Space Group

- 32 point groups- symmetry groups of many molecules and of all crystals so long as morphology is considered - space group- symmetry of crystal lattices and crystal structures 14 Bravais lattice centered lattices – new symmetry operations reflection + translation rotation + translation

Space Lattice

- 14 Bravais lattice

· · · · · · · · · · · · · · · · · · ·	Р	С	Ι	F	
Triclinic	PĪ				
Monoclinic	P 2/m	C 2/m			
Orthorhombic	P 2/m 2/m 2/m	C 2/m 2/m 2/m	I 2/m 2/m 2/m	F 2/m 2/m 2/m	
Tetragonal	P 4/m 2/m 2/m		I 4/m 2/m 2/m		
Trigonal	D 6 / 2 / 2 /	R 3 2/m			
Hexagonal	- PO/m 2/m 2/m				
Cubic	P4/m 32/m		I 4/m 3̄ 2/m	F 4/m 3̄ 2/m	

The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a three-dimensional periodic array of points.

결정 패밀리	결정계	결정축계	격자 상수	Bravais 격자
입 방 (cubic)	입 방	입 방	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	P, I, F
육 방	육 방	육 방	$a = b \neq c$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	Р
(hexagonal)	삼 방 (trigonal)	능 면 (rhombohedral)	a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$	R
정 방 (tetragonal)	정 방	정 방	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	P, I
사 방 (orthorhombic)	사 방	사 방	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	P, C(A, B), I, F
단 사	rt al		1. c-unique $a \neq b \neq c$ $\alpha = \beta = 90^{\circ} \neq \gamma$	(P), (A)
(monoclinic)	전사	전사	2. b-unique $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$	P, C
삼 사 (triclinic)	삼 사	삼 사	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Р

표 1.1	결정계, 결정축계, Bravais 격자	

New Symmetry Operations

i) orthorhombic C-lattice

ii) orthorhombic I-lattice

Compound Symmetry Operation

Table 5.1. Compound symmetry operations of simple operations. The corresponding symmetry elements are given in round brackets

	Rotation	Reflection	Inversion	Translation
Rotation	×	Roto- reflection	Roto- inversion	Screw rotation
Reflection	(Roto- reflection axis)	×	2-fold rotation	Glide reflection
Inversion	(Roto- inversion axis)	(2-fold rotation axis)	×	Inversion
Translation	(Screw axis)	(Glide plane)	(Inversion centre)	×

- i) reflection
- ii) translation by the vector \vec{g} parallel to the plane of glide reflection where $|\vec{g}|$ is called glide component

Mirror Plane vs. Glide Plane

 glide plane can occur in an orientation that is possible for a mirror plane

d n-glide at x, y, $\frac{1}{4}$ with glide component $\frac{1}{2}|\vec{a} + \vec{b}|$

 $\frac{1}{2}$ along the line parallel to the projection plane combined with $\frac{1}{2}$ normal to the projection plane

 $\bar{x}_{,\frac{1}{2}+y_{,\frac{1}{2}+z}$ x,y,z

e n-glide at 0, y, z with glide component $\frac{1}{2}|\vec{b} + \vec{c}|$

- rotation
$$\phi = \frac{2\pi}{X} (X=1,2,3,4,6)$$

- translation by a vector \vec{s} parallel to the axis
where $|\vec{s}|$ is called the screw component
 $\vec{s} = \frac{p}{X} |\vec{t}|$ p=0,1,2...,X-1
 $X_p = X_0, X_1, \dots, X_{X-1}$

- 5 plane lattices + 10 plane point groups+glide plane
- criterion: lattice itself must possess at least

the symmetry of the motif

Crystal system	Point groups compatible with crystal system	Lattices in system	Space groups compatible with lattice
Oblique $a \neq b, \gamma \neq 90^{\circ}$	1,2	p (primitive)	p1, p2
Rectangular $a \neq b, \gamma = 90^{\circ}$	1m, 2mm	p (primitive) c (centred)	pm, p2mm, pg, p2mg p2gg cm, c2mm
Square $a = b, \gamma = 90^{\circ}$	4, 4mm	p (primitive)	p4, p4mm, p4gm
Hexagonal $a = b, \gamma = 120^{\circ}$	3, 3m, 6, 6mm	p (primitive)	p3, p31m, p3m1 p6, p6mm

Lattice	Symmetry direction (position in Hermann–Mauguin symbol)			
Lattice	Primary	Secondary	Tertiary	
Two dimensions Oblique				
Rectangular	Rotation	[10]	[01]	
Square	point in plane	{[10] {[01]}	$ \left\{ \begin{bmatrix} 1 \overline{I} \\ 11 \end{bmatrix} \right\} $	
Hexagonal		{[10] {[01] {[1]}	$ \begin{cases} [1\overline{1}] \\ [12] \\ [2\overline{1}] \end{cases} $	

		~ ~ ~	~ ~ ~				
p1	~ ~	~	~ ~	p2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~	~	Š	č.		~ ~ ~~	~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ex	A	~	~	~ ~	~ ~	~ ~	~~
Ř	×	~	Ř				
èx.	in the	i.	in the	www.	8 × ×	84.20	Sec. 20
~	~	~	~	~~~	~~>	~~~	~ >>
\$	Sec.	Sec.	sex.	8x x2	8 x x	Sec. 20	w. w
pm				p2mm			

Origin at 2mm

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}$

Symmetry operations

(1) 1 (2) 2 0,0 (3) m 0,y (4) m x,0

Generators selected (1); t(1,0); t(0,1); (2); (3)

- short international (Hermann-Mauguin) symbol for the plane group
- ② short international (Hermann-Mauguin) symbol for the point group
- ③ crystal system
- ④ sequential number of plane group
- full international (Hermann-Mauguin) symbol for the plane group
- 6 patterson symmetry
- diagram for the symmetry elements and the general position

Generators selected (1); t(1,0); t(0,1); (2); (3)

Positions

Maximal non-isomorphic subgroups

 $I \qquad [2]p 211(p2) \qquad 1;2 \\ [2]p 1m1(pm) \qquad 1;3 \\ [2]p 11m(pm) \qquad 1;4$

IIa none

IIb [2]
$$p 2m g(a'=2a); [2] p 2g m(b'=2b)(p2mg); [2] c 2m m (a'=2a,b'=2b)$$

Maximal isomorphic subgroups of lowest index

IIc [2] p 2mm(a' = 2a or b' = 2b)

Minimal non-isomorphic supergroups

II [2]*c* 2*m m*

Flow Diagram for Identifying Plane Groups

Example I

 P_{3m1}

plate 9

Example II

Space Groups

-Bravais lattice + point group → 230 space groups + screw axis + glide plane

- Bravais lattice + point group= 73
- Bravais lattice + screw axis = 41
- Bravais lattice + glide plane = 116

	I		
Three dimensions Triclinic	None		
Monoclinic*	[010] ('unique axis b') [001] ('unique axis c')		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	{[100]} {[010]}	{[1Ī0] {[110]}
Hexagonal	[001]	$ \begin{cases} [100] \\ [010] \\ [110] \end{cases} $	$ \left\{ \begin{bmatrix} 1 \bar{I} 0 \\ [120] \\ [2 \bar{I} 0] \end{bmatrix} \right\} $
Rhombohedral (hexagonal axes)	[001]	$ \left\{ \begin{matrix} [100] \\ [010] \\ [110] \end{matrix} \right\} $	
Rhombohedral (rhombohedral axes)	[111]	$ \left\{ \begin{matrix} [1\bar{I}0] \\ [01\bar{I}] \\ [\bar{I}01] \end{matrix} \right\} $	
Cubic	([100]) [010] [001]	$ \begin{cases} [111] \\ [1fI] \\ [1fI] \\ [11I] \\ [I11] \\ [I11] \\ \end{bmatrix} $	{[1Ī0] [110]} {[01Ī] [011]} [[Ī01] [101]}

Space Groups-monoclinic

monoclinic system- highest symmetry

$$P\frac{2}{m}, \qquad C\frac{2}{m} \text{ (a-glide at } x, \frac{1}{4}, z, \ x, \frac{3}{4}, z \\ 2_1 \text{ screw axis at } \frac{1}{4}, y, 0, \ \frac{1}{4}, y, \frac{1}{2}, \ \frac{3}{4}, y, 0, \ \frac{3}{4}, y, \frac{1}{2})$$

Space Groups-monoclinic

-13 monoclinic space groups

Point groups	Space groups		
2/m	$\begin{array}{c} P2/m\\ P2_1/m\\ P2/c\\ P2_1/c \end{array}$	C2/m _ ^a C2/c _ ^b	
m	Pm Pc	Cm Cc	
2	P2 P2 ₁	C2 _°	

^a $C2_1/m \equiv C2/m$, ^b $C2_1/c \equiv C2/c$, ^c $C2_1 \equiv C2$

Space Groups-monoclinic

 $P2_1/c$

1.4. Graphical symbols for symmetry e	elements in one, two, and three dimensions
--	--

(a)	Symmetry plan	nes normal to th	e plane of p	rojection (three dimension	s) and symmetry	lines in the p	plane of the
			II	gure (two-	aimensions)			

Symmetry plane or symmetry line	Graphical symbol	Glide vector in units of lattice translation vectors parallel and normal to the projection plane	Printed symbol
Reflection plane, mirror plane Reflection line, mirror line (two dimensions)		None	т
'Axial' glide plane Glide line (two dimensions)		$\frac{1}{2}$ along line parallel to projection plane $\frac{1}{2}$ along line in plane	a,b or c g
'Axial' glide plane 'Diagonal' glide plane		$\frac{1}{2}$ normal to projection plane $\frac{1}{2}$ along line parallel to projection plane, combined with $\frac{1}{2}$ normal to projection plane	a,b or c n
'Diamond' glide plane (pair of planes; in centred cells only)		$\frac{1}{4}$ along line parallel to projection plane, combined with $\frac{1}{4}$ normal to projection plane (arrow indicates direction parallel to the projection plane for which the normal component is positive)	d

Origin on mm2

 $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le 1$ Asymmetric unit

Symmetry operations

(1) 1 (2) 2 0,0,z (3) m = x, 0, z(4) m = 0, y, z

CONTINUED

1 a mm2 0,0,z

Positions

No. 25

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Multiplicity, Wyckoff letter,		С	oordinates		Reflection conditions		
Site	i sym	netry	1) x,y,z	(2) <i>x</i> ̄, <i>y</i> ̄, <i>z</i>	(3) x, \overline{y}, z	(4) \bar{x}, y, z	General: no conditions
							Special: no extra conditions
2	h	<i>m</i>	$\frac{1}{2}$, y, z	$\frac{1}{2}, \overline{y}, z$			С.
2	8	<i>m</i>	0, y, z	$0, \bar{y}, z$			
2	f	. <i>m</i> .	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$			
2	е	. <i>m</i> .	x,0,z	<i>x</i> ,0, <i>z</i>		-	
1	d	m m 1	$2 \frac{1}{2}, \frac{1}{2}, z$				
1	с	m m 1	$\frac{1}{2}, 0, z$				
1	b	mm	2 $0, \frac{1}{2}, z$				

- origin

(i) all centrosymmetric space groups are described with an inversion centers as origin.a second description is given if a space group contains points of high site symmetry that do not coincide with a center of symmetry

(ii) for non-centrosymmetric space groups, the origin is at a point of highest site symmetry.if no site symmetry is higher than 1, the origin is placed on a screw axis or a glide plane, or at the intersection of several such symmetry elements

D¹⁹_{4h} $I 4_1/a m d$

4/*m* m m

Tetragonal

No. 141

 $I 4_1/a 2/m 2/d$

Patterson symmetry I4/mmm

ORIGIN CHOICE 1

Origin at $\bar{4}m2$, at $0, \frac{1}{4}, -\frac{1}{4}$ from centre (2/m)

Origin at centre (2/m) at $b(2/m, 2_1/n)d$, at $0, -\frac{1}{4}, \frac{1}{6}$ from $\frac{3}{4}m^2$

Origin at $\bar{6}m 2$

Asymmetric unit $0 \le x \le \frac{2}{3}$; $0 \le y \le \frac{2}{3}$; $0 \le z \le \frac{1}{2}$; $x \le 2y$; $y \le \min(1-x,2x)$ Vertices0,0,0 $\frac{2}{3},\frac{1}{3},0$ $\frac{1}{3},\frac{2}{3},0$. $0,0,\frac{1}{2}$ $\frac{2}{3},\frac{1}{3},\frac{1}{2}$ $\frac{1}{3},\frac{2}{3},\frac{1}{2}$

ymmetry operations

(1) 1 (2) $2(0,0,\frac{1}{2})$ 0,0,z (3) a = x,0,z (4) $c = \frac{1}{4},y,z$

- Pmm2- for a point x, y, z (general point) symmetry element generates x, y, z; x, y, z; x, y, z x, y, z; x, y, z; x, y, z; x, y, z are equivalent (multiplicity of 4)
- The number of equivalent points in the unit cell is called its multiplicity.
- A general position is a set of equivalent points with point symmetry (site symmetry) 1.

move a point x, y, z on to mirror plane at ¹/₂, y, z
x, y, z and 1-x, y, z coalesce to ¹/₂, y, z
x,1-y, z and 1-x,1-y, z coalesce to ¹/₂,1-y, z
multiplicity of 2
as long as the point remains on the mirror plane, its multiplicity is unchanged- degree of freedom 2
A special position is a set of equivalent points with point symmetry (site symmetry) higher than 1.

Position	Degrees of freedom	Multi- plicity	Site symmetry	Coordinates of equivalent points
general	3	4	1	x,y,z; x̄,ȳ,z; x,ȳ,z; x̄,y,z
		2	m	$\frac{1}{2}$, y, z; $\frac{1}{2}$, \bar{y} , z
		2	m	0, y, z; 0, ÿ, z
	2	2	m	$x, \frac{1}{2}, z; \bar{x}, \frac{1}{2}, z$
special		2	m	x,0,z; x̄,0,z
special		1	mm2	$\frac{1}{2}, \frac{1}{2}, \mathbf{Z}$
	· · · · · · · · · · · · · · · · · · ·	1	mm2	¹ / ₂ , 0, z
	1	1	mm2	$0, \frac{1}{2}, z$
		1	mm2	0, 0, z

Space Groups-multiplicity

- screw axis and glide plane do not alter the multiplicity of a point
- $-Pna2_1$: orthorhombic

n-glide normal to a-axis a-glide normal to b-axis 2₁ screw axis along c-axis

Space Groups-asymmetric unit

-The asymmetric unit of a space group is the smallest part of the unit cell from which the whole cell may be filled by the operation of all the symmetry operations. It volume is given by:

$$V_{\text{asymm.unit}} = \frac{V_{\text{unit cell}}}{\text{multiplicity of general position}}$$

ex) Pmm2- multiplicity of 4, vol. of asymm=1/4 unit cell
$$0 \le x \le \frac{1}{2}, \ 0 \le y \le \frac{1}{2}, \ 0 \le z \le 1$$

-An asymmetric unit contains all the information necessary for the complete descript of a crystal structure.

Space Groups-P6₁

<i>P</i> 6 ₁	C_{6}^{2}	6	Hexagonal
No. 169	<i>P</i> 6 ₁		Patterson symmetry P6/m

Origin on 6_1

Asymmetric unit	$0 \le x \le$	$1; 0 \leq y$	≤1; 0 <u>≤</u>	≤z≤ł
Vertices	0,0,0	1,0,0	1,1,0	0,1,0
	0,0, 	1,0,‡	1,1,‡	0,1, 1

Symmetry operations

(1) 1	0,0, <i>z</i>	(2) $3^+(0,0,\frac{1}{3})$ $0,0,z$	(3) $3^{-}(0,0,\frac{2}{3})$ 0,0,z
(4) $2(0,0,\frac{1}{2})$		(5) $6^-(0,0,\frac{1}{3})$ $0,0,z$	(6) $6^{+}(0,0,\frac{1}{3})$ 0,0,z

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4)

Positions

Multiplicity, Wyckoff letter, Site symmetry			· ,	Coordinates	Reflection conditions	
	-)					General:
6	а	1	(1) x, y, z (4) $\bar{x}, \bar{y}, z + \frac{1}{2}$	(2) $\bar{y}, x-y, z+\frac{1}{3}$ (5) $y, \bar{x}+y, z+\frac{5}{6}$	(3) $\bar{x} + y, \bar{x}, z + \frac{2}{3}$ (6) $x - y, x, z + \frac{1}{6}$	000l : l = 6n

 O^1

Patterson symmetry $Pm \overline{3}m$

Cubic

432

Symmetry axis	Graphical symbol	Screw vector of a right-handed screw rotation in units of the shortest lattice translation vector parallel to the axis	Printed symbol
Twofold rotation axis	← →	None	2
Twofold screw axis: '2 sub 1'	4_ _	$\frac{1}{2}$	2,
Fourfold rotation axis	∮ - − ∮	None	4
Fourfold screw axis: '4 sub 1'	₱ ₱	$\frac{1}{4}$	4 ₁
Fourfold screw axis: '4 sub 2'	J⊢ –J	$\frac{1}{2}$	42
Fourfold screw axis: '4 sub 3'	j⊢ –j	<u>3</u> 4	4 ₃
Inversion axis: '4 bar'		None	4

(e) Symmetry axes parallel to the plane of projection

(f) Symmetry axes inclined to the plane of projection (in cubic space groups only)

Symmetry axis	Graphical symbol	Screw vector of a right-handed screw rotation in units of the shortest lattice translation vector parallel to the axis	Printed symbol
Twofold rotation axis	•-(;	None	2
Twofold screw axis: '2 sub 1'	•-{	$\frac{1}{2}$	2,
Threefold rotation axis	×	None	3
Threefold screw axis: '3 sub 1'	Ж	<u>1</u> 3	31
Threefold screw axis: '3 sub 2'	×	<u>2</u> 3	32
Inversion axis: '3 bar'	X	None	3

Rutile, TiO_2

	A	В					
Lattice	Basis	Space group	Positions of the atoms				
tetragonal P	Ti: 0, 0, 0 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	P 4 ₂ /mnm	a Ti: 0,0,0 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$				
$a_0 = 4.59 \text{ Å}$ $c_0 = 2.96 \text{ Å}$	O: 0.3, 0.3, 0 0.8, 0.2, $\frac{1}{2}$ 0.2, 0.8, $\frac{1}{2}$ 0.7, 0.7, 0	$a_0 = 4.59 \text{ Å}$ $c_0 = 2.96 \text{ Å}$	f O: x,x,0 $\frac{\frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2}}{\frac{1}{2} - x, \frac{1}{2} + x, \frac{1}{2}}$ x=0.3 $\bar{x}, \bar{x}, 0$				

Rutile, TiO₂

P 4₂/*m n m* No. 136

 $P 4_2/m 2_1/n 2/m$

 D^{14}_{4h}

4/*m m m*

Tetragonal

Patterson symmetry P4/mmm

Origin at centre (mmm) at 2/m 12/m

Asymmetric unit $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le \frac{1}{2}$; $x \le y$

Symmetry operations

(1) 1	(2) 2 $0,0,z$	(3) $4^+(0,0,\frac{1}{2})$ $0,\frac{1}{2},z$	(4) $4^{-}(0,0,\frac{1}{2}) = \frac{1}{2},0,z$
(5) $2(0,\frac{1}{2},0)$ $\frac{1}{4},y,\frac{1}{4}$	(6) $2(\frac{1}{2},0,0) x,\frac{1}{4},\frac{1}{4}$	(7) $2 x, x, 0$	(8) $\frac{2}{2}$ x, \bar{x} ,0
(9) 1 0,0,0	(10) m x, y, 0	(11) $\overline{4}^+$ $\frac{1}{2}, 0, z; \frac{1}{2}, 0, \frac{1}{4}$	(12) 4 ⁻ 0, $\frac{1}{2}$,z; 0, $\frac{1}{2}$, $\frac{1}{4}$
(13) $n(\frac{1}{2},0,\frac{1}{2}) x,\frac{1}{2},z$	(14) $n(0,\frac{1}{2},\frac{1}{2}) = \frac{1}{4}, y, z$	(15) $m x, \bar{x}, z$	(16) $m x, x, z$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Coordinates

Positions

16

Multiplicity, Wyckoff letter, Site symmetry

Reflection conditions

						General:
k	1	(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, z + \frac{1}{2}$	(4) $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, z + \frac{1}{2}$	0kl: k+l = 2n
		(5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$	(6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{2}$	(7) y, x, \overline{z}	(8) $\overline{y}, \overline{x}, \overline{z}$	00l: l = 2n
		(9) $\bar{x}, \bar{y}, \bar{z}$	(10) x, y, \overline{z}	(11) $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z} + \frac{1}{2}$	(12) $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, \bar{z} + \frac{1}{2}$	h00: h = 2n
		(13) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$	(14) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	(15) \bar{y}, \bar{x}, z	(16) y, x, z	

Special: as above, plus

8	j	<i>m</i>	x, x, z $\bar{x} + \frac{1}{2}, x + \frac{1}{2}, \bar{z} + \frac{1}{2}$	\bar{x}, \bar{x}, z $x + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z} + \frac{1}{2}$	$\frac{\overline{x}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}}{x,x,\overline{z}}$	$x + \frac{1}{2}, \overline{x} + \frac{1}{2}, z + \frac{1}{2}$ $\overline{x}, \overline{x}, \overline{z}$	no extra conditions
8	i	<i>m</i>	$\begin{array}{ccc} x, y, 0 & \bar{x} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \frac{1}{2} & x \end{array}$	$\bar{y}, 0$ $\bar{y} + \frac{1}{2}, \bar{y} + \frac{1}{2}, \frac{1}{2}$ $y, x, 0$	$x + \frac{1}{2}, \frac{1}{2}$ $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{x}, \bar{x}, 0$	$\frac{1}{2}, \frac{1}{2}$	no extra conditions
8	h	2	$\begin{array}{cccc} 0, \frac{1}{2}, z & 0, \frac{1}{2}, z + \frac{1}{2} \\ 0, \frac{1}{2}, \overline{z} & 0, \frac{1}{2}, \overline{z} + \frac{1}{2} \end{array}$	$\frac{\frac{1}{2},0,\overline{z}+\frac{1}{2}}{\frac{1}{2},0,z+\frac{1}{2}}$	D, <i>ī</i> D, <i>z</i>		hkl: h+k, l=2n
4	8	<i>m</i> .2 <i>m</i>	$x, \overline{x}, 0$ $\overline{x}, x, 0$	$x + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2}$ \bar{x}	$+\frac{1}{2}, \bar{x}+\frac{1}{2}, \frac{1}{2}$		no extra conditions
4	f	<i>m</i> .2 <i>m</i>	$x, x, 0$ $\overline{x}, \overline{x}, 0$	$\bar{x} + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2}$ x	$+\frac{1}{2}, \bar{x}+\frac{1}{2}, \frac{1}{2}$		no extra conditions
4	е	2. <i>m</i> m	$0,0,z$ $\frac{1}{2},\frac{1}{2},z+\frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \overline{z} + \frac{1}{2} = 0, 0$), <i>ī</i>		hkl: h+k+l=2n
4	d	4	$0,\frac{1}{2},\frac{1}{4}$ $0,\frac{1}{2},\frac{3}{4}$	$\frac{1}{2}, 0, \frac{1}{4}$ $\frac{1}{2}, 0, \frac{3}{4}$			hkl: h+k, l=2n
4	с	2/m	$0,\frac{1}{2},0$ $0,\frac{1}{2},\frac{1}{2}$	$\frac{1}{2},0,\frac{1}{2}$ $\frac{1}{2},0,0$			hkl: h+k, l=2n
2	b	<i>m</i> . <i>m m</i>	$0,0,\frac{1}{2}$ $\frac{1}{2},\frac{1}{2},0$				hkl: h+k+l=2n
2	а	<i>m</i> . <i>m m</i>	$0,0,0$ $\frac{1}{2},\frac{1}{2},\frac{1}{2}$				hkl: h+k+l=2n

Perovskite, CaTiO₃

- Ca-corner O- face centered Ti- body centered - high temperature - cubic Pm3m (No.221) Ca: 1a, m3m, 0, 0, 0*Ti*: 1b, $m\bar{3}m$, $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ O: 3c, 4/mmm, $0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}$

- Ti- 60 O- 4Ca+ 2Ti Ca- 120

Perovskite _{CaTiO3}

CaO₁₂ cuboctahedra

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25)

Pos	sitio	ns									
Mult Wyc Site	iplicit koff l symm	y, letter, etrv		Co	ordinates				Reflection	n conditions	5
48	n	$\begin{array}{c} 1 & (1) x \\ (5) z \\ (9) y \\ (13) y \\ (21) z \\ (25) \overline{x} \\ (22) \overline{z} \\ (33) \overline{y} \\ (37) \overline{y} \\ (41) \overline{x} \\ (45) \overline{z} \end{array}$, y, z , x, y , z, x , z, z , y, z , z, z , y, z , z , z , z , z , y , y , z , x	$\begin{array}{c} (2) \ \bar{x}, \bar{y}, \\ (6) \ z, \bar{x}, \\ (10) \ \bar{y}, z, \\ (14) \ \bar{y}, \bar{x}, \\ (18) \ \bar{x}, z, \\ (22) \ z, \bar{y}, \\ (22) \ z, \bar{y}, \\ (26) \ \bar{x}, y, \\ (30) \ \bar{z}, x, \\ (30) \ \bar{z}, x, \\ (30) \ \bar{z}, x, \\ (38) \ y, x, \\ (42) \ x, \bar{z}, \\ (46) \ \bar{z}, y, \\ \end{array}$	z (3 v (7 r (11 z (15 v (23) r (23) r (27) v (31) x (35) z (39) v (43) r (43) r (47)) \$\vec{x}, y, \vec{z}) \$\vec{z}, \vec{x}, y) y, \vec{z}, \vec{x}) \$\vec{x}, \vec{z}, \vec{y}) \$\vec{z}, \vec{x}, \vec{y}) \$\vec{y}, \vec{z}, \vec{z}, \vec{y}) \$\vec{z}, \vec{y}, \vec{x}, \vec{y}) \$\vec{z}, \vec{y}, \vec{x}, \vec{x}, \vec{y}) \$\vec{z}, \vec{y}, \vec{x}, \vec{x}, \vec{y}) \$\vec{z}, \vec{y}, \vec{x}, \	(4) x (8) ž (12) y (16) y (20) x (22) z (32) z (36) y (40) y (44) x (48) z	, y, z , , , y , z, x , x, z , z, y , y, z , x , y, z , x , y , z, x , z , y , y, x	<i>h,k,l</i> pern General: no condit	nutable ions	
24	m	m	r r 7	₹₹ 7	.	r 7 7	7 Y Y	7 7 7	Special:	no extra co	nditions
21			$\overline{z}, \overline{x}, \overline{x}$ x, x, \overline{z} $\overline{x}, \overline{z}, \overline{x}$	z, x, z z, x, x x, x, z x, z, x	x, x, z x, z, x x, x, z z, x, x	\bar{x}, x, z \bar{x}, z, \bar{x} \bar{x}, x, z z, \bar{x}, x	$\begin{array}{c} z, x, x \\ x, \overline{z}, \overline{x} \\ x, z, \overline{x} \\ \overline{z}, x, x \end{array}$	2, x, x X, Z, x X, 2, x Z, X, X			
24	1	<i>m</i>	$\frac{1}{2}, y, z$ $\bar{z}, \frac{1}{2}, y$ $y, \frac{1}{2}, \bar{z}$ $\frac{1}{2}, \bar{z}, \bar{y}$	$\frac{\frac{1}{2}, \overline{y}, z}{\overline{z}, \frac{1}{2}, \overline{y}}$ $\frac{\overline{y}, \frac{1}{2}, \overline{z}}{\frac{1}{2}, \overline{z}, y}$	$\frac{1}{2}, y, \overline{z}$ $y, z, \frac{1}{2}$ $y, \frac{1}{2}, z$ $z, y, \frac{1}{2}$	$\frac{1}{2}, \bar{y}, \bar{z}$ $\bar{y}, z, \frac{1}{2}$ $\bar{y}, \frac{1}{2}, z$ $z, \bar{y}, \frac{1}{2}$	$z, \frac{1}{2}, y y, \overline{z}, \frac{1}{2} \frac{1}{2}, z, \overline{y} \overline{z}, y, \frac{1}{2}$	$z, \frac{1}{2}, \overline{y} \\ \overline{y}, \overline{z}, \frac{1}{2} \\ \frac{1}{2}, z, y \\ \overline{z}, \overline{y}, \frac{1}{2}$			
24	k	<i>m</i>	0, y, z	$\begin{array}{c} 0, \bar{y}, z \\ \bar{z}, 0, \bar{y} \\ \bar{y}, 0, \bar{z} \\ 0, \bar{z}, y \end{array}$	0, y, z y, z, 0 y, 0, z z, y, 0	$\begin{array}{c} 0, \bar{y}, \bar{z} \\ \bar{y}, z, 0 \\ \bar{y}, 0, z \\ z, \bar{y}, 0 \end{array}$	z,0,y y,ž,0 0,z,ÿ ž,y,0	z,0,ÿ ÿ,z,0 0,z,y z,ÿ,0	3	d	4,
12	j	<i>m</i> . <i>m</i> 2	$\frac{1}{2}, y, y$ $\overline{y}, \frac{1}{2}, y$	$\frac{1}{2}, \overline{y}, y$ $\overline{y}, \frac{1}{2}, \overline{y}$	$\frac{1}{2}$, y, \overline{y} y, y, $\frac{1}{2}$	$\frac{1}{2}, \overline{y}, \overline{y}$ $\overline{y}, y, \frac{1}{2}$	y, ½, y y, ÿ, ½	$y, \frac{1}{2}, \overline{y}$ $\overline{y}, \overline{y}, \frac{1}{2}$	•		
12	i	<i>m</i> . <i>m</i> 2	0,y,y ÿ,0,y	$\begin{array}{c} 0, ar{y}, y \\ ar{y}, 0, ar{y} \end{array}$	0, y, y y, y, 0	0, ÿ, ÿ ÿ, y,0	y,0,y y, ÿ ,0	y,0,ỹ ỹ,ỹ,0	3	С	4,
12	h	<i>m m</i> 2	$x, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$	$\frac{\bar{x}, \frac{1}{2}, 0}{\frac{1}{2}, \bar{x}, 0}$	$0, x, \frac{1}{2}$ $x, 0, \frac{1}{2}$	$0, \vec{x}, \frac{1}{2}$ $\vec{x}, 0, \frac{1}{2}$	$\frac{1}{2},0,x$ $0,\frac{1}{2},\bar{x}$	$\frac{1}{2}, 0, \bar{x}$ $0, \frac{1}{2}, x$	1	1	
. 8	8	. 3 <i>m</i>	x,x,x x,x,x	$ar{x},ar{x},x$ $ar{x},ar{x},ar{x}$	<i>xី</i> , <i>x</i> , <i>x</i> <i>x</i> , <i>x</i> , <i>x</i>	x, x, x x, x, x			1	D	m
6	f	4 <i>m</i> . <i>m</i>	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, x$	$\frac{1}{2}, \frac{1}{2}, \vec{x}$			
6	е	4 <i>m</i> . <i>m</i>	x,0,0	<i>x</i> ,0,0	0,x,0	0, x ,0	0,0, <i>x</i>	0,0, <i>x</i>	1	a	m
3	d	4/ <i>m</i> m .m	±,0,0	0, 1 ,0	0,0, 1						
3	с	4/ <i>m</i> m .m	$0, \frac{1}{2}, \frac{1}{2}$	1,0,1	$\frac{1}{2}, \frac{1}{2}, 0$						
1	b	m3m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$								
1	а	m 3m	0,0,0								
Syn	nme	try of speci	al proje	ctions							
Alo: a'=	ng [= <i>a</i>	$\begin{array}{c} 001] p \ 4m \\ b' = b \end{array}$	т	A a	long [11 '= \ (2 a -	1] p6m b-c)	$m = \frac{1}{b'} = \frac{1}{b'} (-a)$	a+2 b c)	Along $a' = \frac{1}{2}(-$	[110] p2n (a+h) h	nm

3	d	4/ <i>m</i> m .m	$\frac{1}{2},0,0$	$0, \frac{1}{2}, 0$	$0,0,\frac{1}{2}$
3	С	4/ <i>m</i> m .m	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$
1	b	тĪт	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		
1	а	тĪт	0,0,0		

Origin at 0,0,z

 $a' = \frac{1}{2}(2a-b-c)$ $b' = \frac{1}{2}(-a+2b-c)$ Origin at x,x,x

m $a' = \frac{1}{2}(-a+b)$ b' = cOrigin at x,x,0

Diamond, C $F \frac{4_1}{d} \bar{\mathfrak{z}} \frac{2}{m}$ (No.227)

 $Fd\bar{3}m$

 O_h^7 $F 4_1/d \,\overline{3} \, 2/m$

m 3 m

Cubic

No. 227

Patterson symmetry $Fm \bar{3}m$

origin choice 1

Origin at $\overline{4}3m$, at $-\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{1}{4}$ from centre $(\overline{3}m)$

Asymmetric unit $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $-\frac{1}{2} \le z \le \frac{1}{2}$; $y \le \min(\frac{1}{2}-x,x)$; $-y \le z \le y$ Vertices 0,0,0 $\frac{1}{2},0,0$ $\frac{3}{5},\frac{1}{5},\frac{1}{5}$ $\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{3}{5},\frac{1}{5},-\frac{1}{5}$ $\frac{1}{5},\frac{1}{5},-\frac{1}{5}$

Symmetry operations (given on page 689)

No. 227

Fd3m

Posit	ion	5								
Multipi Wycko	licity.	, iter.			С	oordinat	es			Reflection conditions
Site sy	mme	try		(0,0,0)+	(0, 1	, 1)+	$(\frac{1}{2},0,\frac{1}{2})+$	$(\frac{1}{2},\frac{1}{2},0)+$		<i>h,k,l</i> permutable General:
192	i	1	(1) (5) (9) (13) (17)	x, y, z z, x, y y, z, x $y + \frac{3}{4}, x + \frac{1}{4}, \overline{z}$ $x + \frac{3}{4}, z + \frac{1}{4}, \overline{y}$	(1) (1)	(2) $\bar{x}, \bar{y} + \bar{z},$ (6) $z + \frac{1}{2},$ (0) $\bar{y} + \frac{1}{2},$ (4) $\bar{y} + \frac{1}{4},$ (8) $\bar{x} + \frac{3}{4},$	$\frac{1}{2}, z + \frac{1}{2}$ $\overline{x}, \overline{y} + \frac{1}{2}$ $z + \frac{1}{2}, \overline{x}$ $\overline{x} + \frac{1}{4}, \overline{z} + \frac{1}{4}$ $z + \frac{3}{4}, y + \frac{1}{4}$	(3) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (7) $\bar{z}, \bar{x} + \frac{1}{2}, y + \frac{1}{2}$ (11) $y + \frac{1}{2}, \bar{z}, \bar{x} + \frac{1}{2}$ (15) $y + \frac{1}{4}, \bar{x} + \frac{1}{4}, z + \frac{1}{4}$ (19) $\bar{x} + \frac{1}{4}, \bar{z} + \frac{1}{4}, \bar{y} + \frac{1}{4}$	(4) $x + \frac{1}{2}, \overline{y}, \overline{z} + \frac{1}{2}$ (8) $\overline{z} + \frac{1}{2}, x + \frac{1}{2}, \overline{y}$ (12) $\overline{y}, \overline{z} + \frac{1}{2}, x + \frac{1}{2}$ (16) $\overline{y} + \frac{3}{4}, x + \frac{3}{4}, \overline{z}$ (20) $x + \frac{1}{4}, \overline{z} + \frac{3}{4}, \overline{y}$	hkl: h+k=2n and h+l, k+l=2n $0kl: k+l=4n and k+l = 2n$ $k+l = k, l = 2n$ $hhl: h+l = 2n$
			(21) (25) (29) (33) (37) (41) (45)	$z + \frac{1}{4}, y + \frac{1}{4}, x$ $\overline{x} + \frac{1}{4}, \overline{y} + \frac{1}{4}, \overline{z}$ $\overline{z} + \frac{1}{4}, \overline{x} + \frac{1}{4}, \overline{y}$ $\overline{y} + \frac{1}{4}, \overline{z} + \frac{1}{4}, \overline{x}$ $\overline{y} + \frac{1}{2}, \overline{z}, z + \frac{1}{2}$ $\overline{x} + \frac{1}{2}, \overline{y}, x + \frac{1}{2}$	+1 (2 +1 (2 +1 (3) +1 (3) (4 (4) (4)	(2) $z + \frac{1}{4}$, (6) $x + \frac{1}{4}$, (7) $\overline{z} + \frac{3}{4}$, (8) y, x, z , (8) y, x, z , (2) $x + \frac{1}{2}$, (6) $\overline{z}, y + \frac{1}{2}$,	$y + \frac{1}{4}, x + \frac{1}{4}$ $y + \frac{1}{4}, \overline{z} + \frac{1}{4}$ $x + \frac{1}{4}, y + \frac{1}{4}$ $\overline{z} + \frac{1}{4}, x + \frac{1}{4}$ $\overline{z} + \frac{1}{2}, \overline{y}$ $\frac{1}{2}, \overline{x} + \frac{1}{2}$	$\begin{array}{c} (23) \ \vec{z} + \vec{z}, y + \vec{z}, x + \vec{z} \\ (27) \ x + \vec{z}, \overline{y} + \vec{z}, z + \vec{z} \\ (31) \ z + \vec{z}, x + \vec{z}, \overline{y} + \vec{z} \\ (35) \ \overline{y} + \vec{z}, z + \vec{z}, x + \vec{z} \\ (39) \ \overline{y}, x + \vec{z}, \overline{z} + \vec{z} \\ (43) \ x, z, y \\ (47) \ z + \vec{z}, \overline{y} + \vec{z}, \vec{x} \end{array}$	$\begin{array}{c} (24) \ z+i, y+i, x\\ (28) \ \bar{x}+\frac{1}{2}, y+\frac{1}{2}, z\\ (32) \ z+\frac{1}{2}, \bar{x}+\frac{1}{2}, y\\ (36) \ y+\frac{1}{2}, z+\frac{1}{2}, \bar{x}\\ (40) \ y+\frac{1}{2}, \bar{x}+\frac{1}{2}, \bar{y}+\frac{1}{2}\\ (44) \ \bar{x}, z+\frac{1}{2}, \bar{y}+\frac{1}{2}\\ (48) \ z, y, x \end{array}$	$h_{1}^{+1} = h_{1}^{+1}$
									SI	oecial: as above, plus
96	h	2		$ \frac{1}{2}, y, \overline{y} + \frac{1}{4}, y, \overline{y} + \frac{1}{4}, y, \overline{y} + \frac{1}{4}, \frac{1}{4}, y, \overline{y} + \frac{1}{4}, \frac{1}{4}, \overline{y} + \frac{1}{4}, \overline{y}, \overline{y} + \frac{1}{4}, \overline{y}, \frac{1}{4}, \overline{y}, \frac{1}{4}, \overline{y}, \frac{1}{4}, \overline{y}, \frac{1}{4}, \overline{y}, \frac{1}{4} $	$ \frac{1}{8}, \overline{y} + \frac{1}{2}, \overline{y} + \frac{1}{4}, \\ \overline{y} + \frac{1}{2}, \\ \frac{1}{8}, y + \frac{1}{2}, \\ y + \frac{1}{2}, \\ y + \frac{1}{4}, \\ y + \frac{1}{4}, \\ $	$\frac{1}{2}, \overline{y} + \frac{3}{4}, \overline{y} + \frac{3}{4}, \overline{y} + \frac{3}{4}, \frac{7}{8}, \overline{y} + \frac{3}{4}, \frac{7}{8}, \frac{3}{8}, y + \frac{3}{4}, \frac{3}{8}, y + \frac{3}{4}, \frac{3}{8}, \frac{3}{4}, \frac$	$ \frac{3}{6}, y + \frac{1}{2}, y y + \frac{3}{4}, \frac{3}{6}, y y + \frac{1}{2}, y + \frac{3}{4}, \frac{7}{9}, \frac{7}{9} + \frac{3}{2}, \frac{7}{9} \\ \frac{7}{9} + \frac{1}{2}, \frac{7}{6}, \frac{7}{9} \\ \frac{7}{9} + \frac{3}{4}, \frac{7}{9} + \frac{7}{4}, \frac{7}{4} + \frac{7}{4}, \frac{7}{4} + \frac{7}{4}, \frac{7}{4} + \frac{7}{4}, \frac{7}{4} $	$\begin{array}{cccc} +\frac{3}{8}, \overline{y}, y+\frac{1}{2} \\ +\frac{1}{2} & y+\frac{1}{2}, \frac{3}{8}, \overline{y} \\ +\frac{1}{2} & \overline{y}, y+\frac{1}{2}, \frac{3}{8} \\ +\frac{1}{2} & \frac{3}{8}, y+\frac{1}{2}, \frac{3}{8} \\ +\frac{1}{2} & \overline{y}, \frac{3}{8}, y+\frac{1}{2} \\ +\frac{1}{8} & y+\frac{1}{2}, \overline{y}, \frac{3}{8} \end{array}$	nc	extra conditions
96	8	m		$ x,x,z z,x,x x,z,x x+\frac{3}{4},x+\frac{1}{4},z x+\frac{3}{4},z+\frac{1}{4},3 z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1}{4},x+\frac{1}{4},3 \\ z+\frac{3}{4},x+\frac{1},x+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4},x$	Z + 2 Z + 2 Z + 2 Z + 2	$ \bar{x}, \bar{x} + \frac{1}{2}, z + \frac{1}{2}, \bar{x}, z + \frac{1}{2}, \bar{z} + \frac{1}{2}, z + \frac{1}{2$	$z + \frac{1}{2}$ $\overline{x} + \frac{1}{2}$ $\cdot \frac{1}{2}, \overline{x}$ $\cdot \frac{1}{4}, \overline{z} + \frac{1}{4}$ $\cdot \frac{1}{4}, x + \frac{1}{4}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\frac{1}{2}, \overline{x}, \overline{z} + \frac{1}{2}}{\frac{1}{2}, x + \frac{1}{2}, \overline{x}} $ nc $\frac{1}{2}, x + \frac{1}{2}, \overline{x}$ $\frac{1}{2}, x + \frac{1}{2}, \overline{x} + \frac{1}{2}$ $\frac{1}{4}, x + \frac{3}{4}, z + \frac{1}{4}, \overline{x} + \frac{1}{4}$	extra conditions
48	f	2. <i>m</i>	m	x,0,0 ¹ ,x+1,1	$ \vec{x}, \frac{1}{2}, \frac{1}{2} $ $ \frac{1}{4}, \vec{x} + $	0, 1,1 x	,x,0 + 1 , 1 , 1	$\frac{\frac{1}{2}, \bar{x}, \frac{1}{2}}{\bar{x} + \frac{3}{4}, \frac{3}{4}, \frac{1}{4}} = \frac{0, 0, x}{\frac{3}{4}, \frac{1}{4}, \bar{x} + \frac{3}{4}}$	$\frac{1}{2}, \frac{1}{2}, \overline{x}$ hk $\frac{1}{4}, \frac{3}{4}, x + \frac{3}{4}$	l: h = 2n+1 or h+k+l = 4n
32	е	. 3 <i>m</i>		$x, x, x \bar{x} + \frac{1}{2}, x + \frac{1}{2}, z x + \frac{3}{4}, x + \frac{1}{4}, z x + \frac{1}{4}, \bar{x} + \frac{3}{4}, z $	₹ ₹+ <u>₹</u> x+₹	$\vec{x}, \vec{x} + \frac{1}{2}, \vec{x}, x + \frac{1}{2}, \vec{x}, \vec{x}, \vec{x} + \frac{1}{4}, \vec{x} + \vec{x}, \vec{x} + \vec{x} + \frac{1}{4}, x + \vec{x}, x + \vec{x},$	$x + \frac{1}{2} \\ \bar{x} + \frac{1}{2} \\ -\frac{1}{4}, \bar{x} + \frac{1}{4} \\ +\frac{1}{4}, x + \frac{1}{4} $		nc	extra conditions
16	d	. 3 <i>m</i>	!	i,i,i i,	7, 1	7,1,7	ŧ,ŧ,Ţ		hk	l: h = 2n+1 or $h \neq l = 4n+2$
16	с	. 3 m	!	1 , 1, 1, 1, 7,	ł, ł	1,1,7	ŧ,₹,₹∮			or $h, k, l = 4n$
8	b	ā 3 n	n	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{4}, \frac{1}{4}, $	ł,ł (hl	d: h = 2n+1
8	а	ā 3 n	n	0,0,0 1,	.ŧ,ŧ\$					or $h+k+l=4n$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(0,\frac{1}{2})$; $t(\frac{1}{2},0,\frac{1}{2})$; (2); (3); (5); (13); (25)

Symmetry of special projections

Along [001] p 4m m	Along [111] p 6m m	Along [110] c 2m m
$a' = \frac{1}{4}(a-b)$ $b' = \frac{1}{4}(a+b)$	$\mathbf{a}' = \frac{1}{6}(2\mathbf{a}-\mathbf{b}-\mathbf{c})$ $\mathbf{b}' = \frac{1}{6}(-\mathbf{a}+2\mathbf{b}-\mathbf{c})$	$a' = \frac{1}{2}(-a+b) \qquad b' = c$
Origin at 0,0,z	Origin at x,x,x	Origin at x,x, t

Zinc Blende, ZnS

Zinc Blende, ZnS

-diamond derivative structure
-Zn and S replace the C atoms
-Zn cubic close packing
S ½ tetrahedral site
-Zn and S cubic close packing displaced by 1/4, 1/4, 1/4
-Space group

 $F\overline{4}3m$ (No.216) Zn: 4a, $\overline{4}3m$, 0,0,0 Zn: 4c, $\overline{4}3m$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$

Zinc Blende, ZnS

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(0,\frac{1}{2},\frac{1}{2})$; $t(\frac{1}{2},0,\frac{1}{2})$; (2); (3); (5); (13)

Positions

Multiplicity, Wyckoff letter, Site symmetry		y, letter	Coordinates						Reflection conditions
		letry	(0,0,0)+	$(0, \frac{1}{2}, \frac{1}{2}) +$		$(\frac{1}{2},0,\frac{1}{2})$ +	$(\frac{1}{2},\frac{1}{2},0)+$		<i>h,k,l</i> permutable General:
96	i	1 (1) (5) (13) (17) (21)) x,y,z) z,x,y) y,z,x) y,z,z) y,x,z) x,z,y) z,y,x	(2) \bar{x} (6) z , (10) \bar{y} , (14) \bar{y} , (18) \bar{x} , (22) z ,	, ÿ, z , ẍ, ÿ , z , ẍ , ẍ, z , ẍ, z , ÿ , ẍ	(3) \bar{x}, y, \bar{z} (7) \bar{z}, \bar{x}, y (11) y, \bar{z}, \bar{x} (15) y, \bar{x}, \bar{z} (19) \bar{x}, \bar{z}, y (23) \bar{z}, y, \bar{x}	(4 (8 (12 (16 (20 (24	$\begin{array}{l} 4) \ x, \bar{y}, \bar{z} \\ 3) \ \bar{z}, x, \bar{y} \\ 2) \ \bar{y}, \bar{z}, x \\ 5) \ \bar{y}, x, \bar{z} \\ 1) \ x, \bar{z}, \bar{y} \\ 4) \ \bar{z}, \bar{y}, x \end{array}$	hkl: h+k, h+l, k+l = 2n 0kl: k, l = 2n hhl: h+l = 2n h00: h = 2n
									Special: no extra conditions
48	h	<i>m</i>	x,x,z z̄,x̄,x	$ar{x},ar{x},z$ $ar{z},x,ar{x}$	\bar{x}, x, \bar{z} x, z, x	$x, \overline{x}, \overline{z}$ $\overline{x}, z, \overline{x}$	z, x, x $x, \overline{z}, \overline{x}$	$z, \overline{x}, \overline{x}$ $\overline{x}, \overline{z}, x$	
24	g	2. <i>m</i> m	$x, \frac{1}{4}, \frac{1}{4}$	x, 1 , 1	$\frac{1}{4}, x, \frac{1}{4}$	$\frac{1}{4}, \overline{x}, \frac{3}{4}$	$\frac{1}{4}, \frac{1}{4}, x$	$\frac{3}{4}, \frac{1}{4}, \overline{x}$	
24	f	2 . <i>m</i> m	x,0,0	x ,0,0	0,x,0	0, x ,0	0,0, <i>x</i>	0,0, <i>x</i>	
16	е	. 3 <i>m</i>	<i>x</i> , <i>x</i> , <i>x</i>	\bar{x}, \bar{x}, x	\bar{x}, x, \bar{x}	$x, \overline{x}, \overline{x}$			
4	d	ā 3m	1 ,1,1						
4	с	4 3 <i>m</i>	±,±,±						
4	b	ā 3 <i>m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$						
4	а	ā 3 <i>m</i>	0,0,0						