. Chap 8.7 in Cullity) 
- Magnetostrictive transducer: electrical energy        mechanical energy 
- Acoustic delay line 

Measurement Techniques of Magnetostriction

Magnetostrictive Materials and Applications 

(2) Mangetoelastic Effects (continued)

↔
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