
Energy and Momentum Methods for Plane Motion of Rigid Bodies

Preview of 17.11



Energy and Momentum Methods for Plane Motion of Rigid Bodies

17. 11 Eccentric Impact
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Sample Problem 17.9

A 0.05-N bullet is fired into the side of a 

20-N square panel which is initially at 

rest.

Determine a) the angular velocity of the 

panel immediately after the bullet 

becomes embedded and b) the impulsive 

reaction at A, assuming that the bullet 

becomes embedded in 0.0006 s.
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Sample Problem 17.10

A 2-kg sphere with an initial velocity 

of 5 m/s strikes the lower end of an 8 kg 

rod AB.  The rod is hinged at A and 

initially at rest.  The coefficient of 

restitution between the rod and sphere 

is 0.8.

Determine the angular velocity of the 

rod and the velocity of the sphere 

immediately after impact.
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Sample Problem 17.11

A square package of mass m moves 

down conveyor belt A with constant 

velocity.  At the end of the conveyor, 

the corner of the package strikes a rigid 

support at B.  The impact is perfectly 

plastic.

Derive an expression for the minimum 

velocity of conveyor belt A for which 

the package will rotate about B and 

reach conveyor belt C.
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Preview of 15.12- 15.15

15.12 Motion About a Fixed Point

15.13 General Motion

15.14 Coriolis Acceleration.   When does this occur?

Difference with 2D?
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15.12 Motion About a Fixed Point

• The most general displacement of a rigid body with a 

fixed point O is equivalent to a rotation of the body 

about an axis through O.

• With the instantaneous axis of rotation and angular 

velocity the velocity of a particle P of the body is,
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and the acceleration of the particle P is
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• Angular velocities have magnitude and direction and 

obey parallelogram law of addition. They are vectors.

• As the vector        moves within the body and in space, 

it generates a body cone and space cone which are 

tangent along the instantaneous axis of rotation.
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• The angular acceleration       represents the velocity of 
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15 - 3

15.13 General Motion

• For particles A and B of a rigid body,
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• Particle A is fixed within the body and motion of 

the body relative to AX’Y’Z’ is the motion of a 

body with a fixed point
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• Similarly, the acceleration of the particle P is
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• Most general motion of a rigid body is equivalent to: 

- a translation in which all particles have the same 

velocity and acceleration of a reference particle A, and 

- of a motion in which particle A is assumed fixed.
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Sample Problem 15.11

The crane rotates with a constant 

angular velocity 1 = 0.30 rad/s and the 

boom is being raised with a constant 

angular velocity 2 = 0.50 rad/s.  The 

length of the boom is l = 12 m.

Determine:

• angular velocity of the boom,

• angular acceleration of the boom,

• velocity of the boom tip, and

• acceleration of the boom tip.
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15.11 Coriolis Acceleration (2D) 

• The point A on the rod corresponds to the instantaneous 

position of P.
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• Absolute acceleration of the collar is
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15.14 Three-Dimensional Motion.  Coriolis Acceleration

• With respect to the fixed frame OXYZ and rotating 

frame Oxyz,
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• Consider motion of particle P relative to a rotating 
frame Oxyz or F for short.  The absolute velocity can 

be expressed as
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• The absolute acceleration can be expressed as
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15.15 Frame of Reference in General Motion

Consider:

• fixed frame OXYZ,

• translating frame AX’Y’Z’, and

• translating and rotating frame Axyz 
or F.

• With respect to OXYZ and AX’Y’Z’,
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• The velocity and acceleration of P relative to 

AX’Y’Z’ can be found in terms of the velocity 

and acceleration of P relative to Axyz.
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Sample Problem 15.15

For the disk mounted on the arm, the 

indicated angular rotation rates are 

constant.

Determine:

• the velocity of the point P,

• the acceleration of P, and

• angular velocity and angular 

acceleration of the disk.
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Sample Problem 15.15
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