Diffraction

- interaction of waves with obstacles

infinite plane wave with wave vector \vec{k} and frequency w $\psi = e^{i(\vec{k}\cdot\vec{r}-wt)}$

obstacle- perturb the wave motion in some way -scattering- wave-obstacle interaction such that the dimensions of obstacles and wavelength are comparable diffraction- wave-obstacle interaction such that the dimensions of obstacles are much larger than the wavelength of the wave motion

Diffraction of X-rays

atom (~1nm) scattering-microscopic

Diffraction of Water Waves

- ripple tank
 rule-periodic dipping
 → plane water wave
- transparent base-light
 → shadow on the screen
 synchronize light with wave motion- frozen in
 → stroboscopic ripple tank

Diffraction of Water Waves

- obstacle- plane wave \rightarrow curved wave

Diffraction of Water Waves

 when slit width is wide compared to the wavelength of the wave motion, the diffraction effects are masked

Diffraction and Information

- plane wave → obstacle → semi-circular diffracted wave contains additional information about obstacle

- When a wave interacts with an obstacle, diffraction occurs. The detailed behavior depends solely on the diffracting obstacles, and so the diffracted waves may be regarded as containing information on the structure of the obstacles.

Diffraction of Light

Poisson's Bright Spot

Diffraction of X-rays

* liquid- diffuse and imprecise

-assumption-structure and all physical properties of the diffracting obstacle are known. (diffraction pattern-recipe)
-plane electromagnetic waves of a single frequency *W* and wavelength λ are incident normally on the obstacle.

(a) frequency and wavelength

(a) frequency and wavelength

- in any medium, velocity of electromagnetic radiation is constant \rightarrow wavelength λ is also unchanged
- * diffracted waves have the same frequency and wavelength as the incident waves.
- * electrons in the molecules are not really free

X-ray: $\lambda = 0.1 \text{ nm}, w = 10^{19} \text{ Hz}$

orbital motion of an electron: $w = 10^{16}$ Hz

* during one cycle of the X-radiation, the electron has hardly changed its position relative to the nucleus→ electron forget the presence of nucleus → electrons behave as if it were free

(b) spatial consideration

frequency and wavelength unchanged some other effect

plane wave → spatially different wave
* information of the wave is somehow contained in the
way in which they are spread out in space.

(c) significance of the wave vector \vec{k}

$$\psi = \psi_{o} e^{i(\vec{k}\cdot\vec{r}-wt)}$$

magnitude:
$$k = \left| \vec{k} \right| = \frac{2\pi}{\lambda}$$

direction: normal to the advancing wavefront

- $\vec{k} \rightarrow$ spatial information
- * total set of diffracted waves may be represented by a set of wave vectors all of which have the same magnitude, equal to that of incident wave, but different directions

(d) mathematical description

- assumption- structure and physical properties known
- phenomenon- (1) waves are propagated through obstacle(2) obstacle perturb these waves
- arbitrary origin, position vector \vec{r} ,

infinitesimal volume element centered on \vec{r} by $d\vec{r}$

- volume element $d\vec{r_1}$ centered on $\vec{r_1} \rightarrow e^{i(\vec{k} \cdot \vec{r_1} - wt)}$ perturbing effect $f(\vec{r_1})d\vec{r_1}$

- two different way of combining $e^{i(\vec{k}\cdot\vec{r_1}-wt)}$ and $f(\vec{r_1})d\vec{r_1}$ diffracted wave from volume element $d\vec{r_1}$

$$-f(\vec{r_1})d\vec{r_1} + e^{i(\vec{k}\cdot\vec{r_1}-wt)} \quad \text{or} \\ -f(\vec{r_1})e^{i(\vec{k}\cdot\vec{r_1}-wt)}d\vec{r_1}$$

- consider a perfectly absorbing obstacle $\rightarrow f(\vec{r}) = 0$ no diffracted wave \rightarrow second equation is correct
- wave diffracted from volume element $\vec{dr_1} = f(\vec{r_1})e^{i(\vec{k}\cdot\vec{r_1}-wt)}d\vec{r_1}$
- wave diffracted from volume element $d\vec{r}_2 = f(\vec{r}_2)e^{i(\vec{k}\cdot\vec{r_2}-wt)}d\vec{r_1}$

- Principle of superposition

diffraction pattern = $f(\vec{r}_1)e^{i(\vec{k}\cdot\vec{r_1}-wt)}d\vec{r_1} + f(\vec{r}_2)e^{i(\vec{k}\cdot\vec{r_2}-wt)}d\vec{r_1}$

$$f(\vec{r}_{3})e^{i(\vec{k}\cdot\vec{r}_{3}-wt)}d\vec{r}_{3} + \bullet \bullet$$

$$= \int_{V} f(\vec{r})e^{i(\vec{k}\cdot\vec{r}-wt)}d\vec{r}$$

$$= e^{-iwt}\int_{V} f(\vec{r})e^{i\vec{k}\cdot\vec{r}}d\vec{r}$$

- X-ray: $\lambda \sim 0.1$ nm, $w \sim 10^{19}$ Hz, one cycle $\vec{E} \sim 10^{-19}$ sec
- no recording device is available
- diffraction experiment- time average of the intensity of the diffracted wave

- diffraction pattern = $\int_{V} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$
- limits on the integral

 $f(\vec{r})$: finite \rightarrow mathematically not well behaved define $f(\vec{r})$ over an infinite range dividing the values into two domains

diffraction pattern = $\int_{\text{all } \vec{r}} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$ (Fourier trnasform of $f(\vec{r})$)

 $f(\vec{r})$: amplitude function

- diffraction pattern of any obstacle is the Fourier transform of the amplitude function

Significance of Fourier Transform

- diffraction pattern =
$$\int_{\text{all } \vec{r}} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$$

1. integrand - function of \vec{k} and \vec{r} , integration - over \vec{r}
diffraction pattern $\rightarrow F(\vec{k})$
information in the diffraction pattern-spatial $\leftarrow \vec{k}$
2. $e^{i\vec{k}\cdot\vec{r}}$: wave, $f(\vec{r})$: amplitude type function
passive scatterer \rightarrow replaced by active source \rightarrow identical

Source corresponding to volume element $d\mathbf{r}_1$

Fourier Transform and Shape

- a linear array of scattering center in an obstacle
- phase at point 0=0

phase at point
$$1 = \frac{2\pi}{\lambda} \overline{OA}(=r_1 \cos \theta) = \vec{k} \cdot \vec{r_1}$$

- total scattered wave= $f(\vec{r_0})d\vec{r_0} + f(\vec{r_1})e^{i\vec{k}\cdot\vec{r_1}}d\vec{r_1} + f(\vec{r_2})e^{i\vec{k}\cdot\vec{r_2}}d\vec{r_2} + \cdots$

$$= \int_{obstacle} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$$

exponential term-specifiy
 phase relationship between
 scattering centers and an
 arbitrary origin

Fourier Transform and Information

Fourier Transform and Information

- diffraction pattern in terms of Fourier transform

(i) the description is, sa required, a function of k
(ii) the description agrees with our physical knowledge of the interaction of wave with obstacles
(iii) the description represents a general solution of three-dimensional wave equation
(iv) the description is capable of containing the required information

Inverse Transform

- diffraction pattern $F(\vec{k})$

$$F(\vec{k}) = \int_{\text{all } \vec{r}} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$$

 $F(\vec{k})$ is Fourier transform of $f(\vec{r})$

- inverse transform

$$f(\vec{r}) = \int_{\text{all } \vec{k}} F(\vec{k}) e^{-i\vec{k}\cdot\vec{r}} d\vec{k}$$

- $F(\vec{k})$: diffraction pattern function- information on spatial distribution of diffraction pattern
 - $f(\vec{r})$: information on the structure of obstacle
- diffraction experiment \rightarrow intensity $\propto \left| F(\vec{k}) \right|^2 \rightarrow F(\vec{k}) \rightarrow f(\vec{r})$

Experimental Limitation

- diffraction pattern $F(\vec{k})$

$$F(\vec{k}) = \int_{\text{all } \vec{r}} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\vec{r}$$

- information contained in all space
 physically impossible to scan all space to collect
 some information lost
- phase problem

measure only the intensity not the complex amplitude

of diffraction pattern

$$F(\vec{k}) = \left| F(\vec{k}) \right| e^{i\delta}$$

observe $\left| F(\vec{k}) \right|^2 \rightarrow \text{lost information on } \delta$