8. Excavation design in stratified rock



8.1 Design factors

* Principal engineering properties of bedding planes
Low or zero tensile strength in direction perpendicular to the plane
Low shear strength of surface

e Features of excavations 1n a stratified rock mass
Immediate roof and floor of the excavation coincide with bedding planes.

* Factors to be considered in the design of excavation 1n a stratified
rock mass

(a) State of stress compared with the strength of the anisotropic rock mass

roof bed

- Surface spalling and internal fractures immediate

roof (back)

(b) Stability of the immediate roof

- Detachment/deflection into the void
(¢) Floor heave in the excavation

- Weak rock under the excavation

Cross joints

bedding planes




8.2 Rock mass response to mining

* Design process

1) Determining the elastic stress distribution around the excavation in plan

2) Define the zones of tensile/compressive stress exceeding the rock mass
strength and a zone of slip on bedding planes.

3) Excavation shape is modified or support/reinforcement zone is defined.
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* General rules of potential slip on bedding planes

- Low span/bed thickness (s/t): slip occurs only in the haunch area with opening
of cracks subperpendicular to bedding

- High span/bed thickness (s/t): slip occurs throughout the whole span of
immediate roof, and downward deflection /separation occur at the roof center
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8.3 Roof hed deformation mechanics

e History

- Fayol (1885): rock arching is formed in beams and load of the uppermost beam
1s transferred laterally.

- Jones & Llewellyn-Davies (1929): mapped the morphology of roof failure.

- Bucky & Taborelli (1938): a vertical tension fracture 1s induced at the center of
the lower beam of a particular span.

- Evans (1941): recognizing the relation between vertical deflection, lateral thrust
and stability of fractured roof bed, developed an analytical procedure for
assessing roof beam stability.

- Sterling (1980): studied beam deflection, induced lateral thrust and eccentricity
of the lateral thrust.
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- Lorig & Brady (1983): adopted a linked BE-DE scheme to analyze roof
deformation mechanics. Bed separation over only
the center of the span is major difference from

Evans model (1941).
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8.4 Roof design procedure for plane strain

* Voussoir beam model (Diederichs and Kaiser)
Indeterminate problem: requires assumptions on unknown properties

Assumptions: triangular load distribution, line of thrust tracing parabolic
arch

s: span, t: thickness, /. height of the load distribution, n=h/t
z,, z. (initial) moment arm 2 ( 2 j \/ 3s
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: length of parabolic arch of the thrust line
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- M ;: moment by beam weight, M,: moment by lateral (thrust) stress
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- Determination of deflection and stability by numerical analysis

1) Find out solvable n among predefined values (0.01~1.0 by 0.01).
2) Calculate z, f, (f,) and AL (initially set 0).

3) Find out n (and corresponding z) making f, minimum.

4) Calculate deflection and safety factors.

- nis known to be around 0.75 for stable beams at equilibrium and below 0.5
for critical (unstable) beam state.
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- Safety factor against crushing at lower abutments and top midspan

sF.=2

C

- Safety factor against shear failure (slip) at abutments

Capacity: T :% f.nttang, Demand: V :% yst

S _ Cacpacity _ f.n

tan ¢
Demand  ys

- Threshold of midspan deflection &

Onset of non-linear behavior: 6 =0.1¢ (allowable yield limit in roof design)
Ultimate failure: 6 =0.25¢



8.5 Roof heam analysis for large vertical deflection

* Load depth fraction, n

n= 1
0.22s +2.7
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* Normalized deflection, o, (= d/z,)
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