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Issues and prospects Issues and prospects 
f  fi t ff  fi t ffor confinement performancefor confinement performance

3



Confinement scalingConfinement scalingConfinement scalingConfinement scaling

τ ITER89P = 0 048M0 5I 0 85B 0 2R1 2a0 3κ0 5n 0 1P-0 5τE
ITER89P = 0.048M0.5Ip

0.85Bt
0.2R1.2a0.3κ0.5n20

0.1P 0.5

τE,th
IPB98(y,2) = 0.0562M0.19Ip

0.93Bt
0.15R1.39a0.58κa

0.78n19
0.41P-0.69

4



Confinement scalingConfinement scalingConfinement scalingConfinement scaling
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LL--H transition threshold powerH transition threshold powerLL H transition threshold powerH transition threshold power
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Improved confinement suitable for the Improved confinement suitable for the 
t dt d t t  tit t  tisteadysteady--state operationstate operation
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Improved confinement suitable for the Improved confinement suitable for the 
t dt d t t  tit t  tisteadysteady--state operationstate operation

Ti = 45keV
Q eq = 1 25i

nτETi = 1.5x1021m-3keVs QDT
eq = 1.25
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Improved confinement suitable for the Improved confinement suitable for the 
t dt d t t  tit t  tisteadysteady--state operationstate operation
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ββ--limit and limit and optimisationoptimisation of the MHD stabilityof the MHD stabilityββ pp yy

Fundamental elements 
for the βN-limit

1. Current profile
2  P  fil2. Pressure profile
3. Plasma shape
4. Stabilising wall
5. Resistive instability
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2. Pressure profile2. Pressure profilepp

Limited by the Kink-ballooning modes 

Pressure profile determined by the a-particle heating 
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Pressure profile determined by the a particle heating 
with higher peakedness in ITER and DEMO



3. Plasma shape3. Plasma shapepp

ITER designed to enable a high δ, 0.35-0.4
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4. 4. StabilisingStabilising wallwallgg

Wall stabilising effect remarkable for RS plasmas
Stabilisation of RWMStabilisation of RWM

- plasma rotation
- corrective magnetic field canceling the perturbed
magnetic field by the instability
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magnetic field by the instability



5. Resistive instabilities5. Resistive instabilities

In quasi-SS discharges, βN is lower than 
the ideal MHD limit due to appearance of
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resistive MHD instabilities (JT-60U)



6. Heat and Particle control using the ELMs6. Heat and Particle control using the ELMsgg

Type II ELMs at high triangularity
and in a high safety factor regime
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Tokamak MHD operation regionTokamak MHD operation regionp gp g
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Confinement of energetic particlesConfinement of energetic particlesg pg p

Heating by energetic particles (alpha particles)
Ripple lossRipple loss
Alfven eigenmodes (AE)

The slowing-down time 
of energetic ions agrees 
well with classical estimate.well with classical estimate.

The diffusion coefficient 
of energetic particles is g p
consistent with the NC 
model.
- orbit averagingg g
- Small TAE due to small βα
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DT burning and burn controlDT burning and burn controlgg

S lf t d Self-generated 
rotation?
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