9. Hydraulic Circuit Design & Analysis

- Description of the operation of hydraulic circuits
 - drawn using graphical symbols for all components
 - speeds and load-carrying capacities of regenerative cylinders
 - mechanical-hydraulic servo systems
- Troubleshoot hydraulic circuits
 - to determine causes of malfunctions
- Analysis of hydraulic circuits
 - to evaluate the safety of operation
 - to perform a desired function
 - including the effects of frictional losses
 - the speed control of hydraulic cylinders
- Fluid Power Symbols

유압 시스템 기본 구성

9.1 Introduction

Hydraulic circuit

a group of components such as pumps, actuators, control valves, and conductors arranged so that will perform a useful task

Three important considerations

- Safety of operation
- Performance of desired function
- Efficiency of operation

유압 회로도

Hydraulic Circuit of Hydrostatic Transmission

Control of Hydraulic Cylinders

Control of single acting hydraulic cylinder Control of double acting hydraulic cylinder

Regenerative Cylinder Circuit

(b) Partial circuit showing flow paths during cylinder extension stroke.

Regenerative Cylinder

Cylinder extending speed

$$Q_T = Q_P + Q_R$$

$$Q_P = Q_T - Q_R$$

$$= A_P v_{P_{ext}} - (A_P - A_r) v_{P_{ext}}$$

$$v_{P_{ext}} = \frac{Q_P}{A_r}$$

Load-carrying capacity during extension

$$F_{load_{ext}} = pA_r$$

Ratio of extending & retracting speeds

$$v_{P_{ret}} = \frac{Q_P}{A_P - A_r}$$

$$\frac{v_{P_{ext}}}{v_{P_{ret}}} = \frac{Q_P / A_r}{Q_P / (A_P - A_r)}$$
$$= \frac{A_P - A_r}{A_r}$$

$$\frac{v_{P_{ext}}}{v_{P_{ret}}} = \frac{A_P}{A_r} - 1$$

Drilling Machine Application

- The spring-centered position gives rapid spindle advance (extension)
- The left envelope mode gives slow feed (extension) when the drill starts to cut into the workpiece
- The right envelope mode retracts the piston

Pump-unloading Circuit

Double-pump Hydraulic System

Counterbalance Valve Application

Hydraulic Cylinder Sequence Circuit

Automatic Cylinder Reciprocating System

Locked Cylinder using Pilot Check Valves

Cylinder Synchronizing Circuits

Analysis of Cylinders hooked in Series

continuity equation

$$Q_{out(cyl1)} = Q_{in(cyl2)}$$

$$(A_{eff} v)_{cyl1} = (A_{eff} v)_{cyl2}$$

$$(A_{P_1} - A_{P_1})v_1 = A_{P_2}v_2$$

for synchronization ($v_1 = v_2$)

$$A_{P_1} - A_{R_1} = A_{P_2}$$

summing force on cylinder 1

$$p_1 A_{P_1} - p_2 (A_{P_1} - A_{R_1}) = F_1$$

summing force on cylinder 2

$$p_2 A_{P_2} - p_3 (A_{P_2} - A_{R_2}) = F_2$$

desired result

$$p_1 A_{P_1} = F_1 + F_2$$

Fail-Safe Circuits

Two-Handed Safety Circuit

Meter-in Speed Control of Hydraulic Cylinder

Meter-out Speed Control of Hydraulic Cylinder

Analysis of Extending Speed Control

flow-rate to the cylinder

$$Q_{cyl} = Q_{pump} - Q_{PRV}$$

flow-rate through the flow control valve (FCV)

$$Q_{FCV} = C_{v} \sqrt{\frac{\Delta p}{SG}} = C_{v} \sqrt{\frac{p_1 - p_2}{SG}}$$

pressure p₂

$$p_2 A_{piston} = F_{load}$$
 $p_2 = F_{load} / A_{piston}$

$$p_2 = F_{load} / A_{piston}$$

extending speed of the cylinder

$$v_{cyl} = Q_{cyl} / A_{piston} = Q_{FCV} / A_{piston}$$

$$v_{cyl} = \frac{C_v}{A_{piston}} \sqrt{\frac{p_{PRV} - F_{load} / A_{piston}}{SG}}$$

Speed Control of Hydraulic Motor

Hydraulic Motor Braking System

Closed-circuit One-direction HST

Closed-circuit Reversible-direction HST

Air-over-oil Circuit

Example: Analysis of Hydraulic System

Mechanical-hydraulic Servo System

9.A Fluid Power Symbols

- Line & Line Functions
- Pumps >
- Motors
- Cylinders
- Miscellaneous Units
- Basic Valve Symbols
- Valve Examples
- Methods of Operation

Lines & Line Functions

LINE, WORKING	
LINE, PILOT (L>20W)	
LINE, DRAIN (L<5W)	
CONNECTOR	
LINE, FLEXIBLE	V
LINE, JOINING	
LINE, PASSING	

DIRECTION OF FLOW, HYDRAULIC PNEUMATIC	
LINE TO RESERVOIR ABOVE FLUID LEVEL BELOW FLUID LEVEL	
LINE TO VENTED MANIFOLD	<u>-£</u>
PLUG OR PLUGGED CONNECTION	×
RESTRICTION, FIXED	_ <u> </u>

Pumps, Motors & Cylinders

PUMP, SINGLE FIXED DISPLACEMENT	\Diamond
PUMP, SINGLE VARIABLE DISPLACEMENT	Ø

MOTOR, ROTARY FIXED DISPLACEMENT	\Diamond
MOTOR, ROTARY VARIABLE DISPLACEMENT	\$
MOTOR, OSCILLATING	4

CYLINDER, SINGLE-ACTING	
CYLINDER, DOUBLE-ACTING	
CYLINDER, DIFFERENTIAL ROD	
CYLINDER, DOUBLE- END ROD	
CYLINDER, CUSHIONS BOTH ENDS	₱

Miscellaneous Units

DIRECTION OF ROTATION (ARROW IN FRONT OF SHAFT)	-(-
COMPONENT ENCLOSURE	
RESERVOIR, VENTED	
RESERVOIR, PRESSURIZED	
PRESSURE GAGE	\odot
TEMPERATURE GAGE	1
FLOW METER (FLOW RATE)	-0-
ELECTRIC MOTOR	M

ACCUMULATOR, SPRING- LOADED	(2)
ACCUMULATOR, GAS- CHARGED	9
FILTER OR STRAINER	→
HEATER	
COOLER	
TEMPERATURE CONTROLLER	
INTENSIFIER	
PRESSURE SWITCH	[J.]W

Basic Valve Symbols

CHECK VALVE	-
MANUAL SHUT-OFF VALVE	-₩-
BASIC VALVE ENVELOPE	
VALVE, SINGLE-FLOW PATH, NORMALLY CLOSED	

VALVE, SINGLE-FLOW PATH, NORMALLY OPEN	—
VALVE, MAXIMUM PRESSURE (RELIEF)	
BASIC VALVE SYMBOL, MULTIPLE FLOW PATHS	
FLOW PATHS BLOCKED IN CENTER POSITION	
MULTIPLE FLOW PATHS (ARROW SHOWS FLOW DIRECTION)	EIX

Valve Examples

UNLOADING VALVE, INTERNAL DRAIN, REMOTELY OPERATED	
DECELERATION VALVE, NORMALLY OPEN	
SEQUENCE VALVE, DIRECTLY OPERATED, EXTERNALLY DRAINED	1
PRESSURE-REDUCING VALVE	50
COUNTERBALANCE VALVE WITH INTEGRAL CHECK	

TEMPERATURE- AND PRESSURE-COMPENSATED FLOW CONTROL WITH INTEGRAL CHECK	₹ <u>†</u>
DIRECTIONAL VALVE, TWO-POSITION, THREE- CONNECTION	¢.
DIRECTIONAL VALVE, THREE-POSITION, FOUR- CONNECTION	EIHIX
PROPORTIONAL DIRECTIONAL CONTROL VALVE, INFINITE POSITIONING (INDICATED BY HORIZONTAL BARS)	(+ +1) ⁴⁻⁴ (X)

Methods of Operation

PRESSURE COMPENSATOR	旦
DETENT	⊏(
MANUAL	Ħ
MECHANICAL	Œ
PEDAL OR TREADLE	
PUSH BUTTON	Œ
LEVER	Å

PILOT PRESSURE	亘
SOLENOID	屸
SOLENOID-CONTROLLED, PILOT-PRESSURE-OPERATED	四[
SPRING	w [
SERVO	In Section

ⓒ 한국공업규격

- 유압용어: KS B 0119
- 유압.공기압 도면 기호: KS B 0054
- Report #9
 - KS 유공압관련 규격 찾아 볼 것

Report

- **Text Problems**
 - 9-16
 - 9-28
 - 9-45
- Due date: 2주후