

Chapter 3

#### **Statistical Process Control**

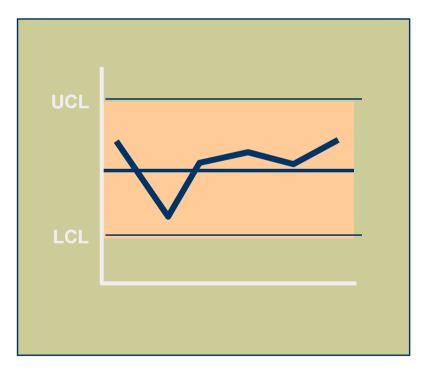
**Operations Management - 6th Edition** 

Roberta Russell & Bernard W. Taylor, III





Copyright 2009 John Wiley & Sons, Inc.


Beni Asllani University of Tennessee at Chattanooga

## Lecture Outline

- Basics of Statistical Process Control
- Control Charts
- Control Charts for Attributes
- Control Charts for Variables
- Control Chart Patterns
- SPC with Excel and OM Tools
- Process Capability

# Basics of Statistical Process Control

- Statistical Process Control (SPC)
  - monitoring production process to detect and prevent poor quality
- Sample
  - subset of items produced to use for inspection
- Control Charts
  - process is within statistical control limits



# Basics of Statistical Process Control (cont.)

#### Random

- inherent in a process
- depends on equipment and machinery, engineering, operator, and system of measurement
- natural occurrences

- Non-Random
  - special causes
  - identifiable and correctable
  - include equipment out of adjustment, defective materials, changes in parts or materials, broken machinery or equipment, operator fatigue or poor work methods, or errors due to lack of training 3-4

# SPC in Quality Management

- SPC
  - tool for identifying problems in order to make improvements
  - contributes to the TQM goal of continuous improvements

#### Quality Measures: Attributes and Variables

#### Attribute

- a product characteristic that can be evaluated with a discrete response
- good bad; yes no
- Variable measure
  - a product characteristic that is continuous and can be measured
  - weight length

# SPC Applied to Services

- Nature of defect is different in services
- Service defect is a failure to meet customer requirements
- Monitor time and customer satisfaction

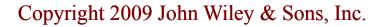
# SPC Applied to Services (cont.)

#### Hospitals

 timeliness and quickness of care, staff responses to requests, accuracy of lab tests, cleanliness, courtesy, accuracy of paperwork, speed of admittance and checkouts

#### Grocery stores

 waiting time to check out, frequency of out-of-stock items, quality of food items, cleanliness, customer complaints, checkout register errors


#### Airlines

 flight delays, lost luggage and luggage handling, waiting time at ticket counters and check-in, agent and flight attendant courtesy, accurate flight information, passenger cabin cleanliness and maintenance

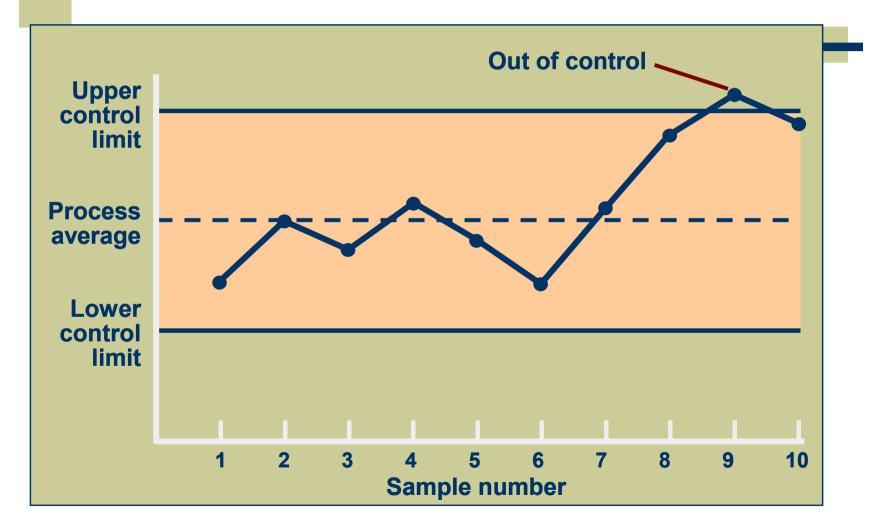
# SPC Applied to Services (cont.)

#### Fast-food restaurants

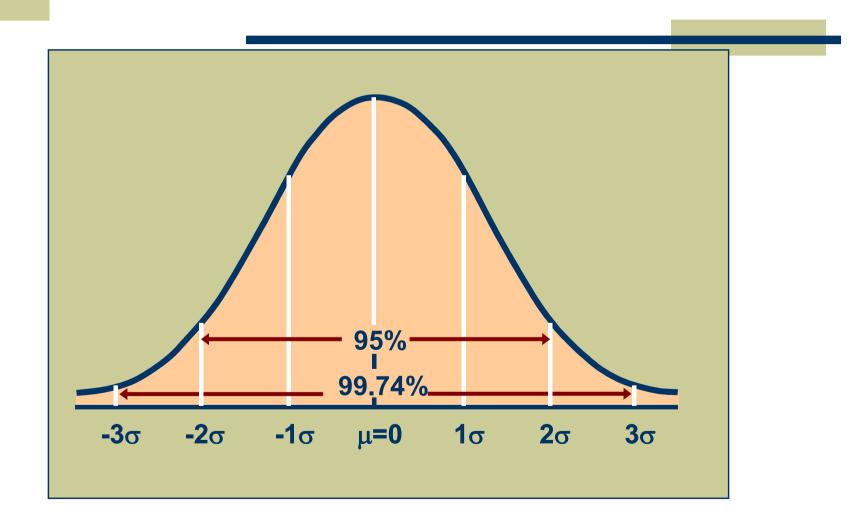
- waiting time for service, customer complaints, cleanliness, food quality, order accuracy, employee courtesy
- Catalogue-order companies
  - order accuracy, operator knowledge and courtesy, packaging, delivery time, phone order waiting time
- Insurance companies
  - billing accuracy, timeliness of claims processing, agent availability and response time



## Where to Use Control Charts


- Process has a tendency to go out of control
- Process is particularly harmful and costly if it goes out of control
- Examples
  - at the beginning of a process because it is a waste of time and money to begin production process with bad supplies
  - before a costly or irreversible point, after which product is difficult to rework or correct
  - before and after assembly or painting operations that might cover defects
  - before the outgoing final product or service is delivered

## **Control Charts**


- A graph that establishes control limits of a process
- Control limits
  - upper and lower bands of a control chart

- Types of charts
  - Attributes
    - p-chart
    - c-chart
  - Variables
    - mean (x bar chart)
    - range (R-chart)

#### **Process Control Chart**



#### Normal Distribution



A Process Is in Control If ...

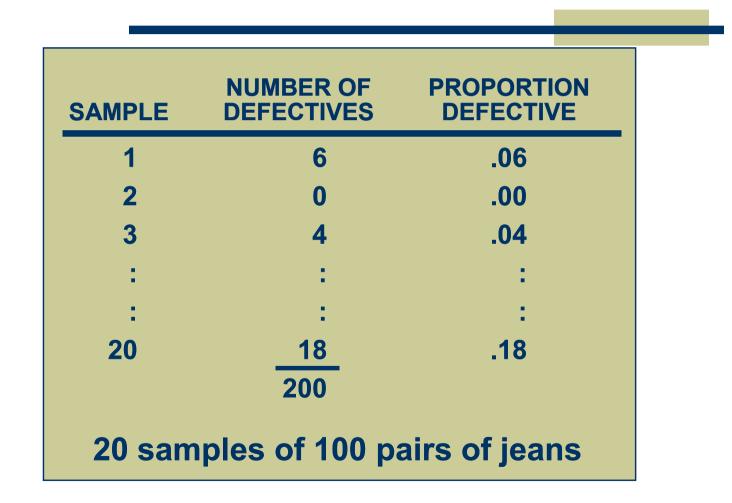
- 1. ... no sample points outside limits
- 2. ... most points near process average
- 3. ... about equal number of points above and below centerline
- 4. ... points appear randomly distributed

Control Charts for Attributes

p-chart

- uses portion defective in a sample
- c-chart
  - uses number of defective items in a sample

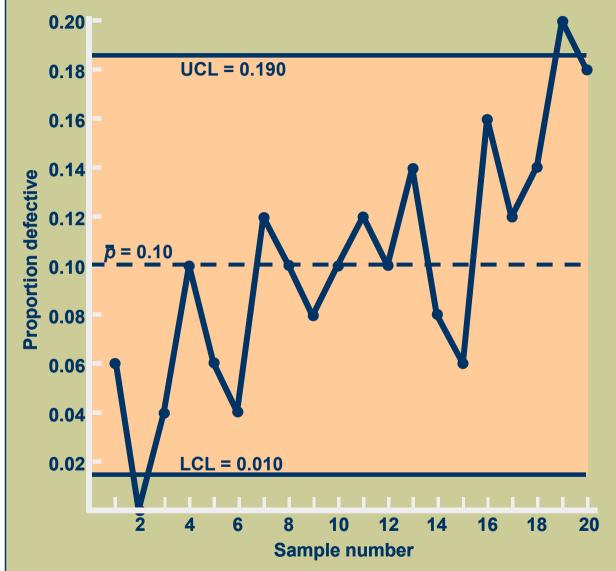
# p-Chart


 $UCL = \overline{p} + z\sigma_p$  $LCL = \overline{p} - z\sigma_p$ 

- z = number of standard deviations from
  process average
- $\overline{p}$  = sample proportion defective; an estimate of process average

 $\sigma_p$  = standard deviation of sample proportion

$$\sigma_p = \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$


# Construction of p-Chart

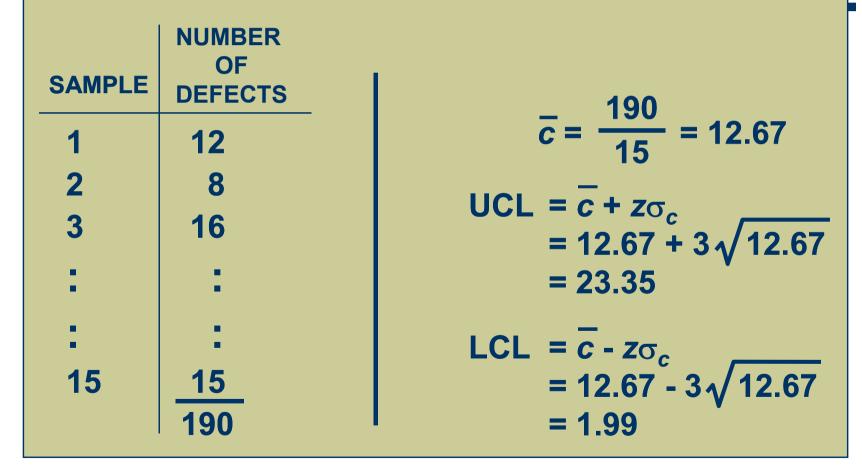


## Construction of p-Chart (cont.)

total defectives p = total sample observations = 200 / 20(100) = 0.10UCL =  $\bar{p} + z \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.10 + 3 \sqrt{\frac{0.10(1-0.10)}{100}}$ UCL = 0.190LCL =  $\bar{p} - z \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.10 - 3 \sqrt{\frac{0.10(1-0.10)}{100}}$ LCL = 0.010

# Construction of p-Chart (cont.)




$$UCL = \overline{c} + z\sigma_c$$
$$LCL = \overline{c} - z\sigma_c$$


$$\sigma_c = \sqrt{\overline{c}}$$

where

c = number of defects per sample

#### Number of defects in 15 sample rooms





Copyright 2009 John Wiley & Sons, Inc.

Control Charts for Variables

- Range chart (R-Chart)
  - uses amount of dispersion in a sample
- Mean chart (x -Chart)
  - uses process average of a sample

$$UCL = \overline{\overline{x}} + z\sigma_{\overline{x}} \qquad LCL = \overline{\overline{x}} - z\sigma_{\overline{x}}$$

$$\overline{\overline{x}} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

where

$$\overline{x}^{=}$$
 = average of sample means

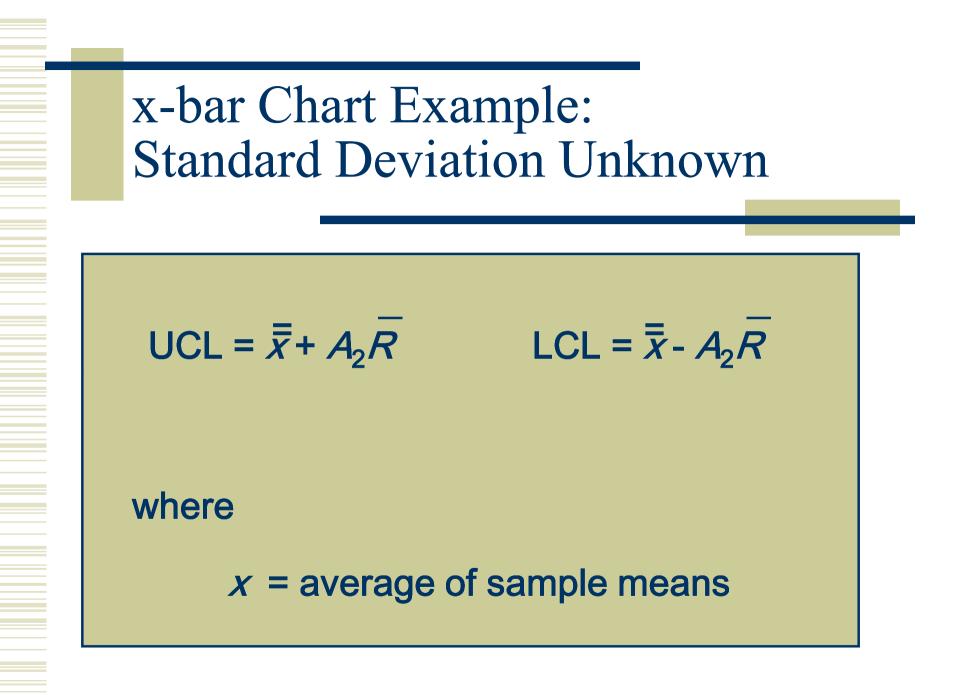
#### x-bar Chart Example: Standard Deviation Known (cont.)

|          | <b>Observations (Slip-Ring Diameter, cm)</b> |      |      |      |      |                |  |
|----------|----------------------------------------------|------|------|------|------|----------------|--|
| Sample k | 1                                            | 2    | 3    | 4    | 5    | $\overline{x}$ |  |
| 1        | 5.02                                         | 5.01 | 4.94 | 4.99 | 4.96 | 4.98           |  |
| 2        | 5.01                                         | 5.03 | 5.07 | 4.95 | 4.96 | 5.00           |  |
| 3        | 4.99                                         | 5.00 | 4.93 | 4.92 | 4.99 | 4.97           |  |
| 4        | 5.03                                         | 4.91 | 5.01 | 4.98 | 4.89 | 4.96           |  |
| 5        | 4.95                                         | 4.92 | 5.03 | 5.05 | 5.01 | 4.99           |  |
| 6        | 4.97                                         | 5.06 | 5.06 | 4.96 | 5.03 | 5.01           |  |
| 7        | 5.05                                         | 5.01 | 5.10 | 4.96 | 4.99 | 5.02           |  |
| 8        | 5.09                                         | 5.10 | 5.00 | 4.99 | 5.08 | 5.05           |  |
| 9        | 5.14                                         | 5.10 | 4.99 | 5.08 | 5.09 | 5.08           |  |
| 10       | 5.01                                         | 4.98 | 5.08 | 5.07 | 4.99 | 5.03           |  |
|          |                                              |      |      |      |      | 50.09          |  |

#### x-bar Chart Example: Standard Deviation Known (cont.)

$$\overline{\overline{x}} = \frac{50.09}{10} = 5.01$$

$$UCL = \overline{\overline{x}} + z\sigma_{\overline{x}}$$


$$= 5.01 + 3(.08/\sqrt{10})$$

$$= 5.09$$

$$LCL = \overline{\overline{x}} - z\sigma_{\overline{x}}$$

$$= 5.01 - 3(.08/\sqrt{10})$$

$$= 4.93$$



| Control |
|---------|
| Limits  |

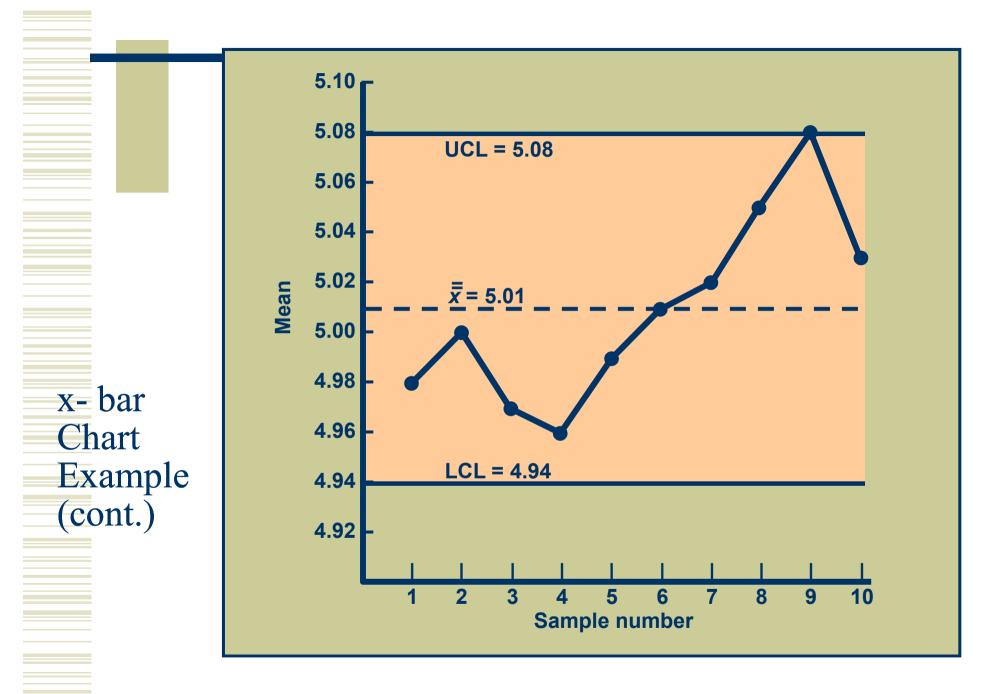
| Sample Size<br>n | Factor for x-Chart<br>A <sub>2</sub> | Factors f<br>D <sub>3</sub> | or R-Chart<br>D <sub>4</sub> |
|------------------|--------------------------------------|-----------------------------|------------------------------|
| 2                | 1.88                                 | 0                           | 3.27                         |
| 3                | 1.02                                 | 0                           | 2.57                         |
| 4                | 0.73                                 | 0                           | 2.28                         |
| 5                | 0.58                                 | 0                           | 2.11                         |
| 6                | 0.48                                 | 0                           | 2.00                         |
| 7                | 0.42                                 | 0.08                        | 1.92                         |
| 8                | 0.37                                 | 0.14                        | 1.86                         |
| 9                | 0.34                                 | 0.18                        | 1.82                         |
| 10               | 0.31                                 | 0.22                        | 1.78                         |
| 11               | 0.29                                 | 0.26                        | 1.74                         |
| 12               | 0.27                                 | 0.28                        | 1.72                         |
| 13               | 0.25                                 | 0.31                        | 1.69                         |
| 14               | 0.24                                 | 0.33                        | 1.67                         |
| 15               | 0.22                                 | 0.35                        | 1.65                         |
| 16               | 0.21                                 | 0.36                        | 1.64                         |
| 17               | 0.20                                 | 0.38                        | 1.62                         |
| 18               | 0.19                                 | 0.39                        | 1.61                         |
| 19               | 0.19                                 | 0.40                        | 1.60                         |
| 20               | 0.18                                 | 0.41                        | 1.59                         |
| 21               | D.17                                 | 0.43                        | 1.58                         |
| 22               | 0.17                                 | 0.43                        | 1.57                         |
| 23               | 0.16                                 | 0.44                        | 1.56                         |
| 24               | 0.16                                 | 0.45                        | 1.55                         |
| 25               | 0.15                                 | 0.46                        | 1.54                         |
| ey & Sons, Inc.  |                                      |                             | 3-28                         |

#### x-bar Chart Example: Standard Deviation Unknown

|                 | <b>OBSERVATIONS (SLIP- RING DIAMETER, CM)</b> |      |      |      |      |       |      |
|-----------------|-----------------------------------------------|------|------|------|------|-------|------|
| SAMPLE <i>k</i> | 1                                             | 2    | 3    | 4    | 5    | X     | R    |
| 1               | 5.02                                          | 5.01 | 4.94 | 4.99 | 4.96 | 4.98  | 0.08 |
| 2               | 5.01                                          | 5.03 | 5.07 | 4.95 | 4.96 | 5.00  | 0.12 |
| 3               | 4.99                                          | 5.00 | 4.93 | 4.92 | 4.99 | 4.97  | 80.0 |
| 4               | 5.03                                          | 4.91 | 5.01 | 4.98 | 4.89 | 4.96  | 0.14 |
| 5               | 4.95                                          | 4.92 | 5.03 | 5.05 | 5.01 | 4.99  | 0.13 |
| 6               | 4.97                                          | 5.06 | 5.06 | 4.96 | 5.03 | 5.01  | 0.10 |
| 7               | 5.05                                          | 5.01 | 5.10 | 4.96 | 4.99 | 5.02  | 0.14 |
| 8               | 5.09                                          | 5.10 | 5.00 | 4.99 | 5.08 | 5.05  | 0.11 |
| 9               | 5.14                                          | 5.10 | 4.99 | 5.08 | 5.09 | 5.08  | 0.15 |
| 10              | 5.01                                          | 4.98 | 5.08 | 5.07 | 4.99 | 5.03  | 0.10 |
|                 |                                               |      |      |      |      | 50.09 | 1.15 |

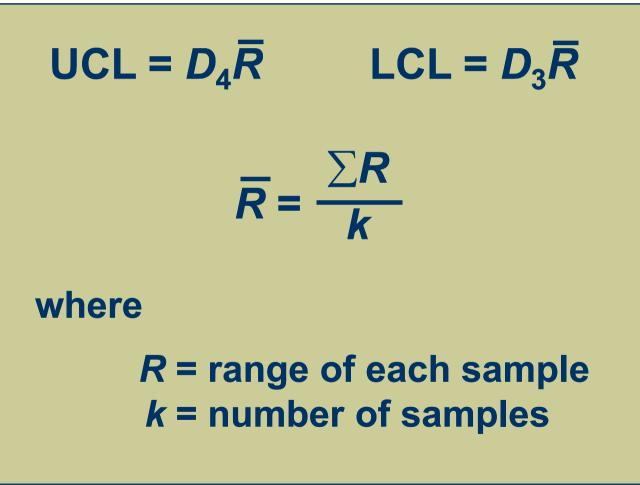
kample 15.4

### x-bar Chart Example: Standard Deviation Unknown (cont.)


$$\overline{R} = \frac{\Sigma R}{k} = \frac{1.15}{10} = 0.115$$

$$\bar{\bar{x}} = \frac{\sum \bar{x}}{k} = \frac{50.09}{10} = 5.01 \text{ cm}$$

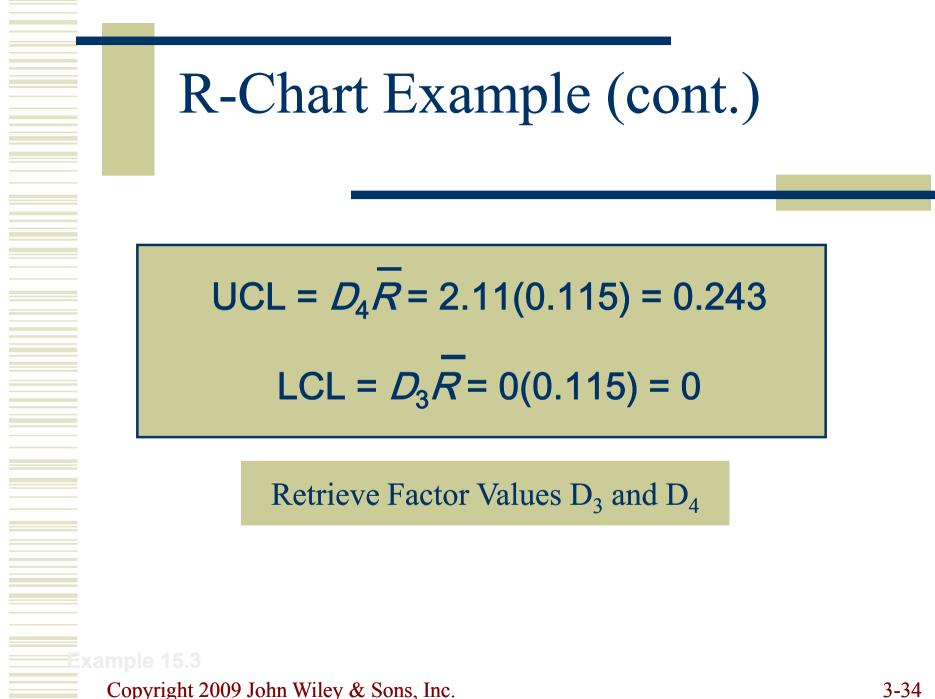
UCL =  $\overline{x} + A_2 \overline{R} = 5.01 + (0.58)(0.115) = 5.08$ 


LCL =  $\bar{x} - A_2 R = 5.01 - (0.58)(0.115) = 4.94$ 

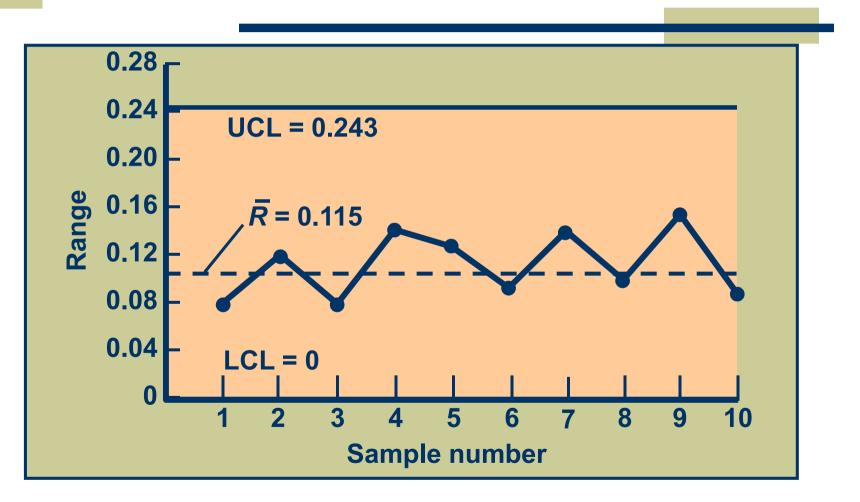
Retrieve Factor Value A<sub>2</sub>



Copyright 2009 John Wiley & Sons, Inc.


# R- Chart




# **R-Chart Example**

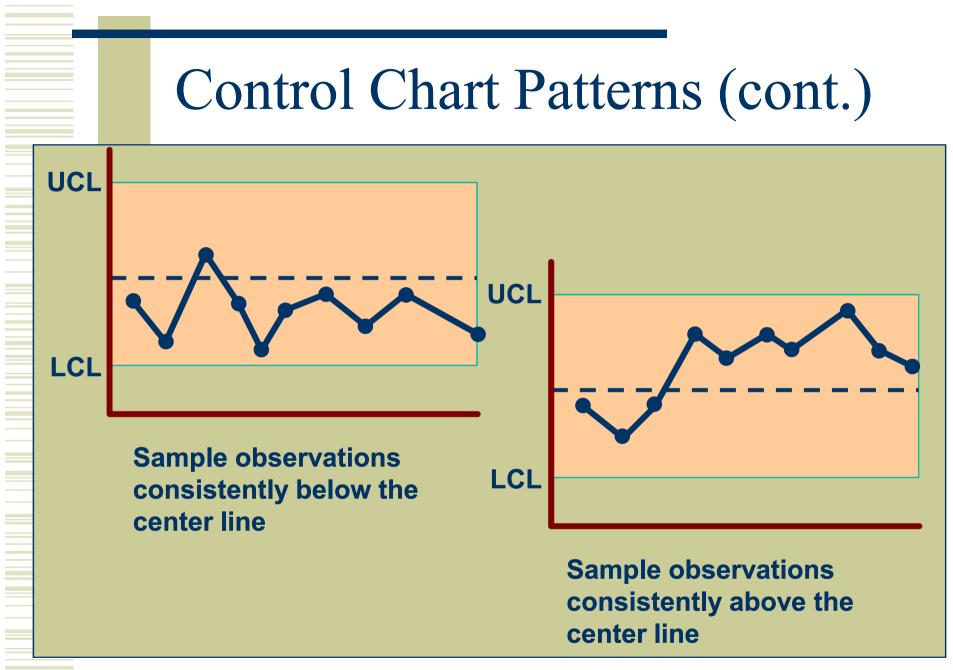
| SAMPLE <i>k</i> | 1    | 2    | 3    | 4    | 5    | X    | R    |
|-----------------|------|------|------|------|------|------|------|
| 1               | 5.02 | 5.01 | 4.94 | 4.99 | 4.96 | 4.98 | 0.08 |
| 2               | 5.01 | 5.03 | 5.07 | 4.95 | 4.96 | 5.00 | 0.12 |
| 3               | 4.99 | 5.00 | 4.93 | 4.92 | 4.99 | 4.97 | 0.08 |
| 4               | 5.03 | 4.91 | 5.01 | 4.98 | 4.89 | 4.96 | 0.14 |
| 5               | 4.95 | 4.92 | 5.03 | 5.05 | 5.01 | 4.99 | 0.13 |
| 6               | 4.97 | 5.06 | 5.06 | 4.96 | 5.03 | 5.01 | 0.10 |
| 7               | 5.05 | 5.01 | 5.10 | 4.96 | 4.99 | 5.02 | 0.14 |
| 8               | 5.09 | 5.10 | 5.00 | 4.99 | 5.08 | 5.05 | 0.11 |
| 9               | 5.14 | 5.10 | 4.99 | 5.08 | 5.09 | 5.08 | 0.15 |
| 10              | 5.01 | 4.98 | 5.08 | 5.07 | 4.99 | 5.03 | 0.10 |

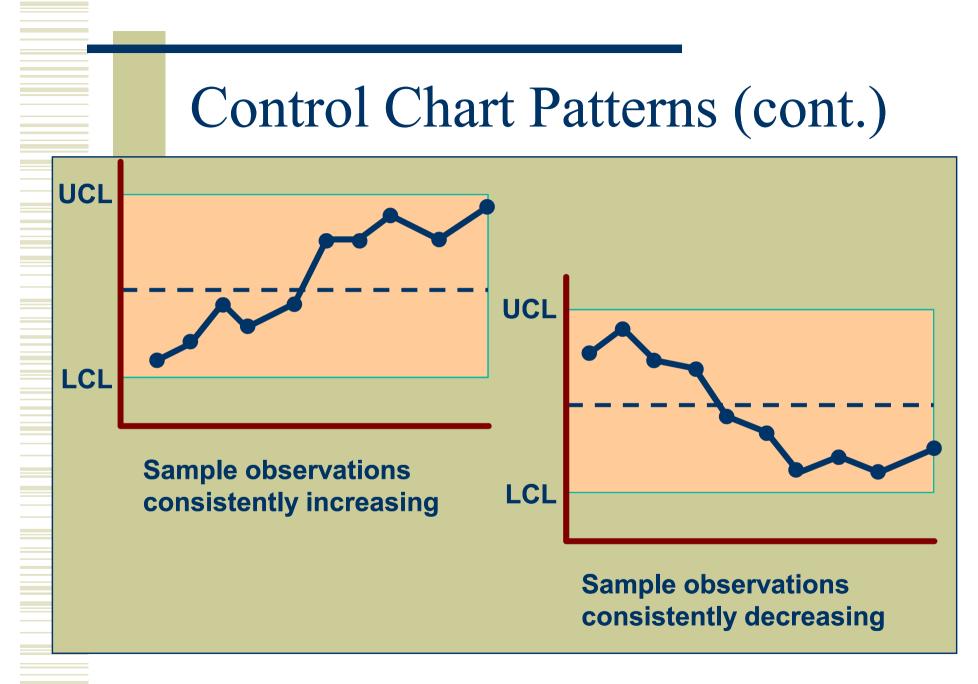
xample 15.3



### R-Chart Example (cont.)

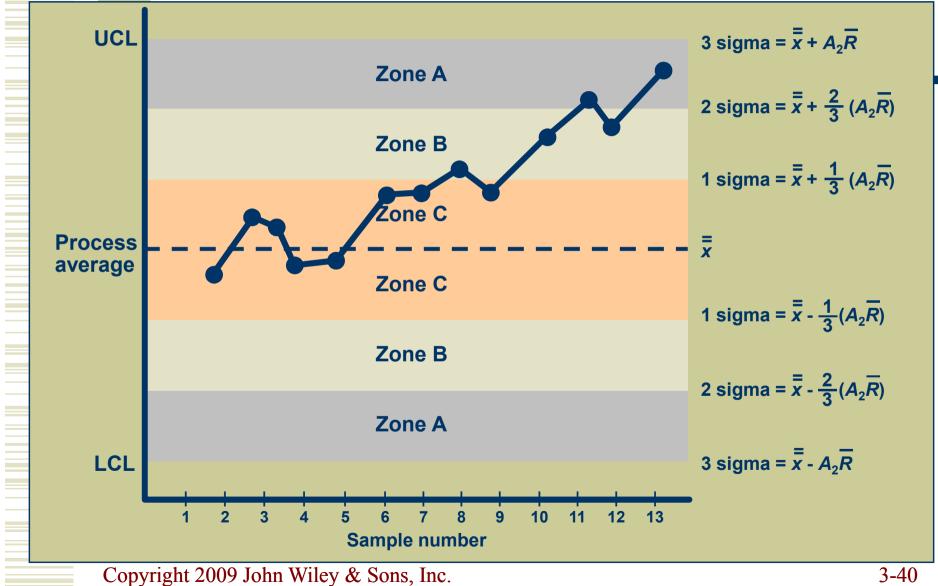



### Using x- bar and R-Charts Together


- Process average and process variability must be in control
- It is possible for samples to have very narrow ranges, but their averages might be beyond control limits
- It is possible for sample averages to be in control, but ranges might be very large
- It is possible for an R-chart to exhibit a distinct downward trend, suggesting some nonrandom cause is reducing variation

### **Control Chart Patterns**

#### Run


- sequence of sample values that display same characteristic
- Pattern test
- determines if observations within limits of a control chart display a nonrandom pattern
- To identify a pattern:
- 8 consecutive points on one side of the center line
- 8 consecutive points up or down
- 14 points alternating up or down
- 2 out of 3 consecutive points in zone A (on one side of center line)
- 4 out of 5 consecutive points in zone A or B (on one side of center line)





Copyright 2009 John Wiley & Sons, Inc.

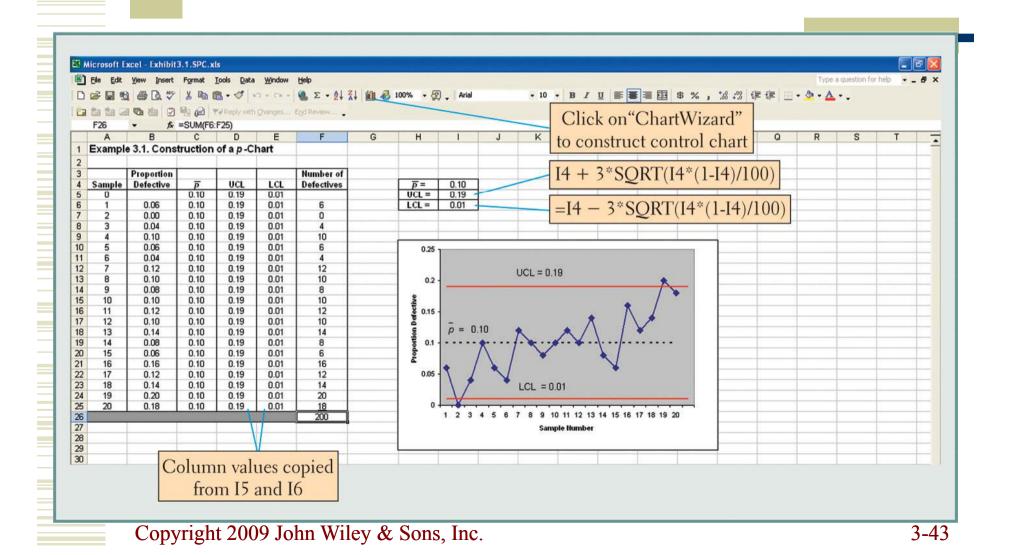
#### **Zones for Pattern Tests**



#### Performing a Pattern Test

| SAMPLE | x    | ABOVE/BELOW | UP/DOWN | ZONE |
|--------|------|-------------|---------|------|
| 1      | 4.98 | В           | _       | В    |
| 2      | 5.00 | В           | U       | С    |
| 3      | 4.95 | В           | D       | Α    |
| 4      | 4.96 | В           | D       | Α    |
| 5      | 4.99 | В           | U       | С    |
| 6      | 5.01 | _           | U       | С    |
| 7      | 5.02 | Α           | U       | С    |
| 8      | 5.05 | Α           | U       | В    |
| 9      | 5.08 | Α           | U       | Α    |
| 10     | 5.03 | Α           | D       | В    |
|        |      |             |         |      |

#### Sample Size Determination

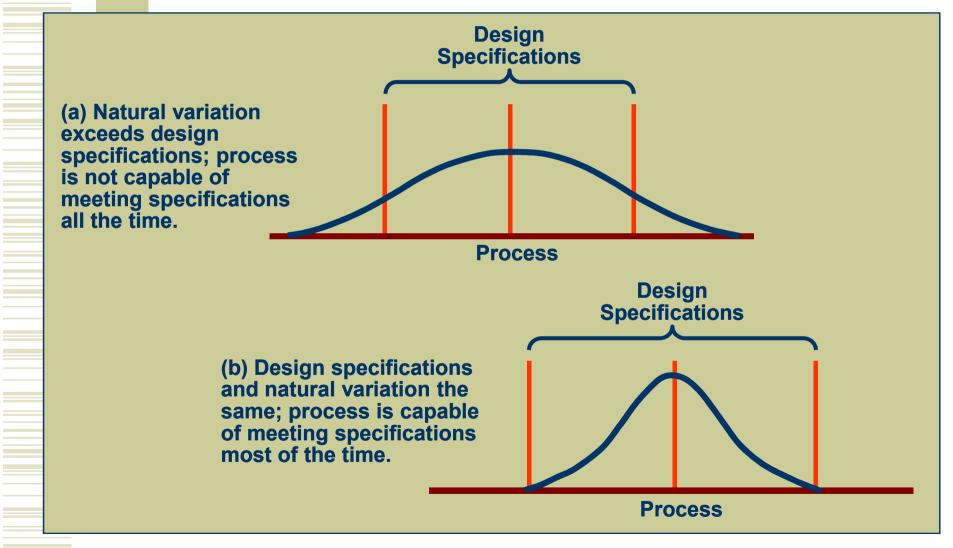

#### Attribute charts require larger sample sizes

50 to 100 parts in a sample

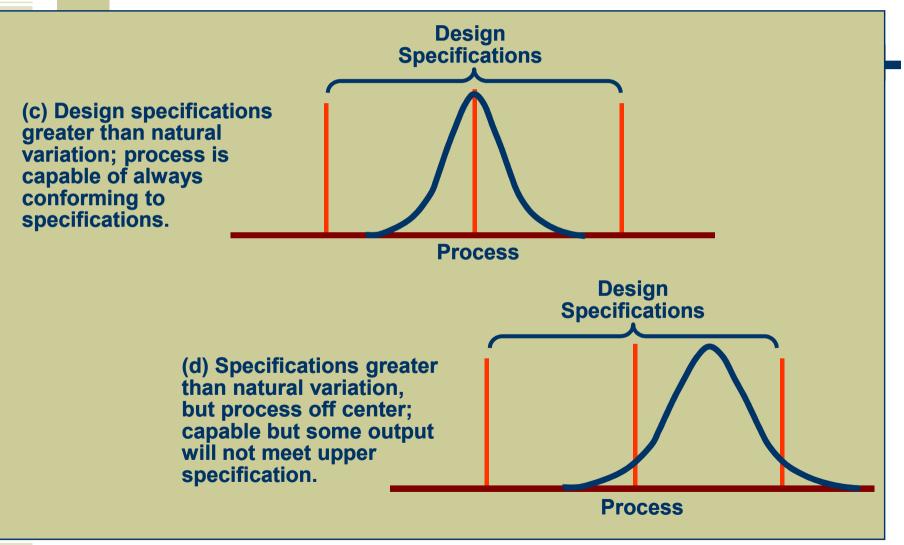
#### Variable charts require smaller samples

• 2 to 10 parts in a sample

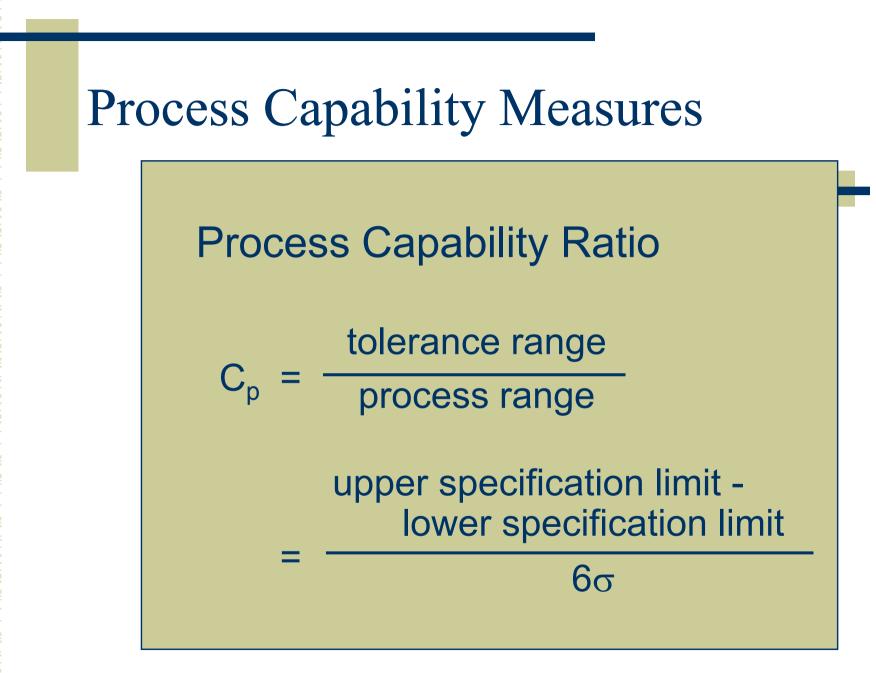
### SPC with Excel



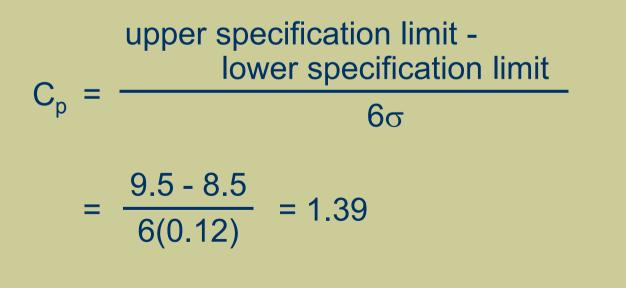

|         |                                     |                 |      | _            | _               |              |           |           |            |            |       |                          |       |            |                          |      |         |           |                   |        |                       |         |
|---------|-------------------------------------|-----------------|------|--------------|-----------------|--------------|-----------|-----------|------------|------------|-------|--------------------------|-------|------------|--------------------------|------|---------|-----------|-------------------|--------|-----------------------|---------|
|         | licrosoft Excel -<br>File Edit View | HAR AN AR AN AR |      | 41           | 110 a davis     | Itala        |           |           |            |            |       |                          |       |            |                          |      |         |           |                   |        | Type a guestion for h | la el e |
|         | Ele Edit View                       |                 |      |              |                 |              | AI 21     | 401 al 10 | ne A       | O Arial    |       | - 10                     |       | <b>D</b> 7 | n = 3                    |      | db 9/   | +.0 .00   | zie zie           | m. A   |                       | iep     |
| 15      |                                     |                 |      |              |                 |              |           |           |            | AV - I MIG |       |                          |       | 5 1        | 9   III- 4               |      | \$ 70 3 | .00 +.0   | she she           |        |                       |         |
| 6       | E2 -                                | fx              |      | k u obdy min | ( 2) ide gester | rlin ve ver  | •         |           |            |            |       |                          |       |            |                          |      |         |           |                   |        |                       |         |
|         | A                                   | В               | C    | D            | E               | F            | G         | Н         | 1          | J          | К     | L                        | М     | N          | 0                        | Р    | Q       | R         | S                 | Т      | V                     | T       |
|         | Xbar and R C                        | Charts          |      |              | OM Stud         | lent - Exa   | mples 3.4 | and 3.5   |            |            |       |                          |       |            |                          |      |         |           |                   |        |                       | _       |
| 23      | Input:                              |                 |      |              | Output:         | 4            |           |           | Table      | Values     |       |                          |       |            |                          |      |         |           |                   |        |                       | +-      |
| 4       | No. of samples                      |                 | 1    |              | -               | X-Bar        | Range     |           | N          | 5          |       |                          |       |            | 1                        |      |         |           |                   |        |                       | 1       |
| 5<br>6  | Sample size                         | 5               | 1    |              | UCL<br>Mean     | 5.08         | 0.24      |           | A2<br>D3   | 0.577      |       | t the obse<br>ple in the |       |            |                          | 1    |         |           |                   |        |                       | -       |
| 7       |                                     |                 |      | 1            | LCL             | 4.94         | 0.00      |           | D4         | 2.115      |       | premiare                 | green | Sharen     |                          | J    |         |           |                   |        | -                     | +       |
| 8       |                                     |                 |      | 1            | 1               | 1            |           |           |            | 1          |       |                          |       |            |                          |      |         | i i i     |                   |        |                       |         |
| 9       |                                     |                 |      | bservatio    | ons             | 1            | Calcu     | lations   | Xbai       | r Chart    | R-c   | hart                     |       |            |                          |      |         | Control ( | Chart Fac<br>Mean | Upper  | bar and R Charts      | 4       |
|         |                                     | ~               |      | ~~~          |                 | 1000         | Sample    |           |            |            |       | RECEI                    |       |            | hart forn                |      |         | Sample    | Factor,           | Range, | Lower Range,          |         |
| 0       | Sample                              | 1               | 2    | 3            | 4               | 5            | Mean      | Range     | UCL        | LCL        | UCL   | LCL                      |       | LCL        | = x - A                  | R    |         | size, n   | A2                | D4     | D3                    | +       |
| 1       | 2                                   | 5.02            | 5.01 | 4.94 5.07    | 4.99            | 4.96         | 4.98      | 0.08      | 5.08       | 4.94       | 0.243 | 0                        |       |            |                          |      |         | 2         | 1.88              | 3.268  | 0                     | +       |
| 3       | 3                                   | 4.99            | 5.00 | 4.93         | 4.92            | 4.99         | 4.97      | 0.08      | 5.08       | 4.94       | 0.243 | Ő                        |       |            | -                        | -    |         | 4         | 0.729             | 2.282  | 0                     | 1       |
| 4       | 4                                   | 5.03            | 4.91 | 5.01         | 4.98            | 4.89         | 4.96      | 0.14      | 5.08       | 4.94       | 0.243 | 0                        |       | UCL        | $= \overline{x} + A_{,}$ | R    |         | 5         | 0.577             | 2.115  | 0                     |         |
| 5       | 5                                   | 4.95            | 4.92 | 5.03         | 5.05            | 5.01         | 4.99      | 0.13      | 5.08       | 4.94       | 0.243 | 0                        |       | P.ab       | art formu                | lac  |         | 6         | 0.483             | 2.004  | 0.076                 | +       |
| 6       | 7                                   | 5.05            | 5.06 | 5.00         | 4.96            | 4.99         | 5.02      | 0.10      | 5.08       | 4.94       | 0.243 | 0                        |       |            | $L = D_{1}\overline{R}$  | 1415 |         | 8         | 0.419             | 1.864  | 0.136                 | +       |
| 8       | 8                                   | 5.09            | 5.10 | 5.00         | 4.99            | 5.08         | 5.05      | 0.11      | 5.08       | 4.94       | 0.243 | 0                        |       |            |                          |      |         | 9         | 0.337             | 1.816  | 0.184                 | 1       |
| 9       | 9                                   | 5.14            | 5.10 | 4.99         | 5.08            | 5.09         | 5.08      | 0.15      | 5.08       | 4.94       | 0.243 | 0                        |       | UC         | $L = D_4 \overline{R}$   |      |         | 10        | 0.308             | 1.777  | 0.223                 | -       |
| 1       | 10                                  | 5.01            | 4.98 | 5.08         | 5.07            | 4.99<br>Mean | 5.03      | 0.10      | 5.08       | 4.94       | 0.243 | 0                        | -     |            | 1                        |      |         | 11<br>12  | 0.285             | 1.744  | 0.256                 | +       |
| 2       |                                     |                 |      |              |                 | Iviean       | 5.01      | 0.115     |            |            |       |                          |       |            |                          |      |         | 13        | 0.249             | 1.692  | 0.308                 | t       |
| 3       |                                     |                 |      |              |                 |              |           |           |            |            |       |                          |       |            |                          |      |         | 14        | 0.235             | 1.671  | 0.329                 | 1       |
| 4       |                                     |                 | )    | (-Bar        |                 |              |           |           |            |            | Range |                          |       |            |                          | -    | -       | 15        | 0.223             | 1.652  | 0.348                 | +       |
| 5       |                                     |                 |      |              |                 |              |           | 0.30      |            |            |       |                          |       |            |                          |      |         | 16<br>17  | 0.212             | 1.636  | 0.364                 | +       |
| 7       | 5.10                                |                 |      |              |                 |              | -         | 0.30      | , <u> </u> |            |       |                          |       |            |                          |      |         | 18        | 0.194             | 1.608  | 0.392                 | 1       |
| 8       | 5.05                                |                 |      |              |                 | 1            |           | 0.25      | 5          |            |       |                          |       |            | _                        |      |         | 19        | 0.187             | 1.596  | 0.404                 |         |
| 9       |                                     |                 |      |              |                 |              | *         | 0.20      |            |            |       |                          |       |            |                          | -    |         | 20<br>21  | 0.180             | 1.586  | 0.414                 | +       |
| 31      | € 5.00                              |                 | 0    | ×            | a.c.            |              |           | -         |            |            |       |                          |       |            |                          |      |         | 22        | 0.173             | 1.566  | 0.434                 | +       |
| 2       | € 5.00                              |                 | **   |              |                 |              |           | ₹ 0.15    | 5          |            | 1     | 1                        |       |            |                          |      |         | 23        | 0.162             | 1.557  | 0.443                 |         |
| 3       | 4.00                                |                 |      |              |                 |              |           | 0.10      |            | $\sim$     | /     | $\checkmark$             |       |            | -                        |      |         | 24        | 0.157             | 1.548  | 0.452                 | 1       |
| 34<br>5 | 4.90                                |                 |      |              |                 |              |           | 0.0       |            | *          |       |                          |       |            |                          |      |         | 25        | 0.153             | 1.541  | 0.459                 | +       |
| 6       | 4.85                                |                 |      |              |                 |              |           |           | 1          |            |       |                          |       |            |                          |      |         |           |                   |        |                       | +       |

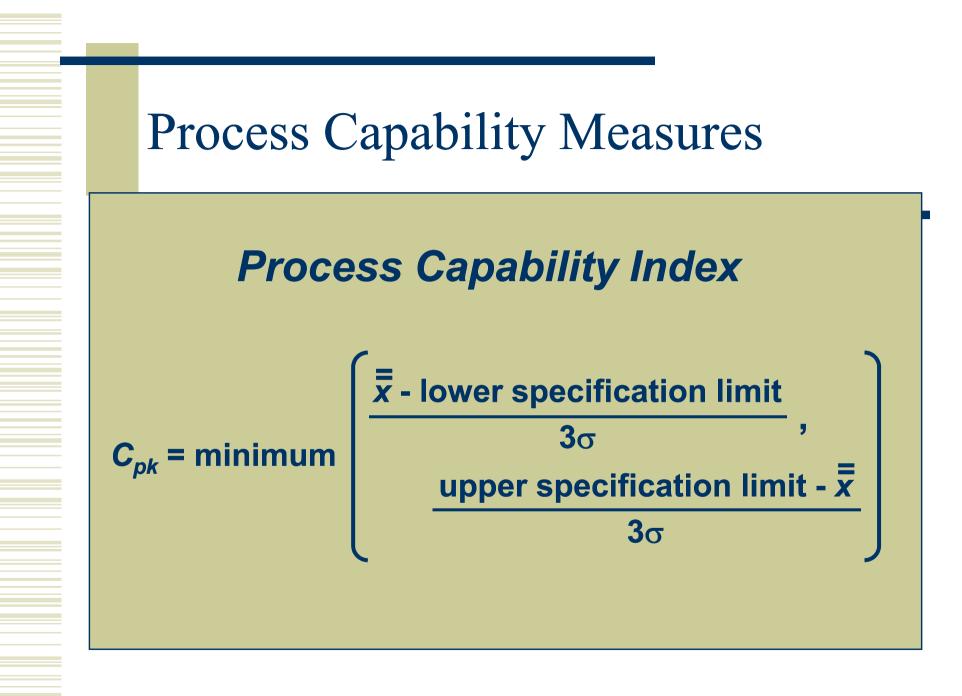

# **Process Capability**

- Tolerances
  - design specifications reflecting product requirements
- Process capability
  - range of natural variability in a process what we measure with control charts

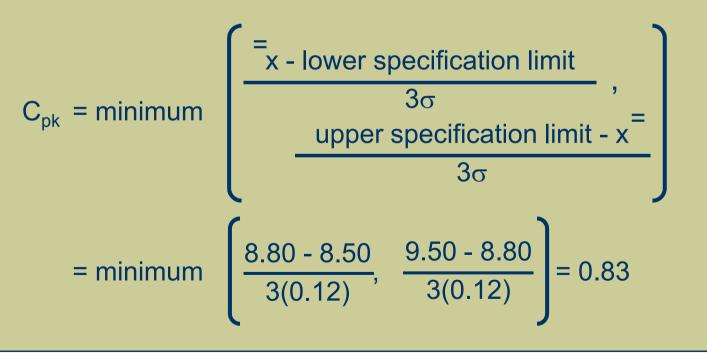

## Process Capability (cont.)




## Process Capability (cont.)




Copyright 2009 John Wiley & Sons, Inc.




Net weight specification =  $9.0 \text{ oz} \pm 0.5 \text{ oz}$ Process mean = 8.80 ozProcess standard deviation = 0.12 oz





Net weight specification =  $9.0 \text{ oz} \pm 0.5 \text{ oz}$ Process mean = 8.80 ozProcess standard deviation = 0.12 oz



### Process Capability with Excel

| <b>Ľ</b> | Ele Edit | View Inse | ert Format <u>T</u> ools <u>D</u> a | ta <u>W</u> indow | Help         |         |          |       |          |    |        |
|----------|----------|-----------|-------------------------------------|-------------------|--------------|---------|----------|-------|----------|----|--------|
| D        | 2 II 1   |           | ♥ 🎖 🖻 🛍 • 🝼                         | <b>N</b> • CI     | - 🚷 Σ        | - 21 Z1 | 100      | · · ? | Arial    |    | + 10 + |
| 1/2      | ta ta 🖂  | Ca 2/2    | D B @ WReply w                      | th Changes.       | . End Review |         |          |       |          |    |        |
| -        | D16      |           | € =MIN(((D12-(D13-D                 |                   |              |         | 3*D15))) |       |          |    |        |
|          | Α        | В         | C                                   | D                 | E            | F       | G        | н     | 1        | J  | К      |
| 1        | Example  | es 3.7 an | d 3.8: Process Ca                   | pability          |              |         |          |       |          |    |        |
| 2        |          |           |                                     |                   |              |         |          |       |          |    |        |
| 3        |          |           |                                     |                   |              |         |          |       |          |    |        |
| 4        |          |           |                                     |                   |              |         |          |       |          |    |        |
| 5        |          | Process C | apability Ratio:                    |                   |              |         |          |       |          |    |        |
| 6        |          |           | Upper limit =                       | 9.5               |              |         |          | C 1   |          |    |        |
| 7        |          |           | Lower limit =                       | 8.5               |              |         |          |       |          |    |        |
| 8        |          |           | Standard deviation =                | 0.12              |              |         | 1- 1     |       | 10100    |    |        |
| 9        |          |           | Cp =                                | 1.39 -            |              |         | =(1)6    | -D7)/ | $(6^*D)$ | 8) |        |
| 10       |          |           |                                     |                   |              |         | 120      |       | 10       | ~/ |        |
| 11       |          | Process C | apability Index:                    |                   | -            |         | -        |       |          |    |        |
| 12       |          |           | Process mean =                      | 8.80              |              |         |          |       |          |    |        |
| 13       |          | -         | Design target =                     | 9.00              |              |         |          |       |          |    | -      |
| 14       |          |           | Tolerance range =                   | 0.50              |              |         |          |       |          |    |        |
| 15       |          |           | Standard deviation =                | 0.12              | 9.           |         | 121      | rmula | (a)      |    |        |

Copyright 2009 John Wiley & Sons, Inc.

#### **Process Capability** with Excel and OM Tools

| -                                                                    |           | xcel - Exhibit3.4 | 1.ProcessCapabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | States of Contract States |                                                                                                                                                                                                                 |
|----------------------------------------------------------------------|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>۲</b>                                                             | Eile Edit |                   | International and the second se | 10 M 10 M 10              |                                                                                                                                                                                                                 |
|                                                                      |           |                   | ormat <u>I</u> ools <u>D</u> ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                                                                                                                                                                                                 |
| D                                                                    | i 🖉 🖥 🤋   |                   | 5 🖻 🛍 • 🛷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 + 01                   | - 🕵 Σ • 2 ↓ 2 ↓ 🛍 💰 100% • 2 ↓ Arial • 10 • Β Ι 🗓                                                                                                                                                               |
| 12                                                                   | 20 20 2   | 1 The da 2 1      | a 🙆 💘 Reply with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h <u>C</u> hanges         | s Egd Review                                                                                                                                                                                                    |
|                                                                      | H35       | → fx              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                                                                                 |
|                                                                      | A         | В                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                         | E F G H I J K L                                                                                                                                                                                                 |
| 1                                                                    | Process   | Capability        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | OM Student - Examples 3.7 and 3.8                                                                                                                                                                               |
| 2                                                                    |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                                                                                 |
| 3                                                                    |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 3.500 T Process dist                                                                                                                                                                                            |
| 4                                                                    | Input:    | 1                 | Design target =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.00                      |                                                                                                                                                                                                                 |
| 5                                                                    |           | Design to         | olerance (+/-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                      | 3.000 - / Upper Spec                                                                                                                                                                                            |
| 6                                                                    |           |                   | na ini ina ang sa pang ang ang ang ang ang ang ang ang ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 2.500 - / \Lower Spec                                                                                                                                                                                           |
| 7                                                                    |           | P                 | rocess mean =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.80                      |                                                                                                                                                                                                                 |
| 8                                                                    |           | Process standa    | ard deviation =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12                      | 2.000 - / / · · · · Mean                                                                                                                                                                                        |
| 9                                                                    |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                         | 1.500 - / \                                                                                                                                                                                                     |
| 10                                                                   |           | Input the         | design target and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                                                                                                                                                                                 |
|                                                                      |           | tolerance         | the process mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                         | 1.000 - (                                                                                                                                                                                                       |
| 11                                                                   |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                                                                                 |
| 12                                                                   |           |                   | undard deviation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                                                                                                                                                                                 |
| 12<br>13                                                             |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 0.500                                                                                                                                                                                                           |
| 12<br>13<br>14                                                       |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J                         | 0.000                                                                                                                                                                                                           |
| 12<br>13<br>14<br>15                                                 |           | and sta           | ndard deviation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                                                                                                                                                                                                 |
| 12<br>13<br>14<br>15<br>16                                           | Output:   | and sta           | nndard deviation.<br>Der spec limit =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.50                      | 0.000                                                                                                                                                                                                           |
| 12<br>13<br>14<br>15<br>16<br>17                                     | Output:   | and sta           | ndard deviation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.50<br>8.50              | 0.000                                                                                                                                                                                                           |
| 12<br>13<br>14<br>15<br>16<br>17<br>18                               | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.50                      | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio                                                                                                                            |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                         | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =<br>Cp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.50<br>1.39              | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio                                                                                                                            |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                   | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.50                      | 0.000                                                                                                                                                                                                           |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21             | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =<br>Cp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.50<br>1.39              | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio                                                                                                                            |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22       | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =<br>Cp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.50<br>1.39              | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio<br>$C_p = \frac{\text{upper specification limit} - \text{lower specification limit}}{6\sigma}$<br>Process Capability Index |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =<br>Cp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.50<br>1.39              | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio<br>$C_p = \frac{\text{upper specification limit} - \text{lower specification limit}}{6\sigma}$<br>Process Capability Index |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22       | Output:   | and sta           | ndard deviation.<br>Der spec limit =<br>ver spec limit =<br>Cp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.50<br>1.39              | 0.000<br>8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600<br>Process Capability Ratio<br>$C_p = \frac{\text{upper specification limit} - \text{lower specification limit}}{6\sigma}$                             |

#### Copyright 2009 John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.