

Fundamentals of MATLAB Usage

2008.9

담당교수: 주 한 규 joohan@snu.ac.kr, x9241, Rm 32-205 원자핵공학과

MATLAB Features

□ MATLAB: <u>Matrix Lab</u>oratory

• Process everything based on Matrix (array of numbers)

□ Math and Computation

- Linear System Solve, Eigenvalue, Matrix Manipulation, etc.
- Integration, Root finding, Optimization (Minimization), etc.

□ Graphics and Visualization

- 2D Graphics: XY, Contour; 3D Graphics: Surface, Mesh
- Lighting and Movie

□ Programming

• Simple FORTRAN or C typing programming with No Need for Explicit Variable Declarations (No consideration on memory usage)

Data Analysis

Statistical Analysis

□ and a Lot More...

MATLAB Screen

Entering Data and Basic Manipulation

Colon Operator

Subscript expressions involving colons refer to portions of a matrix.

A(1:k,j)

is the first \boldsymbol{k} elements of the jth column of $\boldsymbol{A}.$ So

```
sum(A(1:4,4))
```

":" alone in matrix element specification alone entire column or row

A(:,4) - 4th column of A, A(2,:) - 2nd row vector

Operators

Operators

Expressions use familiar arithmetic operators and precedence rules.

+	Addition	
-	Subtraction	
*	Multiplication	
/	Division	X= <mark>A\b solves Ax=b</mark>
١	Left division (described in "Matrices and Linear Algebra" in the MATLAB documentation)	where A is a Matrix and b is a column
^	Power	Vector
I.	Complex conjugate transpose	
()	Specify evaluation order	

rbc = (d + c r r + (5))/2	Element-wise Operation			
rno = (1+sqrt(5))/2 rho =	.* Element-by-element mult	iplication		
1.6180	./ Element-by-element divis	ion		
	$. \setminus Element-by-element left of the second $	livision		

Convenient Matrix Generation

Generating Matrices

MATLAB provides four functions that generate basic matrices.

zeros	All zeros
ones	All ones
rand	Uniformly distributed random elements
randn	Normally distributed random elements

Here are some examples.

eye(n) – for nxn identity matrix

Block Matrices

Concatenation

Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your first matrix by concatenating its individual elements. The pair of square brackets, [], is the concatenation operator. For an example, start with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16] scalar 16 added to all elements

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

B =

16	3	2	13	48	35	34	45
5	10	11	8	37	42	43	40
9	6	7	12	41	38	39	44
4	15	14	1	36	47	46	33
64	51	50	61	32	19	18	29
53	58	59	56	21	26	27	24
57	54	55	60	25	22	23	28
52	63	62	49	20	31	30	17

Basic Internal Functions

- diag(A) vector consisting of diagonal elements of Matrix A
- tril(A) lower triangular matrix of A
- triu(A) upper triangular matrix of A
- inv(A) inverse matrix of A
- det(A) determinant of A
- size(A) size of A, e.g mxn
- rank(A) rank of A
- rref(A) reduced row echelon form of A
- length(v) dimension of vector v
- [V,D]=eig(A) eigenvector (V) and eigenvalues (D) of A
- [L,U]=Iu(A) L, U Factors of A obtained after Gaussian Eli.
 - list all the current variables in memory
- clear A B C remove A B C

whos

Flow Control

Conditional

```
if rem(n,2) ~= 0
    M = odd_magic(n)
elseif rem(n,4) ~= 0
    M = single_even_magic(n)
else
    M = double_even_magic(n)
end
```

```
<= : less than or equal
~= : not equal
& : and
| : or
~ :not
```

<u>Loop</u>

```
for n = 3:32
    r(n) = rank(magic(n));
end
```

```
exit out of a loop
```

SNURPL

Input/Output Syntax

Output Display Patterns

2D Graph

```
x = -10:.005:40;
y = [1.5 \cos(x) + 4 \exp(-.01 x) \cdot \cos(x) + \exp(.07 x) \cdot \sin(3 x)];
plot(x,y)
```

This picture shows the graph created by the code above.

2D Graphs

```
x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')
```

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1-0

A ALTERNATION

color_style_marker is a string containing from one to four characters
(enclosed in single quotation marks) constructed from a color, a line style, and
a marker type:

- Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond to cyan, magenta, yellow, red, green, blue, white, and black.
- Line style strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' for dash-dot. Omit the line style for no line.
- The marker types are '+', 'o', '*', and 'x', and the filled marker types are 's' for square, 'd' for diamond, '^' for up triangle, 'v' for down triangle, '>' for right triangle, '<' for left triangle, 'p' for pentagram, 'h' for hexagram, and none for no marker.

3-D Plots

Graphs with Light

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

M-file and Function Files

□M-file

- Script file containing series of commands having extension ".m"
- Use "%" to put comments for descriptive program

□ Function File

• A file to define a function

```
function [ri,phi]=risg(nw,x,w,xbg)
ri=zeros(size(xbg,1),1);
for iw=1:nw
   phi=xbg./(x(iw)+xbg);
   ri=ri+x(iw)*phi*w(iw);
end
```


help			
matlab\general	-	General purpose commands.	
matlab\elmat manipulation	-	Elementary matrices and matrix	
matlab\elfun	-	Elementary math functions.	
matlab\specfun	-	Specialized math functions.	
matlab\matfun algebra.	-	Matrix functions - numerical linear	
matlab\datafun	-	Data analysis and Fourier transforms.	
matlab\polyfun	-	Interpolation and polynomials.	
<pre>matlab\datafun transforms.s</pre>	- olvers.	Data analysis and Fourier	
matlab\funfun	-	Function functions and ODE solvers.	
matlab\sparfun	-	Sparse matrices.	
matlab\graph2d	-	Two dimensional graphs.	
matlab\graph3d	-	Three dimensional graphs.	
matlab\timefun	-	File input and output.	
matlab\iofun	-	File input and output.	
matlab\demos	-	Examples and demonstrations.	
matlab\general	-	General purpose commands.	
Managing the wo	rkspace	· ·	
who	- List	current variables.	
whos	- List	current variables, long form.	
clear	- Clea	r variables and functions from memory.	
load	- Load	workspace variables from disk.	
save	- Save	workspace variables to disk.	
Operating system commands.			

cd	- Change current working directory.
pwd	- Show (print) current working directory.
ls	- List directory.
1	- Execute operating system command (see PUNCT).

matlab\elfun Trigonometric	- Elementary math functions.	matlab\matfun linear alge	- Matrix functions - numerical ora.		
sin - Sine		Matrix analysis.			
sinh	- Hyperbolic sine.	norm	- Matrix or vector norm.		
cosd	- Cosine of argument in degrees.	rank	- Matrix rank.		
cosh	- Hyperbolic cosine.	det	- Determinant.		
acos	- Inverse cosine.	trace	- Sum of diagonal elements.		
acoth	- Inverse hyperbolic cotangent.	rref	- Reduced row echelon form.		
Exponential.		Linear equati	ons.		
exp	- Exponential.	$\$ and /	- Linear equation solution; use "help		
log	- Natural logarithm.	slash".			
log10	- Common (base 10) logarithm.	inv	- Matrix inverse.		
sqrt	- Square root.	cond	- Condition number with respect to		
nthroot	- Real n-th root of real numbers.	lu	- LU factorization.		
Rounding and	remainder.	Eigenvalues a	nd singular values		
fix	- Round towards zero.	eia	- Eigenvalues and eigenvectors.		
floor	- Round towards minus infinity.	polv	- Characteristic polynomial.		
ceil	- Round towards plus infinity.	P011			
round mod	- Round towards nearest integer. - Modulus (signed remainder after	matlab\datafun transforms.	- Data analysis and Fourier		
division).		Basic operations.			
rem	- Remainder after division.	max	- Largest component.		
sign	- Signum.	min	- Smallest component.		
		mean	- Average or mean value.		
		std	- Standard deviation.		
		var	- Variance.		
		sort	- Sort in ascending order.		
		sum	- Sum of elements.		
		prod	- Product of elements.		

matlab\funfun - Function functions and ODE solvers.
Optimization and root finding.

fminsearch - Multidimensional unconstrained nonlinear
minimization,

by Nelder-Mead direct search method. - Scalar nonlinear zero finding.

Numerical integration (quadrature).

quad - Numerically evaluate integral, low order method.

quadl - Numerically evaluate integral, higher
order method.

matlab\sparfun - Sparse matrices.

Full to sparse conversion.

fzero

- sparse- Create sparse matrix.full- Convert sparse matrix to full matrix.find- Find indices of nonzero elements.muVigualize sparsity pattern
- spy Visualize sparsity pattern.

matlab\graph2d - Two dimensional graphs. Elementary X-Y graphs. plot - Linear plot. loglog - Log-log scale plot. semilogx - Semi-log scale plot. semilogy - Semi-log scale plot.

Axis control.

axis - Control axis scaling and appearance. grid - Grid lines. box - Axis box. subplot - Create axes in tiled positions.

Graph annotation.

- title Graph title.
- xlabel X-axis label.
- ylabel Y-axis label.
- text Text annotation.
- gtext Place text with mouse.

Hardcopy and printing.

```
print - Print graph or Simulink system; or
save graph to M-file.
```


<pre>matlab\graph3d graphs.</pre>	- Three dimensional	<pre>matlab\iofun output.</pre>	- File input and	
plot3	- Plot lines and points in 3-			
D space.		File opening	and closing.	
mesh	- 3-D mesh surface.	fopen	- Open file.	
surf	- 3-D colored surface.	fclose	- Close file.	
fill3	- Filled 3-D polygons.			
		Binary file I	/0.	
Color contro	1.	fread	- Read binary data from	
colormap	- Color look-up table.	file.		
caxis	- Pseudocolor axis scaling.	fwrite file.	- Write binary data to	
Lighting.				
surfl	- 3-D shaded surface with	matlab\timefun	- Time and dates.	
lighting.		Current date	and time.	
lighting	- Lighting mode.	now	- Current date and time as	
		date number.		
Viewpoint con	ntrol.	date	- Current date as date	
view	- 3-D graph viewpoint	string.		
specificati	on.	clock	- Current date and time as	
rotate3d of 3-D plot	- Interactively rotate view	date vector.		
-		Timing functi	ons.	
Hardcopy and	printing.	cputime	- CPU time in seconds.	
vrml	- Save graphics to VRML 2.0	etime	- Elapsed time.	
file.		pause	- Wait in seconds.	

