? (3) Magnetization Process

O Uniaxial Magnetization

Hard-axis Magnetization

Easy-axis Magnetization

O Field at Arbitrary Orientation to Uniaxial Easy Axis

Stoner-Wohlforth Problem
Magnetization Change by Curling
Free Domain Walls

Approach to Saturation
O Domain Wall Pinning and Coercivity
Large “Fuzzy” Defects

Micromagnetic Theory for Well-defined Defects

Examples

Additional Anisotropy




3) Magnetization Process

O Uniaxial Magnetization
(Origin of uniaxial anisotropy : magnetostatic, magnetocrystalline, magnetoelastic, or field-induced)
K,= (1/2)1,(N,— N.)M? for magnetostatic (shape)
K, for magnetocrystalline
31,0/2 for magnetoelastic (isotropic)

«—EA—> L H >

Hard-axis magnetization : y Easy-axis magnetization :
Related magnetic energy H X Related magnetic energy
- Uniaxial anisotropy energy \-—T/ - Uniaxial anisotropy energy
- Zeeman energy - Zeeman energy

a) Transverse b) Longitudinal

Figure 9.1. Schematic representations of a magnetic material having purely uniaxial
anisotropy in the direction of the easy axis (EA). Dashed lines indicate magnetization
configurations for H = 0. Application of a field H transverse to the EA results in
rotation of the domain magnetizations but no wall motion. Application of a field
parallel to the EA results in wall motion but no rotation of the domain magnetization.
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Hard-axis Magnetization (see Fig. 9.1(a) in O’Handley)

For H L easy axis, total energy density

f=f +f,  =Ksin(m/2-6)- MsB
= K,c0s?6—-MHcoso, K, >0 .
Torque, T,=-0dfld@on M 2
W 0.5 o

Minimum f when 0f/0 6= (- 2K cos©@ + MH)sin©= 0
and 0%/0 6% = — 2K c0s26+ MHcos© > 0

Zero torque: sin©=0— =0, T, ... e
Stability conditions (see Fig. 2.12 in O’Handley) : §(rad)
92 0 iS Stable Only for H > 2K /M (K > 0) Figure 2.12 Variation of magnetostatic plus Zeeman energy densily with 6 for
. L u increasing values of applied field (arbitrary units). Note how the stable energy minimum
© = 1t IS stable Only forH< - 2KU/MS (Ku > O) moves from 7/2 toward zero as applied field increases.

Equation of motion for the magnetization in fields below saturation ( - 2K /M, < H < 2K /M,)
2K cos©& = MH
For H=0, ©=1/2, H,_ (anisotropy field) = H_, for cos&=1
Since M = Mcos&, K, = MH /2, Then 2K cos©@ = MH — H M.cos©= MH
Using reduced magnetization, m = M/M, = cos@and h = H/H,
m=nh for—1<h <1 (seeFig.9.2(a) in O'Handley)
e
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Easy-axis Magnetization (see Fig. 9.1(b) in O'Handley) !
1.0} r-=-1.0p——— —
Free energy in a single domain particle (or completely pinned wall) | F
|
f=-MMHcosO+ K sin?6 = 1o -.0 0
n } |
Energy density fversus © for various h(reduced field) = MH/2K T:i : | FH
' a I | a
Stability conditions: --1.0 '. ]
For h =0 (i.e., zero field), stable at both ©=0 and 1t a) Transverse Field b) Longitudinal Field
For 0 < h <1, angular position of min. fis independent of field. Figure 9.2. M—H loops for the two idealized cases shown in Figure 9.1: (a) hard-axis

] L. ) and (b) easy-axis magnetization processes,
Forh =1, © = 1t is no more stable, m = 0 called the switching field.

Zero-torque condition: MHsin© + K sin26=0
O=0(m=1)andt (m=-1)
Stability conditions: M.Hcos© + 2K ,c0s26 >0
©= 0 is stable only for H > -2K /M, (h > - 1)
©= 1t is stable only for H < 2K /M, (h < 1)
©=0and 7t are only locally stable for -2K /M, < H < 2K /M

1.15 2?0 2I.5 3I,O 3.9
In Fig. 9.2(b), solid lines : stable solutions 8 (radians)

dashed lines : |Oca||y stable solutions — square hyStereSiS |oop||| Figure 9.3. Free energy for the easy-axis magnetization process as a function of angle
""" and applied field strength, h = M H/2K,,.

Superconauctors anda vie
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Easy-axis Magnetization (continued)
In the case of domain wall motion :
No torgue on the domain magnetization, but a torque on the spins making up the wall
- The spins in the wall may rotate to align with H
Macroscopically, the difference in Zeeman energy of the two domains (a field-induced potential energy
difference) across the domain wall (= 2M_H) — lower energy by moving so as to reduce the volume of the
unfavorably oriented domain
Equivalently, the force on the domain wall, given by F = - dU/oX, will move the wall down.
Assuming smooth and easy wall motion (negligible pinning), solid line with zero coercivity
(see Fig. 9.2(b) in O’Handley)
Coercive field H,
H. = 2K /M, in the single-domain or pinned wall limit by rotational hysteresis
H. =0 in free-domain-wall limit

Permeability zz , for a purely rotational magnetization process :
2K, c0s8 = MH = H M cos6&= MH since H, = 2K /M.and M = M.cos6— M = (M /2K )H
Lo = L (H+M)H = g (1 + M2/2K ) = g M22K , (Sl unit) ., =~ 2KTM2/K, (cgs)
If K, is small, the M-H loop is steep and g, can be large!!!
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1 Field at Arbitrary Orientation to Uniaxial Easy Axis

Stoner-Wohlfarth Problem :

The magnetization process for single-domain particles

of ellipsoidal shape

- The M-H loops for a field applied at an arbitrary angle 6,
with respect to a uniaxial easy axis
(see Fig. 9.4 in O'Handley)

For a prolate spheroid, the free energy f
=-K,c0s¥(6 - 6,) - MHcoso
where K = [H + (N -N )|\/| ]l\/l /2. H._is the anisotropy field Figure 9.4. Left, coordinate system for magnetization reversal process in single-domain
. a = s A ' particle in which the shape and crystallographic easy axes coincide. Application of a

Nland N2 are demagnetization factors //and L field at an angle 6, relative to the EA causes a net magnetization to lie at some angle
to the easy axis of the particle, respectively_ 0 relative to the field. Right, illustration of approach to a discontinuous magnetization
Minimum free energy when ofl66=0 change at a negative field of magnitude H,.

2K sin(@- g))cos(6- ) + M{Hsin6=0
Using K, = H,M/2 and the reduced field h = H/H,,

sin2(6- 6) +2hsin6=0
With the reduced magnetization m = M/M, = cos &, the solution can be written as the following,

2m(1 - m?)¥2cos26, + (1 - 2m?)sin26, £ 2h(1 - m?)¥2=0 — h =1f(m) (see Fig. 9.5 in O'Handley)
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Equation of motion for the magnetization : 0° —— 1o}
t 300
2m(1 - m?)2c0s2@. + (1 - 2m3)sin26. £+ 2h(1 - m2)12 =0 ( M/Mg |
m(1 - m?)¥2c0s26, + (1 - 2m?)sin26, (1-m?) e f@
Interpretations @ n
-
(i) ©,= 1t/2 : Hard-axis magnetization i
(Fig. 9.2(a) in O'Handley) l wEe
(if) ©,= 0 : Easy-axis magnetization / 8
(Fig. 9.2(b) in O'Handley) o 04
(ii1) Single-domain, oblique magnetization process o -
in negative fields ! “g=90°
- For a small range of ©, above 0°, i
the magnetization reversal occurs at a critical field, =2 A e |
h, = H/H._, called the reduced switching field; -0 -05 0 05 10 15 30
h, is defined where m(h) curve satisfies oh/om = 0. Rk

' - - I:'igurc ‘).S. Stoner—Wohlfarth (SW) solutions: reduced magnetization versus reduced
At the sw|tch|ng pOlnt, huiril ;:pphc:i at an angle 6, to the easy axis. The linear m-h curve represents #, = 90

. . . . and the other curves of increasing remanence represe = and 30°. The
the magnetization switches abruptly and reversibly. L o et Rl odl

magnetization process is irreversible so m—h continues for / < 0. Possible magnetization

free energy minimum (8f/8@ = O) becomes flat distributions are shown as inserts for nucleation-inhibited. single-domain particles.
(i.e., unstable): 0%f/0 & = 0.
h,cos© - cos2(6- ) =0 (since 6f/60 = sin2(6- 6,) + 2hsinO)
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Explanations (continued)

m m
T T I ] :
At the switching point, i s | /
h-F11- Ho= O e h
{ 0.8} ol 1
h - - = : SW ) '
L0sO@-cos2(0- 6)=0 230 sw.” i
Then h L i sl E:
i = 2 _h 2}/21-3/2 b 14y e I
sin20, = (2/hA)[(1-hA)/3] 0.4 201 ave e ¥
Solving for the switching field, gigf ol Curling P
..... B sy eV T - By
- 230 + sin23@ )-3/2 0.0 . l | 1
IR e o sIn=ecy) 0 20 40 60 80
(see Fig. 9.6 in O'Handley) 6,

For 45°< 90 < 909, hS occurs after the magnetization Figure 9.6. Solid line: variation of the switching or coercive field, h; = H,/H, with

SPR i ; angle between easy axis and applied field. The shapes of the m-h loops at the two
haS Changed Slgn’ the CoerCIVIty hC IS IeSS than hS' extreme values of 6, are shown for reference. The solid line describes the switching field

And thus hc is defined at m = 0, hc =SIn QOCOS 60 for the uniform rotation process (SW). For 6, > 45°, the magnetization passes through
zero (defining h,) for fields less negative than the switching field. Dotted lines indicate
switching fields for curling, Eq. (9.16), for various values of the reduced minor-axis
radius, S = b/b,. Magnetocrystalline anisotropy is neglected. The particle aspect ratio
for the curling-mode results is 8.

Superconductors and Magnetic Materials Lab. Seoul National University
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Magnetization Change by Curling :

a2b-»

-

- Modes of magnetization reversal
(i) Coherent rotation of all moments in unison 2a
(see Fig. 9.7(a) in O'Handley)

(i1) Curling (see Fig. 9.7(b) in O'Handley)
(ii1) Buckling (see Fig. 9.7(c) in O'Handley)
(iv) Fanning (in chain of spheres) v
(see Fig. 9.7(d) in O'Handley) a b ¢
(v) Domino effect (see Fig. 9.7(e) in O'Handley) Figure 9.7. Modes of magnetization reversal in acicular fine particles. Left to right: (a)

coherent rotation; (b) curling; (¢) buckling; (d) fanning (in chain of spheres); and (e)

—————— N =D

> QOO

e

domino effect, The first and third processes occur with the magnetization throughout

- Magnetization switching by curling iehireiclo o ntiee to'n rlere.
By having fewer spins pointing away from the easy axis at any
given stage of the reversal process, exchange energyis raised and the magnetostatic energy is lowered.
Switching field H, for magnetization curling in an elongated, single-domain particle of sesmiminor axis b is reduced
from the uniform rotation value, H_ = (N, - N,)M,, by replacing the hard-axis magnetostatic energy with the curling
energy,
H, = [(@/2)(b,/b)2 - N_]M, ccC /b2 - C,
where b, = r /N, Y2 is the single-domain radius for an ellipsoid of revolution and a is a function of the aspect ratio of
particles (1.08 (infinite cylinder) < a <1.42 (sphere)).

6, dependence of H, due to curling for various values of S = b/b, assuming no magnetocrystalline anisotroopy
(see Fig. 9.8 in O'Handley).
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4 \Curling

NUM5¢
0.0 -
2

Figure 9.8, Schematic comparison of the switching fields for curling compared with the
SW results shown for two angles of the field relative to the particle axis. Dotted lines
for curling indicate that increased major-axis demagnetizing field N, M, favors curling;
increased particle anisotropy inhibits curling.

- For smaller particles of superparamgnetism,
H, & C,- C,/b%?

0 20

As the particle volume decreases in the d/d,
superparamagnetic regime, H_ drops at a given
temperature. (see Flg 9.9in O'Handley) Figure 9.9. Particle-size variation of coercivity in FeCo particles (Kneller and Luborsky

1963). The solid negative-slope curve 1/r* follows Eq. (9.16). The solid positive-slope
curve, starting at d/d, = 1, is calculated from Eq. (9.17).

Superconductors and Magnetic Materials Lab. Seoul National University
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Free Domain Walls :

For large particles (or polycrystalline sample packed
densely) with domain walls

- Assuming completely free domain walls : H. =0

M-H characteristic for H > 0 is the uniform rotation
process

(see Fig. 9.10 in O'Handley)
Explanations :

- With decreasing H form positive saturation, domair
walls are nucleated and move easily once H < 0.

- Both magnetization rotation and domain wall motio
may contribute to the M-H process.

- No magnetization reversal by abrupt rotational
switching because of the easy wall motion.

/ =
M/Ms 1OF 0 f
H20 @
0.8}
6
08 0s
HZO
0.4}
|/
vy = 90°
0.2
" o3 |

w 00 05 10 15 20

H/H,

Figure 9.10. Reduced field versus reduced magnetization for a field applied at an angle
B, to the easy axis of particles significantly larger than the single-domain limit. The
magnetization process is reversible both for magnetization rotation and for wall motion.
Inserts depict possible magnetization configurations at various stages in the magneti-
zation process (EA is horizontal in these inserts).
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Approach to Saturation : !

05 10 105 1i0 1I5
|

BloggblogS 42K

200F" X

X 0 s -4
-_— ‘d c

¥4 |
JOO—/ "

- For single-domain particles, from the Stoner-Wohlfarth il i o
model, at the limith>> 1, m =~ 1 (or 2m2 -1 =~ 1) 0 5 10 15 20 25

- Magnetic Field (kO
+ 2h(1 - m2)1/2: (2m2_ 1)sm290 agnetic Field (kOe)

- Experimental determination of M, is not always
evident. In that case, the mathematical form of the
approach to saturation is helpful. At T well below T,

M(H) = M (1 - a/H) + x, H

Here x,.is the high-field susceptibility and the term -
aM//H accounts for rotation of M away from the applied
field as H decreases. (see Fig. 9.11 in O'Handley)

Magnetic Moment (emug™)

. . Figure 9.11. Method of determining saturation magnetization: M versus H and versus
leadingto m = (1 -sin?2 Qo/4h2)1/2 H™! data for Eu, 9oGd, ,,S at 4.2 K (McGuire and Flanders 1969).

and thus M(H) = M (1 — H_2sin22 0 /8H?)

By extrapolating of M(H) vs H2, M, can be determined.
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[ Domain Wall Pinning and Coercivity

Why are domain wall motions irreversible in
real materials under an external field H_,,?

Domain wall energy can be lowered at a
particular position in the material due to the
defects such as grain boundaries,
precipitates, inclusions, surface roughness,
and other defects, and thus the wall motion
can be effectively pinned or inhibited.

Figure 9.12. Upper panel depicts two kinds of defect and their influence on wall motion
for vertical applied field: nonmagnetic inclusions locally lower the wall energy by
decreasing its area; particles of different anisotropy or magnetization than the matrix
present a barrier to wall motion. Below is shown the domain wall energy as a function

of position in absence of an applied field.
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- Two classes of defect (see Fig. 9.12 in O'Handley)

(i) A nonmagnetic inclusion or planar defect coincident with a wall : The need for a moment rotation (or a twist in
M) across the defects is eliminated and thus the total wall energy can be locally reduced by g, times the common
cross-sectional area of the defect and wall.

(i) A magnetic defect having a strong anisotropy(crystalline or magnetoelastic) relative to that of the matrix :
Local wall energy is increased and thus a barrier to a domain wall motion can be posed effectively.

- Distribution of defects in a material
The domain wall potential oy, (x) is highly irregular with position.

The presence of the pinning defects leads to an irregular domain wall motion consisting of a series of Barkhausen
jumps.

- Quantitative models of domain wall motion

Two regimes based on the ratio of defect size D to wall thickness &, = 7(A/K )Y2.

For D >> ¢, domain wall pinning on defects

(i) Large fuzzy defect case

(i1) Sharply defined defect case
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Large fuzzy defects (see Fig. 9.13 in O'Handley) :
strain fields or composition fluctuations

- The domain wall can be considered to be moving in an
irregular but slowly changing potential

- The driving pressure due to the difference in Zeeman
energy across a 180° wall : 2M_H

- Resistance to the wall motion due to the gradient in the
wall energy density : P = - do, /dx

Then, since g, = 4(AK )Y2and K, = K, + (3/2)A,0

doy, Jdx = 4d(AK ) V2/dx = 2[(7/ 5, )ONIoX +
(8, ) (K /X + (312) A 9015X]

Explanations :

- Spatial variations in exchange and anisotropy energies,
determining the wall energy, exert the impeding force to
the domain wall motion.

(3) Magnetization Process

Figure 9.13. Domain wall thickness superimposed on a representation of the variation
in wall energy density across a defect of full width at half maximum, D.
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Large fuzzy defects (continnued)
The steepest gradient in wall energy density can be taken to be the magnetic pressure
responsible for the coercivity H_
(dgy,/dX), . = 2MH, — H_ = (d 0, /dX), .. /[2M,
If the variation ~ D, and assuming a linear gradient, dg, /dx = A g, /D
H.~ 2H/)(6,,/[D)AAIA + AK /K, + (312) A, A 0/K ]

H, o &,,/D times a sum of fluctuation terms expressing local variations in exchange stiffness, crystal
anisotropy and magnetoelastic anisotropy, respectively.
where the anisotropy field,
H, =2K

«/M - upper limit to the coercivity

Coercive mechanism arising from the magnetostatic energy of defects proportional to AM/M
H. o< AQaM2)27aME = 2 AMJIM
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Micromagnetic theory for well-defined defects
(see Fig. 9.14 in O’Handley)

Sharply defined defect case : grain boundaries, voids, antiphase

boundaries, and dislocations M
Total energy of the system in this model = exchange energy + s
uniaxial anisotroopy energy + Zeeman energy densities o o
A\(0619x)? + K sin26 — M Hcos & W
where & = angle between magnetization and easy axis (y axis)
Over all space, minimum energy when
—2A,(06I0x)? + Ksin?© - M(HcosO = C.&
where i = 1, 2, 3 corresponding to the regions in Fig. 9.14 Figure 9.14. Division of a material into three regions: 1, to the left of a planar defect;
Boundary conditions 2 insidc the planar dcf‘ccl; 3’. to thc right of the defect. Muter?ul pmpcrlics are th.c same
da/dx = 0 at x = + <o and in regions [ and 3. Defect width is D = x, — x,, and magnetization values at + infinity

indicate that a domain wall exists somewhere in between.
O=0atx=+o0and &= ratx=—- ©

Therefore, C, = - HM, C,;=+ HM,, C, from continuity of &and
exchange torque A, d@/dx at the mterfaces X, and X,

Reduced coercive field h,=HM,/K,

(see Fig 9.15and 9.16 in O'Handley)

Summary (see Fig. 9.17 in O'Handley)
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|6\ uF = AMp/A M, 1
= 0.0 W=D/8,, =2

0.2 T T T T T T T T T
L E:0.9 Feo0l 4 0 02 04 06 08 10
F=0.09
he O.1F F-025 E= Ay Ko/ ALK
F=0.49 —
i F=081 | Figure 9.16. Normalized coercive force h, as a function of the defect wall energy
: ! 1 L I : | 1 parameter E for various values of the defect exchange/magnetization stiffness parameter
0 2 5 3 4 . F. The normalized defect width is two for this figure. [After Paul (1982).]

Figure 9.15. Reduced coercivity h, versus normalized defect size w for various values of
F and for small (above) and large (below) values of the square of the normalized defect
wall energy density E (Paul 1982).

Superconductors and Magnetic Materials Lab.

Seoul National University
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Examples
- NdFeB (see Fig 9.18 in O'Handley)

- Amorphous and crystallized Co-Nb-B alloys (see
Fig 9.19 in O'Handley)

- Sm,(Co, Cu, Fe, Zr),, (see Fig 9.17 in O'Handley)
-Nanoparticles (Chap 12 in O'Handley)

Coercivity Hg

Additional Anisotropy 62 10t 1 0t 102 103

) ) ) Normalized Defect Size, w= D/8,
In some large single-domain particle systems (e.g.,
Feina Sioz matrix), the COGFCiVity can exceed the Figure 9.17. Schematic variation of coercivity with normalized defect size spanning two
single-domain limit (2K/M,) due to an additional tegions— small defects and large defects— relative to wall thickness. The predicted
anisotropy (probably, stress or interfacial spin e i

pinning) induced by the particle interaction with its
nonmagnetic matrix.
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O AC Processes
The area inside a B-H loop = the energy loss per unit volume in one cycle

Energy W dissipated in a toroidal core over one cycle = the integral of the power loss over a period:

w= [ iV ()t

Ampere's law and Faraday's law, V(t) = - d@/dt = - AdB/dt

W= |a :,T " S_? P IA§> H (t)dB : DC hysteresis loss

Classical eddy-current loss
Eddy-current loss about a single domain wall

Multiple domain walls

[ Microwave Magnetization Dynamics & Ferromagnetic Resonance
How does the magnetization of a ferromagnetic material respond when the drive-field frequency approaches the
natural precession frequency of the moment in a magnetic field?
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