Ch. 5. EM Optics

Byoungho Lee School of EE, Seoul National University byoungho@snu.ac.kr Fall Semester, 2008

Maxwell's equations

In source-free medium $\nabla \times \mathcal{H} = \frac{\partial \mathcal{D}}{\partial t} \qquad \mathcal{D} = \epsilon_o \mathcal{E} + \mathcal{P}$ $\nabla \times \mathcal{E} = -\frac{\partial \mathcal{B}}{\partial t} \qquad \mathcal{B} = \mu_o \mathcal{H} + \mu_o \mathcal{M}$

Boundary conditions

🖉 Seoul National University

 $\nabla \cdot \mathbf{D} = \mathbf{0}$

 $\nabla \cdot \mathbf{\mathcal{B}} = 0.$

Poynting vector and Poynting theorem

$$\mathfrak{S} = \mathfrak{E} \times \mathfrak{H}$$

$$\nabla \cdot \mathbf{S} = -\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon_o \mathbf{E}^2 + \frac{1}{2} \mu_o \mathbf{\mathcal{H}}^2 \right) + \mathbf{E} \cdot \frac{\partial \mathbf{\mathcal{P}}}{\partial t} + \mu_o \mathbf{\mathcal{H}} \cdot \frac{\partial \mathbf{\mathcal{M}}}{\partial t}$$

Seoul National University

Center for Active Plasmonics

EM waves in media

 $\mathcal{P} = \epsilon_o \chi \mathcal{E}$

Definitions

- A dielectric medium is said to be *linear* if the vector field $\mathcal{P}(\mathbf{r}, t)$ is linearly related to the vector field $\mathcal{E}(\mathbf{r}, t)$. The principle of superposition then applies.
- The medium is said to be *nondispersive* if its response is instantaneous, i.e., if P at time t is determined by E at the same time t and not by prior values of E. Nondispersiveness is clearly an idealization since all physical systems, no matter how rapidly they may respond, do have a response time that is finite.
- The medium is said to be *homogeneous* if the relation between P and E is independent of the position r.
- The medium is said to be *isotropic* if the relation between the vectors P and E is independent of the direction of the vector E, so that the medium exhibits the same behavior from all directions. The vectors P and E must then be parallel.
- The medium is said to be *spatially nondispersive* if the relation between P and E is local, i.e., if P at each position r is influenced only by E at the same position r. The medium is assumed to be spatially nondispersive throughout this chapter (optically active media, considered in Sec. 6.4A, are spatially dispersive).

Center for Active Plasmonics

Linear, nondispersive, homogeneous and isotropic medium

$$\begin{split} \mathbf{\mathcal{P}} &= \epsilon_o \chi \mathbf{\mathcal{E}} & \nabla \times \mathfrak{H} = \epsilon \frac{\partial \mathbf{\mathcal{E}}}{\partial t} & \nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 \\ \mathbf{\mathcal{D}} &= \epsilon \mathbf{\mathcal{E}} & \nabla \times \mathbf{\mathcal{E}} = -\mu \frac{\partial \mathcal{H}}{\partial t} \\ \epsilon &= \epsilon_o (1 + \chi) & \nabla \cdot \mathbf{\mathcal{E}} = 0 & c = \frac{1}{\sqrt{\epsilon \mu}} \\ \nabla \cdot \mathcal{H} = 0. & \nabla \epsilon = 0. \end{split}$$

 $n = \sqrt{\frac{\epsilon}{\epsilon_o}} = \sqrt{1 + \chi}$

Inhomogeneous media

1 020

$$\frac{\epsilon_o}{\epsilon} \nabla \times (\nabla \times \mathbf{\mathcal{E}}) = -\frac{1}{c_o^2} \frac{\partial^2 \mathbf{\mathcal{E}}}{\partial t^2}$$

$$\nabla \times \left(\frac{\epsilon_o}{\epsilon} \nabla \times \mathbf{\mathcal{H}}\right) = -\frac{1}{c_o^2} \frac{\partial^2 \mathbf{\mathcal{H}}}{\partial t^2}$$

$$\nabla^2 \mathbf{\mathcal{E}} + \nabla \left(\frac{1}{\epsilon} \nabla \epsilon \cdot \mathbf{\mathcal{E}}\right) - \mu_o \epsilon \frac{\partial^2 \mathbf{\mathcal{E}}}{\partial t^2} = 0$$

$$\nabla^2 \mathbf{\mathcal{E}} - \frac{1}{c^2(\mathbf{r})} \frac{\partial^2 \mathbf{\mathcal{E}}}{\partial t^2} \approx 0$$

Seoul National University

Center for Active Plasmonics

Anisotropic media

Seoul National University

Center for Active Plasmonics

Dispersive media

$$\mathbf{\mathcal{P}}(t) = \epsilon_o \int_{-\infty}^{\infty} \mathbf{x}(t - t') \, \mathbf{\mathcal{E}}(t') \, dt'$$

Seoul National University

Center for Active Plasmonics

Nonlinear media

$$\nabla^{2} \mathbf{\mathcal{E}} - \frac{1}{c_{o}^{2}} \frac{\partial^{2} \mathbf{\mathcal{E}}}{\partial t^{2}} = \mu_{o} \frac{\partial^{2} \mathbf{\mathcal{P}}}{\partial t^{2}}$$
$$P = \Psi(E)$$
$$\nabla^{2} \mathbf{\mathcal{E}} - \frac{1}{c_{o}^{2}} \frac{\partial^{2} \mathbf{\mathcal{E}}}{\partial t^{2}} = \mu_{o} \frac{\partial^{2} \Psi(\mathbf{\mathcal{E}})}{\partial t^{2}}$$

Seoul National University

Center for Active Plasmonics

Monochromatic EM waves

 $\mathcal{E}(\mathbf{r},t) = \operatorname{Re}\{\mathbf{E}(\mathbf{r}) \exp(j\omega t)\}\$ $\mathcal{H}(\mathbf{r},t) = \operatorname{Re}\{\mathbf{H}(\mathbf{r})\exp(j\omega t)\}$ $\nabla \times \mathbf{H} = j\omega \mathbf{D}$ $\nabla \times \mathbf{E} = -j\omega \mathbf{B}$ $\nabla \cdot \mathbf{D} = 0$ $\nabla \cdot \mathbf{B} = 0$ $\mathbf{D} = \epsilon_o \mathbf{E} + \mathbf{P}$ $\mathbf{B} = \mu_o \mathbf{H} + \mu_o \mathbf{M}$

- $\mathbf{S} = \frac{1}{2}\mathbf{E} \times \mathbf{H}^*$
- $\mathbf{D} = \epsilon \mathbf{E}$ and $\mathbf{B} = \mu \mathbf{H}$
- $\nabla \times \mathbf{H} = j\omega\epsilon\mathbf{E}$
- $abla imes \mathbf{E} = -j\omega\mu\mathbf{H}$
- $\nabla \cdot \mathbf{E} = 0$
- $\nabla \cdot \mathbf{H} = 0$

$$\nabla^2 U + k^2 U = 0$$
$$k = nk_0 = \omega \sqrt{\varepsilon \mu}$$

Dispersive media

$$\mathbf{P} = \epsilon_o \chi(\nu) \mathbf{E}$$

$$\chi(\nu) = \int_{-\infty}^{\infty} \mathbf{x}(t) \exp(-j2\pi\nu t) dt$$

$$\mathbf{D} = \epsilon(\nu) \mathbf{E}$$

$$\epsilon(\nu) = \epsilon_o [1 + \chi(\nu)]$$

$$k = \omega \sqrt{\epsilon(\nu) \, \mu_o}$$

Seoul National University

Center for Active Plasmonics

 $\mathbf{H}(\mathbf{r}) = \mathbf{H}_0 \exp(-j\mathbf{k} \cdot \mathbf{r})$ $\mathbf{E}(\mathbf{r}) = \mathbf{E}_0 \exp(-j\mathbf{k} \cdot \mathbf{r})$ $\mathbf{k} \times \mathbf{H}_0 = -\omega \, \epsilon \, \mathbf{E}_0$ $\mathbf{k} \times \mathbf{E}_0 = \omega \, \mu \, \mathbf{H}_0$ $\eta = \frac{E_0}{H_0} = \sqrt{\frac{\mu}{\epsilon}}$ $\eta = \frac{\eta_o}{n}$ $I = \frac{|E_0|^2}{2n}$

 $W = \frac{1}{2}\epsilon |E_0|^2$

I = cW

