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(3) Magnetization Process

Uniaxial Magnetization
(Origin of uniaxial anisotropy : magnetostatic, magnetocrystalline, magnetoelastic, or field-induced)

Ku = (1/2)μo(Na – Nc)Ms
2 for magnetostatic (shape)

Ku1 for magnetocrystalline
3λsσ/2 for magnetoelastic (isotropic)

Hard-axis magnetization :
Related magnetic energy

- Uniaxial anisotropy energy

- Zeeman energy

Easy-axis magnetization :
Related magnetic energy

- Uniaxial anisotropy energy

- Zeeman energy
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(3) Magnetization Process

Hard-axis Magnetization (see Fig. 9.1(a) in O’Handley)

For H⊥ easy axis, total energy density 
f = fa + fZeeman = Kusin2(π/2 -θ) – Ms•B

= Kucos2θ – MsHcosθ,  Ku > 0 
Torque, Tθ = – ∂f/∂θ on M
Minimum f  when ∂f/∂θ = (– 2Kucosθ + MsH)sinθ = 0 

and ∂2f/∂θ2 =  – 2Kucos2θ + MsHcosθ >  0 
Zero torque:  sinθ = 0 →θ = 0, π, …
Stability conditions (see Fig. 2.12 in O’Handley) : 
θ = 0 is stable only  for H > 2Ku/Ms (Ku > 0)
θ = π is stable only for H < – 2Ku/Ms (Ku > 0) 

Equation of motion for the magnetization in fields below saturation ( – 2Ku/Ms < H < 2Ku/Ms)
2Kucosθ = MsH

For H = 0, θ = π/2, Ha (anisotropy field) = Hsat for cosθ = 1
Since M = Mscosθ, Ku = MsHa/2, Then 2Kucosθ = MsH→ HaMscosθ = MsH
Using reduced magnetization, m = M/Ms = cosθ and h = H/Ha

m = h for – 1 ≤ h ≤ 1 (see Fig. 9.2(a) in O'Handley)
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Easy-axis Magnetization (see Fig. 9.1(b) in O'Handley)
Free energy in a single domain particle (or completely pinned wall) 

f = - MsHcosθ + Kusin2θ

Energy density f versus θ for various h(reduced field) = MsH/2Ku

Stability conditions: 

For h = 0 (i.e., zero field), stable at both θ= 0 and π

For 0 < h < 1, angular position of min. f is independent of field. 

For h = 1, θ = π is no more stable, m = 0 called the switching field. 

Zero-torque condition: MsHsinθ + Kusin2θ = 0 

θ = 0 (m = 1) and π (m = – 1)

Stability conditions: MsHcosθ + 2Kucos2θ > 0 

θ = 0 is stable only for H > -2Ku/Ms (h > – 1)

θ = π is stable only for H < 2Ku/Ms (h < 1)

θ = 0 and π are only locally stable for -2Ku/Ms < H < 2Ku/Ms

In Fig. 9.2(b), solid lines : stable solutions

dashed lines : locally stable solutions → square hysteresis loop!!! 

(3) Magnetization Process
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Easy-axis Magnetization (continued)
In the case of domain wall motion :

No torque on the domain magnetization, but a torque on the spins making up the wall
- The spins in the wall may rotate to align with H

Macroscopically, the difference in Zeeman energy of the two domains (a field-induced potential energy 
difference) across the domain wall (= 2MsH) → lower energy by moving so as to reduce the volume of the 
unfavorably oriented domain
Equivalently, the force on the domain wall, given by F = - ∂U/∂x, will move the wall down. 

Assuming smooth and easy wall motion (negligible pinning), solid line with zero coercivity
(see Fig. 9.2(b) in O’Handley)

Coercive field Hc : 
Hc = 2Ku/Ms in the single-domain or pinned wall limit by rotational hysteresis
Hc = 0 in free-domain-wall limit

Permeability μrot for a purely rotational magnetization process :
2Kucosθ = MsH→ HaMscosθ = MsH since Hc = 2Ku/Ms and M = Mscosθ→M = (Ms

2/2Ku)H
μrot = μo(H +M)/H = μo(1 + Ms

2/2Ku) ≈ μoMs
2/2Ku (SI unit) μrot ≈ 2πMs

2/Ku (cgs)
If Ku is small, the M-H loop is steep and μrot can be large!!!

(3) Magnetization Process
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Stoner-Wohlfarth Problem :
The magnetization process for single-domain particles 
of ellipsoidal shape 
- The M-H loops for a field applied at an arbitrary angle θo

with respect to a uniaxial easy axis 
(see Fig. 9.4 in O'Handley) 

For a prolate spheroid, the free energy f
f = – Kucos2(θ – θo) – MsHcosθ

where Ku = [Ha + (N2 - N1)Ms]Ms/2, Ha is the anisotropy field, 
N1 and N2 are demagnetization factors // and  ⊥
to the easy axis of the particle, respectively. 
Minimum free energy when ∂f/∂θ = 0 

2Kusin(θ - θo)cos(θ - θo) + MsHsinθ = 0 
Using Ku = HaMs/2 and the reduced field h = H/Ha, 

sin2(θ - θo) + 2hsinθ = 0 
With the reduced magnetization m = M/Ms = cosθ, the solution can be written as the following, 

2m(1 - m2)1/2cos2θo + (1 - 2m2)sin2θo ± 2h(1 - m2)1/2 = 0  → h = f(m) (see Fig. 9.5 in O'Handley)

(3) Magnetization Process

Field at Arbitrary Orientation to Uniaxial Easy Axis
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Equation of motion for the magnetization :

2m(1 - m2)1/2cos2θo + (1 - 2m2)sin2θo ± 2h(1 - m2)1/2 = 0

Interpretations 

(i) θo = π/2 : Hard-axis magnetization 
(Fig. 9.2(a) in O'Handley)

(ii) θo = 0 : Easy-axis magnetization 
(Fig. 9.2(b) in O'Handley)

(iii) Single-domain, oblique magnetization process 
in negative fields

- For a small range of θo above 0o, 
the magnetization reversal occurs at a critical field,
hs = Hs/Ha, called the reduced switching field;  
hs is defined where m(h) curve satisfies ∂h/∂m = 0.

At the switching point, 
the magnetization switches abruptly and reversibly. 
free energy minimum (∂f/∂θ = 0) becomes flat
(i.e., unstable): ∂2f/∂θ2 = 0. 

hscosθ - cos2(θ - θo) = 0  (since ∂f/∂θ =  sin2(θ - θo) + 2hsinθ )

(3) Magnetization Process
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(3) Magnetization Process

Explanations (continued)

At the switching point, 

hscosθ - cos2(θ - θo) = 0

Then 
sin2θo = (2/hs

2)[( 1 - hs
2)/3]-3/2

Solving for the switching field, 

hs = (cos2/3θo + sin2/3θo)-3/2 

(see Fig. 9.6 in O'Handley)

For 45o < θo < 90o, hs occurs after the magnetization 
has changed sign; the coercivity hc is less than hs. 
And thus hc is defined at m = 0, hc = sinθocosθo
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Magnetization Change by Curling :

- Modes of magnetization reversal 
(i) Coherent rotation of all moments in unison 
(see Fig. 9.7(a) in O'Handley)
(ii) Curling (see Fig. 9.7(b) in O'Handley)
(iii) Buckling (see Fig. 9.7(c) in O'Handley)
(iv) Fanning (in chain of spheres) 
(see Fig. 9.7(d) in O'Handley)
(v) Domino effect (see Fig. 9.7(e) in O'Handley)

- Magnetization switching by curling 
By having fewer spins pointing away from the easy axis at any 
given stage of the reversal process, exchange energyis raised and the magnetostatic energy is lowered. 
Switching field Hs for magnetization curling in an elongated, single-domain particle of semiminor axis b is reduced
from the uniform rotation value, Hc = (Nb - Na)Ms, by replacing the hard-axis magnetostatic energy with the curling
energy, 

Hs = [(a/2)(bo/b)2 - Na]Ms∝C1/b2 - C2
where bo = ro/Nb

1/2 is the single-domain radius for an ellipsoid of revolution and a is a function of the aspect ratio of 
particles (1.08 (infinite cylinder) a 1.42 (sphere)). 

θo dependence of Hs due to curling for various values of S = b/bo, assuming no magnetocrystalline anisotroopy

(see Fig. 9.8 in O'Handley).

≤ ≤

(3) Magnetization Process
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- For smaller particles of superparamgnetism, 

Hc∝C1- C2/b3/2

As the particle volume decreases in the 
superparamagnetic regime, Hc drops at a given 
temperature. (see Fig. 9.9 in O'Handley)

(3) Magnetization Process



Seoul National UniversitySuperconductors and Magnetic Materials Lab.

Free Domain Walls :

For large particles (or polycrystalline sample packed 
densely) with domain walls 

- Assuming completely free domain walls : Hc = 0 

M-H characteristic for H > 0 is the uniform rotation 
process 

(see Fig. 9.10 in O'Handley)

Explanations :

- With decreasing H form positive saturation, domain 
walls are nucleated and move easily once H < 0.

- Both magnetization rotation and domain wall motion 
may contribute to the M-H process.

- No magnetization reversal by abrupt rotational 
switching because of the easy wall motion.

(3) Magnetization Process



Seoul National UniversitySuperconductors and Magnetic Materials Lab.

Approach to Saturation :

- Experimental determination of Ms is not always 
evident. In that case, the mathematical form of the 
approach to saturation is helpful. At T well below Tc

M(H) = Ms(1 - a/H) + χhfH

Here χhf is the high-field susceptibility and the term -
aMs/H accounts for rotation of M away from the applied 
field as H decreases. (see Fig. 9.11 in O'Handley)

- For single-domain particles, from the Stoner-Wohlfarth
model, at the limit h>> 1 , m ≈ 1 (or 2m2 – 1 ≈ 1) 

± 2h(1 – m2)1/2= (2m2 – 1)sin2θo

leading to m ≈ (1 – sin22θo/4h2)1/2

and thus M(H) = Ms(1 – Ha
2sin22θo/8H2) 

By extrapolating of M(H) vs H-2, Ms can be determined.

(3) Magnetization Process
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Why are domain wall motions irreversible in 
real materials under an external field Hext?

Domain wall energy can be lowered at a 
particular position in the material due to the 
defects such as grain boundaries, 
precipitates, inclusions, surface roughness, 
and other defects, and thus the wall motion 
can be effectively pinned or inhibited.

(3) Magnetization Process

Domain Wall Pinning and Coercivity
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- Two classes of defect (see Fig. 9.12 in O'Handley)

(i) A nonmagnetic inclusion or planar defect coincident with a wall : The need for a moment rotation (or a twist in 
M) across the defects is eliminated and thus the total wall energy can be locally reduced by σdw times the common 
cross-sectional area of the defect and wall. 

(ii) A magnetic defect having a strong anisotropy(crystalline or magnetoelastic) relative to that of the matrix : 
Local wall energy is increased and thus a barrier to a domain wall motion can be posed effectively.

- Distribution of defects in a material

The domain wall potential σdw(x) is highly irregular with position. 

The presence of the pinning defects leads to an irregular domain wall motion consisting of a series of Barkhausen
jumps. 

- Quantitative models of domain wall motion

Two regimes based on the ratio of defect size D to wall thickness δdw = π(A/Ku)1/2.

For D >> δdw, domain wall pinning on defects 

(i) Large fuzzy defect case 

(ii) Sharply defined defect case 

(3) Magnetization Process
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Large fuzzy defects (see Fig. 9.13 in O'Handley) : 
strain fields or composition fluctuations 

- The domain wall can be considered to be moving in an 
irregular but slowly changing potential 

- The driving pressure due to the difference in Zeeman
energy across a 180o wall : 2MsH

- Resistance to the wall motion due to the gradient in the 
wall energy density : P = - dσdw/dx

Then, since σdw = 4(AKu)1/2 and Ku = Kxtl + (3/2)λsσ

dσdw/dx = 4d(AKu)1/2/dx = 2[(π/δdw)∂A/∂x + 
(δdw/π)(∂Kxtl/∂x + (3/2)λs∂σ/∂x] 

Explanations :

- Spatial variations in exchange and anisotropy energies, 
determining the wall energy, exert the impeding force to 
the domain wall motion. 

(3) Magnetization Process
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Large fuzzy defects (continnued)

The steepest gradient in wall energy density can be taken to be the magnetic pressure

responsible for the coercivity Hc

(dσdw/dx)max = 2MsHc→ Hc = (dσdw/dx)max/2Ms

If the variation ~ D, and assuming a linear gradient, dσdw/dx = △σdw/D

Hc≈ (2Ha/)(δdw/D)[△A/A + △Kxtl/Kxtl + (3/2)λs△σ/Kxtl] 

Hc∝δdw/D times a sum of fluctuation terms expressing local variations in exchange stiffness, crystal 
anisotropy and magnetoelastic anisotropy, respectively. 

where the anisotropy field, 

Ha = 2Kxtl/Ms : upper limit to the coercivity

Coercive mechanism arising from the magnetostatic energy of defects proportional to △M/M

Hc∝△(2πMs
2)/2πMs

2 = 2△Ms/Ms

(3) Magnetization Process
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Micromagnetic theory for well-defined defects
(see Fig. 9.14 in O’Handley) 

Sharply defined defect case : grain boundaries, voids, antiphase
boundaries, and dislocations 

Total energy of the system in this model = exchange energy + 
uniaxial anisotroopy energy + Zeeman energy densities 

Ai(∂θ/∂x)2 + Kisin2θ - MsHcosθ
where θ = angle between magnetization and easy axis (y axis) 
Over all space, minimum energy when 
-2Ai(∂θ/∂x)2 + Kisin2θ - MsHcosθ = Ciθ

where i = 1, 2, 3 corresponding to the regions in Fig. 9.14 
Boundary conditions 

dθ/dx = 0 at x = ±∞ and 
θ = 0 at x = + ∞ and θ = π at x = - ∞

Therefore, C1 = - HM1, C3 = + HM1, C2 from continuity of θ and 
exchange torque Aidθ/dx at the interfaces x1 and x2
Reduced coercive field hc = HcM1/K1
(see Fig 9.15 and 9.16 in O'Handley)
Summary (see Fig. 9.17 in O'Handley)

(3) Magnetization Process
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(3) Magnetization Process
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Examples

- NdFeB (see Fig 9.18 in O'Handley)

- Amorphous and crystallized Co-Nb-B alloys (see 
Fig 9.19 in O'Handley)

- Sm2(Co, Cu, Fe, Zr)17 (see Fig 9.17 in O'Handley)

-Nanoparticles (Chap 12 in O'Handley)

Additional Anisotropy

In some large single-domain particle systems (e.g., 
Fe in a SiO2 matrix), the coercivity can exceed the 
single-domain limit (2K/Ms) due to an additional 
anisotropy (probably, stress or interfacial spin 
pinning) induced by the particle interaction with its 
nonmagnetic matrix. 

(3) Magnetization Process
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The area inside a B-H loop = the energy loss per unit volume in one cycle 

Energy W dissipated in a toroidal core over one cycle = the integral of the power loss over a period: 

W = 

Ampere's law and Faraday's law, V(t) = - dφ/dt = - AdB/dt

W = : DC hysteresis loss 

Classical eddy-current loss

Eddy-current loss about a single domain wall

Multiple domain walls

∫
=

=

Tt

t
dttVti

0
)()(

∫∫ =
=

=
dBtHlAdt

dT
dBHlA

Tt

t
)(

0

(3) Magnetization Process

AC Processes

Microwave Magnetization Dynamics & Ferromagnetic Resonance
How does the magnetization of a ferromagnetic material respond when the drive-field frequency approaches the  

natural precession frequency of the moment in a magnetic field?
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