# COSMOSWorks Practice

2008. 10. 1 컴퓨터 이용 설계 및 제작 Tae Ho Jang Human-Centered CAD Lab.

10011111



COSMOSWorks in Solidworks

Static Analysis

Frequency Analysis

Contact Analysis

Buckling Analysis

# COSMOSWorks in Solidworks

1. CLORADIOD

#### Add-in / Toolbar

#### Tool >> Add-in >> COSMOSWorks







## **COSMOSWorks Manager**



# Static Analysis

0100000000000

## Procedure

- Create a static analysis study
- Assign materials to the various components of the assembly
- Insert restraints and loads
- Mesh the assembly
- Run static analysis
- Visualize the static analysis result





#### Crank.SLDASM

| SolidWorks 2006 - [Crank.SLDASM]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | _ B 🔀                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| 😵 File Edit View Insert Tools COSMOSWorks Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | - 8 ×                                |
| 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LQQQQ+DDDDDDDDDDDDDDDDDDDD |                                      |
| QIEBEINEBENE → TOSANY1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KKKKOU > WKK/20 %          |                                      |
| Image: Section of the section of t | <image/>                   | 2   10   10   10   10   10   10   10 |
| Castom [+]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Editor According                     |

#### **Create a Study**

#### Study >> Solid Mesh & Static



| <b>%</b>                           |                                                        |
|------------------------------------|--------------------------------------------------------|
| Crank<br>Crank<br>Z=? P.<br>X=? P. | Study<br>Advisor<br>Compare Test Data                  |
|                                    | Run All Studies<br>Update Components For All Studies   |
|                                    | Define Function Curves<br>Create/Edit material library |
|                                    | Options                                                |
|                                    | Paste                                                  |





## **Apply Materials**

CrankArmAxle-1 >> Apply Material to All Bodies >> Steel >> Stainless Steel



## **Apply Materials**

CrankPully-1

- Gray Cast Iron
- CrankArm-1
  - Alloy Steel
- CrankArm-2
  - Alloy Steel





## **Apply Restraint - Immovable**

#### Load/Restraints >> Restraints >> Immovable





## **Apply Force**

Load/Restraints >> Force >> Along direction >> - 200N



#### **Create Mesh**

#### Mesh >> Create >> Global Size 0.6 in









## **Run Static Analysis**

#### Study >> Run

| Crank |                                                                              |
|-------|------------------------------------------------------------------------------|
|       | Run Design Stonario<br>Update All Components<br>Export                       |
|       | Delete<br>Details<br>Properties                                              |
|       | Copy<br>Paste<br>Save all plots as JPEG files<br>Save all plots as eDrawings |

| 🔎 Linear S | Static V | 2.95(2005/ | 180)   | - C:\' | Crank-Initi  | ial 🗖 🗆    | X |
|------------|----------|------------|--------|--------|--------------|------------|---|
|            |          | ltera      | itive  | Solve  | : r          |            |   |
| Nodes:     | 15240    | Elem       | nents: | 7704   | D.O.F:       | 42642      |   |
|            |          |            |        |        |              |            |   |
| Iteration: |          |            |        |        | 80% Comple   | ed         |   |
|            |          |            |        |        | core compily | 5-         |   |
|            |          |            |        |        |              |            |   |
| Stop       | Pause    | PCG_Reset  | Conv   | g.Plot | Elapsed Time | e 00:00:02 |   |

## **Stress Plot**



## **Change Unit - psi**

#### Plot1 >> Edit Definition >> psi



#### Animate

#### Plot1 >> Animate









## **Generating Report**

#### Report >> Define



| Cover Page                                                                                                                    | Cover Page                                                     |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <ul> <li>✓ Introduction</li> <li>✓ Description</li> <li>✓ File Information</li> </ul>                                         | Logo File:                                                     |
| Materials<br>Load & Restraint Information<br>Contact<br>Study Property                                                        | Browse Title: Stress analysis of Crank                         |
| <ul> <li>✓ Stress Hesults</li> <li>✓ Strain Results</li> <li>✓ Displacement Results</li> <li>✓ Deformation Results</li> </ul> | Author: Tae Ho Jang                                            |
| Design Creck Results     Design Scenario Results     Conclusion     Appendix                                                  | Company: HCCL                                                  |
|                                                                                                                               | Date:                                                          |
| eport path: C:₩Docume                                                                                                         | is and Settings₩Sc                                             |
| teport file name: Crank-Initial-1                                                                                             | Report format:   HTML  Microsoft Wo                            |
| Show report on OK                                                                                                             | Automatically update all plots in JPEG files 👘 📃 Print version |



| Stress analysis of Crank                                                                                                                                                                                                                | 7. Stree | ss R                            | esults                                                                                                          |                                                                                         |                                                         |                                                              |                                                                                        |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------|
| Author: Tae-guen Son<br>Company: HCCL<br>1. Introduction<br>2. File Information<br>3. Materials<br>4. Load & Restraint Information<br>5. Study Property<br>9. Constant                                                                  | 3. Mate  | Name<br>Plot1                   | VON: von Mises<br>stress                                                                                        | Min<br>0.0717146<br>N/m^2<br>Node: 3327                                                 | Location<br>(0.265 in,<br>-4.22274<br>in,<br>-3.684 in) | Max<br>2,64092e+<br>N/m^2<br>Node: 191                       | Loca<br>(0,641<br>in,<br>0,9058<br>1 in,<br>3,434                                      | tion<br>187<br>319<br>in) |
| <ul> <li>7. <u>Stress Results</u></li> <li>8. <u>Strain Results</u></li> <li>9. <u>Displacement Results</u></li> <li>10. <u>Deformation Results</u></li> <li>11. <u>Design Scenario Results</u></li> <li>12. <u>Appendix</u></li> </ul> |          | No.<br>1 9<br>2 0<br>3 0<br>4 0 | Part Name       CrankArm-1       Al       CrankArm-2       Al       CrankArmAxle-1       St       CrankPulley-1 | Material<br>loy Steel (SS)<br>loy Steel (SS)<br>tainless Steel (fe<br>ray Cast Iron (SN | 1.<br>1.<br><u>rritic)</u> 1.!<br>] <u>)</u> 9,:        | Mass<br>17195 kg (<br>17195 kg (<br>52621 kg (<br>25209 kg ( | Volume<br>0,000152201 m<br>0,000152201 m<br>0,000195668 m<br>0,00128501 m <sup>2</sup> | 1^3<br>1^3<br>1^3<br>`3   |



## Save Report as Web Page

#### File >> Save As >> .mht

| <i>6</i> | ::Woc                            | ument    | ts and Set  | tings\Se | ontg\ |  |  |  |
|----------|----------------------------------|----------|-------------|----------|-------|--|--|--|
| 9        | 🔄 🕞 👻 🌈 C: \Documents and Settin |          |             |          |       |  |  |  |
| File     | Edit                             | View     | Favorites   | Tools    | Help  |  |  |  |
| Ne       | w Tab                            |          |             | Ctrl+1   | -     |  |  |  |
| Ne       | w Wind                           | low      |             | Ctrl+N   | J I   |  |  |  |
| Op       | ben                              |          |             | Ctrl+0   | >     |  |  |  |
| Ed       | lit with I                       | Microsof | t Office Wo | rd       |       |  |  |  |
| Sa       | ve                               |          |             | Ctrl+9   | 5     |  |  |  |
| Sa       | ve As                            |          | •           |          |       |  |  |  |
| Cle      | ose Tab                          | I        | 6           | Ctrl+\   | V     |  |  |  |
| Pa       | ige Seti                         | q.       |             |          |       |  |  |  |
| Print    |                                  |          |             | Ctrl+F   | >     |  |  |  |
| Pri      | int Prev                         | iew      |             |          |       |  |  |  |
| Se       | nd                               |          |             |          | •     |  |  |  |
| Im       | port an                          | id Expor | t           |          |       |  |  |  |
| Pr       | operties                         | 5        |             |          |       |  |  |  |
| W        | ork Offl                         | ine      |             |          |       |  |  |  |
| E×       | it                               |          |             |          |       |  |  |  |





## **Frequency Analysis**

1 010011110000

The COLOR OF THE STREET

## Procedure

Create a frequency analysis study
 Run frequency analysis
 Visualize frequency analysis study



## Add New Study

Study >> Solid Mesh & Frequency

| 🧐 😭 😵                                                                              |                                                                                                                                                         |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crank                                                                              | Study<br>Advisor<br>Compare Test Data<br>Run All Studies<br>Update Components For All Studies<br>Define Function Curves<br>Create/Edit material library |
| Mesh                                                                               | Options                                                                                                                                                 |
| 🕂 📋 Report                                                                         | Paste                                                                                                                                                   |
| ⊕ Displacem     ⊕ Displacem     ⊕ Strain     ⊕    ⊡ Deformati     ⊕    ⊡ Design Ch | ent<br>on<br>eck                                                                                                                                        |

| 🎕 👔 😫 🚳 📃 👘                             |
|-----------------------------------------|
| Study                                   |
|                                         |
| Name                                    |
| Freq                                    |
| Solid mesh 💌                            |
| Apply                                   |
| Туре                                    |
| Katic                                   |
|                                         |
| <table-of-contents></table-of-contents> |
| <b>4</b> Thermal                        |
| Croptest                                |
| 🕎 Fatigue                               |
| (Continuization                         |
| Konlinear                               |
| Description                             |
| Study resonant<br>frequencies and mode  |
| shapes                                  |
|                                         |
|                                         |
|                                         |

| 👒 😭 😫 🚳                             |
|-------------------------------------|
| 😘 Crank                             |
| A=? Parameters                      |
| 🛓 🗬 Initial (-Default-)             |
| 🕂 📢 Solids                          |
| 😛 🚂 Load/Restraint                  |
| Design Scenario                     |
| R Contact/Gaps (-Global: Bonded-)   |
| - 🍯 Mesh                            |
| 🗉 📋 Report                          |
|                                     |
| 🗉 🛅 Displacement                    |
| 🗄 🛅 Strain                          |
| Deformation                         |
| 主 🛅 Design Check                    |
| 🛓 🔍 Freq (-Default-)                |
| 🚊 🧐 Solids                          |
| 🛓 🤏 CrankArm-1                      |
| 🛓 🧐 CrankArm-2                      |
| 🗉 🧐 CrankArmAxle-1                  |
| 🗉 🧐 CrankPulley-1                   |
| Load/Restraint                      |
| 🔤 🎹 Design Scenario                 |
| - 🧖 Contact/Gaps (-Global: Bonded-) |
|                                     |
| Report                              |

## Drag & Drop

#### Apply Materials, Restraints and Force









# **Run Frequency Analysis**

#### Freq >> Run

| 🧐 😭 😫 🞯    |                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------|
| Grank      |                                                                                                  |
|            | Run<br>Run Design Scenatio<br>Update All Components<br>Export<br>Delete<br>Details<br>Properties |
| 🖵 📋 Report | Copy<br>Paste<br>Save all plots as JPEG files<br>Save all plots as eDrawings                     |

| Mash Drogram                          |               |          |                                   |
|---------------------------------------|---------------|----------|-----------------------------------|
| Mesti Progress                        |               |          | 🧐 😭 😫 🚳                           |
| Part: CrankArmAxle-1 (3 of 4)         |               |          |                                   |
| Evaluating geometry                   |               |          | 4:? Parameters                    |
| Processing boundary                   |               |          | 🗉 発 Initial (-Default-)           |
|                                       |               |          | 🛓 🔍 Freq (-Default-)              |
| Creating mesn                         | N             |          | 🛓 🥎 Solids                        |
|                                       | 4             |          | 🚊 🕌 Load/Restraint                |
|                                       |               |          | Restraint-1                       |
|                                       |               |          | Force-1                           |
| Stop                                  |               |          | 🎹 Design Scenario                 |
|                                       |               |          | 🔀 Contact/Gaps (-Global: Bonded-) |
|                                       |               |          | 🧐 Mesh                            |
| 📁 Linear Analysis V2.95(2005/180) - C | :\\Crank-Fre  | g 🗕 🗆 🗙  | Report                            |
|                                       |               |          |                                   |
| Iterative Solv                        | er.           |          | Plot1 (-Res disp - Mode Shape 1-) |
|                                       |               |          | Plot2 (-Res disp - Mode Shape 2-) |
| Nodes: 19058 Elements: 9716           | 6 D.O.F:      | 53304    | Plot3 (-Res disp - Mode Shape 3-) |
| · · · · · · · · · · · · · · · · · · · |               |          | Plot4 (-Res disp - Mode Shape 4-) |
|                                       |               |          | Plot5 (-Res disp - Mode Shape 5-) |
| 1                                     |               |          | E Correction                      |
| Iteration:                            | 55% Completed |          | Plot1 (-Mode Shape 1-)            |
|                                       |               |          | Plot2 (-Mode Shape 2-)            |
|                                       |               |          | Plots (-Mode Shape 3-)            |
|                                       |               |          | Plots (-Mode Shape 5-)            |
|                                       |               |          | mile Hots (Hidde Shape 3-)        |
| Stop Pause                            | Elapsed Time  | 00:00:07 |                                   |



## List Result - Mode Shape

#### COSMOSWorks >> List Results >> Modes



| Ľ | List Modes 🛛 🔀   |                    |                  |                 |  |  |  |  |
|---|------------------|--------------------|------------------|-----------------|--|--|--|--|
|   | Study name: Freq |                    |                  |                 |  |  |  |  |
|   | Mode No.         | Frequency(Rad/sec) | Frequency(Hertz) | Period(Seconds) |  |  |  |  |
|   | 1                | 1073               | 170.77           | 0.0058559       |  |  |  |  |
|   | 2                | 1136.6             | 180.89           | 0.0055283       |  |  |  |  |
|   | 3                | 2143.9             | 341.22           | 0.0029307       |  |  |  |  |
|   | 4                | 2681.1             | 426.71           | 0.0023435       |  |  |  |  |
|   | 5                | 2836.1             | 451.37           | 0.0022155       |  |  |  |  |
|   |                  |                    |                  |                 |  |  |  |  |
|   |                  |                    |                  |                 |  |  |  |  |
|   | Close Save Help  |                    |                  |                 |  |  |  |  |



## **Deformation Plot**



Model name: Crank Study name: Freq Plot type: Frequency Plot1 Mode Shape : 1 Value = 170,77 Hz Deformation scale: 0,0314235





## Procedure

Set a global Contact/Gaps options

- Mesh an assembly
- Run static analysis

#### Visualize the stress results





#### Imbalance.SLDASM

| SolidWorks 2006 - [Imbalance.SLDASM]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| We File Edit View Insert Tools COSMOSWorks Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×8-                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 d d d d d d d d d d d d d d d d d d d |
| Borner (Ortal Classe State)     Borner (Ortal Classe State)     Comparison     Comparison |                                          |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Editing Assembly 7                       |

# 50-

## **Create a Study**

Study >> Solid Mesh & Static





| 👒 省 😫 🚳                   |
|---------------------------|
| 🕎 Imbalance               |
| ⊿=?<br>x=? Parameters     |
| 🛓 ╃ ImBalance (-Default-) |
| 🚊 🧐 Solids                |
| 🚊 🧐 Bearing-1             |
| Body 1(Fillet1)           |
| 😑 🧐 Bearing-2             |
| Body 1(Fillet1)           |
| 😑 🧐 Shaft-1               |
| Body 1(Split Line1)       |
| 🛛 👯 Load/Restraint        |
| 🛄 Design Scenario         |
|                           |
|                           |
| Report                    |
|                           |

## **Properties**

#### ImBalance >> Properties >> FFEPlus Solver



| tatic 🛛 🔀                                           |  |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|--|
| Options Adaptive Flow/Thermal Effects Remark        |  |  |  |  |  |
|                                                     |  |  |  |  |  |
| Gao/Contact                                         |  |  |  |  |  |
| Include global friction Friction coefficient: 0.05  |  |  |  |  |  |
| Ignore clearance for surface contact                |  |  |  |  |  |
|                                                     |  |  |  |  |  |
| Large displacement                                  |  |  |  |  |  |
| Solver                                              |  |  |  |  |  |
| O Direct sparse Use inplane effect                  |  |  |  |  |  |
| ○ FFE Use soft spring to stabilize model            |  |  |  |  |  |
| ⊙ FFEPlus                                           |  |  |  |  |  |
|                                                     |  |  |  |  |  |
| Results folder C:\Documents and Settings\Sontg\Desk |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |
|                                                     |  |  |  |  |  |

## **Define Materials**

#### COSMOSWorks >> Material >> Apply Materials to All... >> Alloy Steel

| COSMOSWorks Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           | Matorial                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                                                                                                                    |                                                                                                                     |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COSMOSWorks Window Help Study Advisor Loads/Restraint Drop Test Setup Result Options Contact/Gaps Shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apply Material to All         Create/edit Material Library         Update Components For All Studies         Update All Components         Customize Menu | Material<br>Select material source<br>Use SolidWorks material<br>Custom defined<br>Centor library<br>From library files<br>cosmos materials                                                                                                                                                                 | Properties<br>Material F<br>Model T<br>Units:                                        | ables & Curves Fatigur<br>roperties<br>ype: Linear Elastic I<br>SI                                                                                                                                                 | e SN Curves                                                                                                         | •                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Run Plot Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           | AISI 316 Sta                                                                                                                                                                                                                                                                                                | Name:                                                                                | Alloy Steel (SS)                                                                                                                                                                                                   | )                                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flot Results       Ites and the second |                                                                                                                                                           | → AISI 4130 S<br>→ AISI 4130 S<br>→ AISI 4130 S<br>→ AISI 4340 S<br>→ AISI 4340 S<br>→ AISI 4340 S<br>→ AISI Type 3<br>→ AISI Type 3<br>→ AISI Type 4<br>→ AISI Type 4<br>→ AISI Type 4<br>→ AISI Type 4<br>→ AISI AISI Type 3<br>→ Cast Alloy Steel (<br>→ Cast Alloy S<br>→ Cast Carbor<br>→ Cast Stainle | Property<br>EX<br>NUXY<br>GXY<br>DENS<br>SIGXT<br>SIGXC<br>SIGYLD<br>ALPX<br>KX<br>C | Description<br>Elastic modulus<br>Poisson's ratio<br>Shear modulus<br>Mass density<br>Tensile strength<br>Compressive strength<br>Yield strength<br>Thermal expansion coe<br>Thermal conductivity<br>Specific heat | Value<br>2.1e+011<br>0.28<br>7.8999998e+010<br>7700.0001<br>7.2382562e+008<br>6.20422e+008<br>1.3e-005<br>50<br>460 | Units<br>N/m <sup>2</sup><br>NA<br>N/m <sup>2</sup><br>kg/m <sup>3</sup><br>N/m <sup>2</sup><br>N/m <sup>2</sup><br>N/m <sup>2</sup><br>/Kelvin<br>W/(m.K)<br>J/(kg.K) | Temp Dependency<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Const |
| Export<br>Import Motion Loads<br>Options<br>Help<br>Research<br>About COSMOSWorks<br>Customize Menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plene2                                                                                                                                                    | Chrome Stail                                                                                                                                                                                                                                                                                                | q                                                                                    | K Cance                                                                                                                                                                                                            | I Edi                                                                                                               | 1                                                                                                                                                                      | Body 1(Fillet1) (-Alloy Steel (SS)-)      Bearing-2      Body 1(Fillet1) (-Alloy Steel (SS)-)      Shaft-1      Body 1(Split Line1) (-Alloy Steel (SS)-)      Load/Restraint      Design Scenario      Contact/Gaps (-Global: Bonded-)      Mesh      Benott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



## **Restraint - Immovable**

#### Load/Restraints >> Restraints >> Immovable



| 👒 👕 😫 🞯                   |  |  |  |
|---------------------------|--|--|--|
| Restraint                 |  |  |  |
|                           |  |  |  |
| Туре                      |  |  |  |
| Immovable(No translation) |  |  |  |
| Face<1> Face<2>           |  |  |  |
| Show preview              |  |  |  |
| Symbol settings           |  |  |  |



## **Force - Normal to Plane**

Load/Restraints >> Force >> Normal to Plane >> - 150 lb



Symbol settings



#### **Contact/Gaps**

Contact/Gaps >> Set Global Contact >> No Penetration >> Node to Node





#### **Create Mesh**

#### Mesh >> Create >> 0.4 in









## **Run Static Analysis**

#### ImBalance >> Run



| Linear Static V2 | .95(2005/180) - | C:\\Imba     | lance     |          |
|------------------|-----------------|--------------|-----------|----------|
|                  | Iterative       | Solver       |           |          |
| Nodes: 14240     | Elements:       | 8583         | D.O.F:    | 40650    |
|                  |                 |              |           |          |
| Iteration:       |                 |              |           |          |
|                  |                 | 70% (        | Completed |          |
|                  |                 |              |           | Þ        |
| Stop Pause       | PCG_Reset Convg | g.Plot Elaps | ed Time   | 00:00:03 |



## **Stress Plot**

Model name: Imbalance

## Imbalance Imbalance Imbalance Imbalance

- 🛓 🕂 ImBalance (-Default-)
  - 🛓 ആ Solids
    - 🖨 🍕 Bearing-1
      - Body 1(Fillet1) (-Alloy Steel (SS)-)
    - E K Bearing-2 Body 1(Fillet1) (-Alloy Steel (SS)-)
    - 🖶 🍕 Shaft-1
      - Body 1(Split Line1) (-Alloy Steel (SS)-)
  - 🛓 👯 Load/Restraint



- 🔀 Contact/Gaps (-Global: No penetration-)
- Mesh



Plot1





## **Deformed Shape**

Stress Plot >> Edit Definition >> No Scale Factor



#### **Create New Plot**

#### Stress >> Define



| 🧐 🖀 🚳                         |  |  |  |  |  |
|-------------------------------|--|--|--|--|--|
| Stress Plot                   |  |  |  |  |  |
| <b>X</b> ?                    |  |  |  |  |  |
| Display                       |  |  |  |  |  |
| 🕒 VON: von Mises stress 🛛 👻   |  |  |  |  |  |
| F psi                         |  |  |  |  |  |
| 📔 Fringe 💌                    |  |  |  |  |  |
| ⊙ Node values                 |  |  |  |  |  |
| O Element values              |  |  |  |  |  |
| Apply                         |  |  |  |  |  |
| Deformed Shape     Automatic: |  |  |  |  |  |
| 4151.55                       |  |  |  |  |  |
| • Defined:                    |  |  |  |  |  |
| 2000                          |  |  |  |  |  |
| Property                      |  |  |  |  |  |



## **Plot Setting**

#### Setting >> No Boundary





#### 🧐 😭 😭 N Imbalance Parameters 🖕 ≹ ImBalance (-Default-) 🛓 🚾 Solids | 🛓 🕌 Load/Restraint Restraint-1 👍 Force-1 - 🗰 Design Scenario 🔞 Contact/Gaps (-Global: No penetration-) Mesh Report 😑 📴 Stress Plot1 (-vonMises-) Plot2 (-vonMises-) Hide 🛓 📴 Displacement 🔁 Plot1 (-Res disp-Edit Definition... 🛓 📴 Strain Animate... 陷 Plot1 (-Equivaler Section Clipping... 🛓 📴 Deformation Iso Clipping... μt - 🔁 Plot 1 Chart Options... 🚊 🛅 Design Check Settings... Plot1 (-FOS-) Axes.... Probe List Selected Print... Save As ... Delete... Сору

#### Section Clipping





Model name: Imbalance Study name: ImBalance Plot type: Static nodal stress Plot2 Deformation scale: 2000 von Mises (psi) 1,270e+003 1,164e+003 1,058e+003 9,524e+002 8,466e+002 7,408e+002 6,349e+002 5,291e+002 4,233e+002 3,175e+002 2,116e+002 1,058e+002 5,050e-005 

T THE T



# **Buckling Analysis**

1 010011110000

1990000000

## Procedure

- Create a buckling analysis study
- Assign material to the part
- Insert restraints and pressure loading
- Mesh the part
- Run buckling analysis
- Visualize the buckling analysis results by listing critical factors and plotting buckling modes
- Remesh the part with mesh controls, rerun the analysis, and compare the results



## Open

#### Housing.SLDPRT



#### **Create a Study**

Study >> Solid Mesh & Buckling







## **Define Material**

Solid >> Apply Material to All... >> Alloy Steel



| Material                                          |                                    |                       |                |          |                 |  |
|---------------------------------------------------|------------------------------------|-----------------------|----------------|----------|-----------------|--|
| Select material source Properties Tables & Curves |                                    |                       |                |          |                 |  |
| OUse SolidWorks material                          | O Use SolidWorks material          |                       |                |          |                 |  |
| O Custom defined                                  | Model Tupe: Linear Flactic Lateria |                       |                |          |                 |  |
| Centor library                                    |                                    |                       | sotropic       |          |                 |  |
| • From library files                              | Units:                             | SI                    | ~              |          |                 |  |
| cosmos materials 💌                                | Category                           | Category: Steel       |                |          |                 |  |
| 🗈 AISI 316 Sta 🔨                                  | Name:                              | Alloy Steel (SS)      |                |          |                 |  |
| B AISI 347 An                                     | Property                           | Description           | Value          | Units    | Temp Dependency |  |
| B AISI 4130 S                                     | EX                                 | Elastic modulus       | 2.1e+011       | N/m^2    | Constant        |  |
| - 🖻 AISI 4340 S                                   | NUXY                               | Poisson's ratio       | 0.28           | NA       | Constant        |  |
| 🖻 AISI 4340 S                                     | GXY                                | Shear modulus         | 7.8999998e+010 | N/m^2    | Constant        |  |
| AISI Type 3 🗏                                     | DENS                               | Mass density          | 7700.0001      | kg/m^3   | Constant        |  |
| AISI Type A                                       | SIGXT                              | Tensile strength      | 7.2382562e+008 | N/m^2    | Constant        |  |
| ASTM AS6                                          | SIGXC                              | Compressive strength  |                | N/m^2    | Constant        |  |
| - 🗈 Alloy Steel (                                 | SIGYLD                             | Yield strength        | 6.20422e+008   | N/m^2    | Constant        |  |
| - B Cast Allou S                                  | ALPX                               | Thermal expansion cos | 1.3e-005       | /Kelvin  | Constant        |  |
| 🗠 🗈 Cast Carbor                                   | KX                                 | Thermal conductivity  | 50             | W/(m.K)  | Constant        |  |
| 🗠 🗈 Cast Stainle                                  | С                                  | Specific heat         | 460            | J/(kg.K) | Constant        |  |
| 🕒 🖪 Chrome Stai                                   |                                    |                       |                |          |                 |  |
| Cancel Edit Help                                  |                                    |                       |                |          |                 |  |

#### **Restraints**

#### Load/Restraints >> Restraints >> Immovable



#### Pressure

#### Load/Restraints >> Pressure >> Normal to -100 psi





#### **Create Mesh**

#### Mesh >> Create >> 0.25 in









# Run Buckling Analysis

#### Buckling >> Run

| 😵 😭 😫                 |                              |  |
|-----------------------|------------------------------|--|
| 🎨 Housing             |                              |  |
| Q=?<br>X=? Parameters |                              |  |
| 😑 科 Buckling (-Def    | ault-)                       |  |
| 🛓 🔏 Solids            | Run                          |  |
| 🚽 🍕 Housing           | Run DesighScenario           |  |
| 🛛 🗖 Body              | Update All Components        |  |
| 👝 🞎 Load/Restrai      | Export                       |  |
| 🔤 🛒 Restrainl         | Delete                       |  |
|                       | Details                      |  |
| Contact/Gan           | Properties                   |  |
| Mesh                  | Сору                         |  |
| Report                | Paste                        |  |
|                       | Save all plots as JPEG files |  |
|                       | Save all plots as eDrawings  |  |

|                                   |                  | Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear Analysis V2.95(2005/18     | olver            | Separameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nodes: 3302 Elements:             | 1560 D.O.F: 962  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Establishing Geometric Stiffness: | 100% Completed   | Eestraint     Eestraint-1     Eestraint- |
| Stop Pause                        | Elapsed Time 00: | 00:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   |                  | Plot1 (-Mode Shape 1-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

🤏 😭 😫 🞯



## List Result - Mode Shape

#### COSMOSWorks >> List Result >> Modes



| Li | ist Modes       |                      | ×    |
|----|-----------------|----------------------|------|
| 1  | Study name: Bud | kling                |      |
|    | Mode No.        | Buckling Load Factor |      |
|    | 1               | 705                  |      |
|    |                 |                      |      |
|    |                 |                      |      |
|    |                 |                      |      |
|    |                 |                      |      |
|    |                 |                      |      |
|    |                 |                      |      |
|    | Close           | Save                 | Help |



## **Deformation Plot**



Critical Load Factor = 705 Critical Buckling Load = 70,500 psi (Pressure \* Critical Load Factor)

#### **Mesh Control**

#### Mesh >> Options >> Automatic transition





#### Remesh

#### Mesh >> Create >> 0.25 in









# **Rerun Buckling Analysis**

#### Buckling >> Run

| 🥵 😭 🈫                                                                                          |                                                                              |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Housing<br>$x_{=?}^{=?}$ Parameters<br>$x_{=?}^{2} O Buckling (-Default-)$                     |                                                                              |  |  |  |  |  |  |
| 😑 👒 Solids                                                                                     | What's wrong?                                                                |  |  |  |  |  |  |
| ⊟ - 🧐 Housing<br>Info<br>Boc<br>Load/Restro<br>Info<br>Restrain<br>Info<br>Restrain<br>Pressur | Run<br>Run Design Scenario<br>Update All Components<br>Export                |  |  |  |  |  |  |
|                                                                                                | Details<br>Properties                                                        |  |  |  |  |  |  |
| Beport<br>Benefit<br>Plot1 (-<br>Benefit<br>Plot1 (<br>Plot1 (                                 | Copy<br>Paste<br>Save all plots as JPEG files<br>Save all plots as eDrawings |  |  |  |  |  |  |

| 🗲 Linear Analysis V2.9    | 95(2005/180 | 0) - C:\ | Wousing      | 💶 🗆 🛛    |  |  |
|---------------------------|-------------|----------|--------------|----------|--|--|
| Sparse Solver             |             |          |              |          |  |  |
| Nodes: 6418               | Elements:   | 3282     | D.0.F:       | 18939    |  |  |
| ,                         |             |          |              |          |  |  |
| Decomposition of stiffnes | s matrix:   |          |              |          |  |  |
|                           |             | 2:       | 2% Completed | 1        |  |  |
|                           |             |          |              |          |  |  |
| Stop Pause                |             | E        | lapsed Time  | 00:00:02 |  |  |



## List Result - Mode Shape

#### COSMOSWorks >> List Result >> Modes

| 1 | ng.SLDPRT *]                |             |         |                |               |    |
|---|-----------------------------|-------------|---------|----------------|---------------|----|
| 1 | COSMOSWorks                 | Window      | Help    |                |               |    |
|   | Study                       |             |         |                | 2 8 8         | 0  |
| 1 | Advisor                     |             |         |                |               | 11 |
| 4 | Material                    |             |         | ۲              | et 🗟 🏘 🕯      |    |
| - | Loads/Resti                 | raint       |         | ۲              |               |    |
| - | Drop Test S                 | etup        |         |                |               |    |
|   | Result Options              |             |         |                |               |    |
|   | Contact/Gaps                |             |         |                |               |    |
|   | Shells                      |             |         | ×              |               |    |
|   | Mesh                        |             |         | ۲              |               |    |
| E | Run                         |             |         |                |               |    |
|   | Plot Results                |             |         | ×              |               |    |
|   | List Results                |             |         | F              | Displacement. |    |
|   | Result Tools                | 5           |         | F              | Stress        |    |
| ) | Report<br>Compare Test Data |             |         | Strain         |               |    |
|   |                             |             | Modes   | le la          |               |    |
|   | Design Scenario 🔹 🕨         |             | Thermal | .0             |               |    |
| • | Optimization                |             |         | Therman        |               |    |
|   | Fatigue 🕨                   |             |         | Customize Menu |               |    |
| Ì | Parameters                  |             |         |                |               |    |
|   | Select All Fe               | eature(s) F | aces    |                |               |    |
|   | Export                      |             |         |                |               |    |
|   | Import Moti                 | on Loads    |         |                |               |    |
|   | Options                     |             |         |                |               |    |
|   | Help 🕨                      |             |         |                |               |    |
|   | Research                    |             |         |                |               |    |
|   | About COSMOSWorks           |             |         |                |               |    |
|   | Customize Menu              |             |         |                |               |    |

| List Modes 🛛 🔀  |                      |      |  |  |  |
|-----------------|----------------------|------|--|--|--|
| Study name: Buc | kling                |      |  |  |  |
| Mode No.        | Buckling Load Factor |      |  |  |  |
| 1               | 695.4                |      |  |  |  |
|                 |                      |      |  |  |  |
|                 |                      |      |  |  |  |
|                 |                      |      |  |  |  |
|                 |                      |      |  |  |  |
|                 |                      |      |  |  |  |
|                 |                      |      |  |  |  |
| Close           | Save                 | Help |  |  |  |



## **Deformation Plot**



Critical Load Factor = 695.4 Critical Buckling Load = 69,540 psi (Pressure \* Critical Load Factor)

