Ch. 9. Fiber Optics
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Step-index fibers
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Step-index fibers
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S Polarization-maintaining fiber

Polarization
R ) [.,_./ S
t "’ = t

(a) . - -
e e - Jy Polarization-maintaing fiber {//;a 3
t # 4 = t
t t

(b)

o= Conventional fiber >
t v/ t

Center for Active Plasmonics

4 Y Seoul National Univ@rsity Application Systems




Attenuation coefficient OlydB/km)
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D Optical fiber - dispersion
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Modal dispersion
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.7 3 Waveguide dispersion

\

Dispersion
coefficient

25 . / Dispersion-shifted
e [ ' , fiber

S -
(a) DSF 7

1300\
1400
1500
1600 -
>
5
)
g

ARE

Dispersion
coefficient

2o //—\\ Dispersion-
flattened fiber

N 1

(b) DFF »

XY
1300
1400 —
1500
1600

b

(<]

=

2y

Dispersion-

compensating
i P B

Dispersion
coefficient

. Center for Active Plasmonics
J Seoul National University Application Systems

ol




Polarization Mode Dispersion (PMD)
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Summary

' The propagation of pulses in optical fibers is governed by attenuation and several
types of dispersion. Figure 9.3-9 provides a schematic illustration in which the
profiles of pulses traveling through different types of fibers are compared.

'a Ina multimode fiber (MMF), modal dispersion dominates and the width of the
pulse received at the terminus of the fiber. It is governed by the disparity in the
group delays of the individual modes.

1 [nasingle-mode fiber (SMF), there is no modal dispersion and the transmission
of optical pulses is limited by combined material and waveguide dispersion
(called chromatic dispersion). The width of the output pulse is governed by
group velocity dispersion (GVD).

®» Material dispersion is usually much stronger than waveguide dispersion. How-
ever, at wavelengths where material dispersion is small, waveguide dispersion
becomes important. Fibers with special index profiles may then be used to
alter the chromatic dispersion characteristics, creating dispersion-flattened,
dispersion-shifted, and dispersion-compensating fibers.

# Pulse propagation in long single-mode fibers for which chromatic dispersion
is negligible is dominated by polarization mode dispersion (PMD). Small
anisotropic changes in the fiber, caused, for example, by environmental con-
ditions, alter the polarization modes so that the input pulse travels in two
polarization modes with different group indexes. This differential group delay
(DGD) results in a small pulse spread.

®» Under certain conditions an intense pulse, called an optical soliton, can render
a fiber nonlinear and travel through it without broadening. This results from
a balance between material dispersion and self-phase modulation (the depen-
dence of the refractive index on the light intensity), as discussed in Chapter 22.
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