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Basic properties and examples

Definitions
Examples

Definition

A function f : R" — R is convex if domf is convex and if for all
x,y € domf, and 0 < A\ < 1, we have

F(1 = Ax+ Ay) < (1= NF() + Af(y).

@ Strictly convex if strict inequality holds whenever x # y and
0< A<

@ We say f is concave if —f is convex. An affine function is both
convex and concave.

@ A function f is convex if it is convex when restricted to any line
intersecting its domain: for any x € domf and v, g(x + tv) is
convex on {t: x + tv € domf}.
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Basic properties and examples

Definitions
Examples

Extended-value extensions

If f is convex we define its extended-value extension,

= { 10 gt

With the extended reals, this can simplify notation, since we do not need to
explicitly describe the domain.

Example

For a convex set C, its indicator function I¢ is defined to be

0 xecC
IC(X):{ oo x¢C

Suppose domf = R". Then, min{f(x) : x € C} is equivalent to minimizing
f+Ic.
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Basic properties and examples

Definitions
Examples

First-order conditions

Suppose f : R" — R is differentiable. Then f is convex if and only if domf is
convex and

f(y) > f(x) + VF(x)"(y — x) Vx,y € domf.

Proof for n = 1. (Only if) Assume f is convex and x,y € domf. Since domf
is convex, we have for all 0 < A <1, x+ A(y — x) € domf, and by convexity of
£ f(x+ Ay —x)) < (1= Nf(x)+Mf(y).

Dividing both sides by A, we obtain

X+ Ay =x)) = f(x)
3 .

Taking limit as A — 0, we get f(y) > f(x) + f'(x)(y — x).

Fly) > F() + 1
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Basic properties and examples

Definitions
Examples

First-order conditions (cont’d)

Proof for n = 1. (If) Choose any x # y and 0 < A <1, and let
z=MAx+(1— A)y. Then, by the above,
fx) > f(2) +F(2)(x—2),  fly)=F(2)+f (2 - 2)

Multiplying the first inequality by A, the second by 1 — A, and adding them

yields
A () + (1 =Nf(y) > f(z2) = F(Ox+ (1= N)y).

Proof for n > 2. Let x,y € domf. Consider restriction of f to the line through
x and y: g(A) := f(x+ My —x) = f((1 — A)x + Ay, and apply the above

case. []
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Basic properties and examples

Definitions
Examples

Second-order conditions (cont’d)

Proposition

Assume f is twice differentiable on domf which is open. Then f is convex if
and only if domf is convex and its Hessian is positive semidefinite: Vx € domf,

V*f(x) = 0.

Remark that

for y € domf and z € R", define g(\) := f(y + Az). Then
g"(\) = z"V?f(y + Az)z. Thus, g”()\) > 0 on {\y 4+ Az € domf} if
and only if V2f(x) = 0 Vx € domf.

Thus, it suffices to prove proposition on an open interval of the real line.
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Basic properties and examples

Definitions
Examples

Second-order conditions (cont’d)

Case1f:R—R
(Only if) If f is convex, then f(y) > f(x) + f'(x)(y — x) for all x,y € domf,
where x < y. Thus,

() =0 i

y—x

Taking limit as x — y, we get f'(y) > f'(x), which implies that f’ is monotone
nondecreasing. Hence, f”/(x) > 0,Vx € domf.
(If) For all x,y € domf, there exists z € domf satisfying

Fy) =)+ () —x) + %f"(Z)(y = x)* 2 F(x) + ' (x)(y —x).

The second inequality follows from the hypothesis. Hence f is convex.

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



Basic properties and examples
Definitions
Examples

Second-order conditions (cont’d)

Case2 f:R" — R
f is convex if and only if g(\) = f(x 4+ Ay) is convex on {A|x + Ay € domf},

Vx,y € domf. Then, by Case 1, the latter holds if and only if g”()\) > 0 on
{Alx + Ay € domf}:
d d (<
£ = e 0= (L mn)

i=1
n d n 5
= Dy fil ) =D yV(x+2y)iy
i=1 i=1

yTVZf(x—F Ay)y >0,

Y

where V2f(x);. is the i-th row of V2f(x). Therefore, V2f(x) »= 0 for all
x € domf. ]
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Basic properties and examples

Definitions
Examples

Some simple examples

@ Exponential e® is convex on R for a € R.

@ Powers x? are convex on R, for a > 1 or a <0, and concave for
0<a<l.

@ Powers of absolute value, |x|P for p > 1, is convex on R.

Logarithm log x is convex on R .

@ Negative entropy x logx is convex on Ry . (Also on Ry if
defined as 0 for x =0.)
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Basic properties and examples

Definitions
Examples

Every norm on R" is convex.

Proof Remark that every norm function has the following properties:
@ Positive homogeneity: ||Ax|| = A||x||
@ Triangle inequality: ||x + y|| < ||x]| + |yl
@ Positive definiteness: ||x|| = 0 if and only if x = 0.

We will use triangle inequality and positive definiteness.
For 0 <A<, [[Ax+ (1= A)y)ll < [[Ax]] + I(T = A)yll = Alx|| +
(T=Nlyll- ©

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



Basic properties and examples

Definitions
Examples

Max function

Max function, f(x) = max{xy,...,x,} is convex on R".
Proof

FOx+ (1= A)y) = max{Ax + (1~ Ny}
< Amaxx; + (1 — X) maxy;
— M) + (1= N)F(y).0
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Basic properties and examples

Definitions
Examples

Log-sum-exp

Log-sum-exp function f(x) = log(e® + - -- 4+ &) is convex on R".

Proof The Hessian of the log-sum-exp function is

1
2 T\l T

Vef(x) = (17272 (17 z)diag(z) — zz"),
where z = (e*,...,e%). We must show that for all v, v V2f(x)v >0,
but

1 n n n 2
T2 2
= . 25.) _ 7 > 0.
v Vof(x)v (sz)z((;z,)(gv, z,) (gv,z,) ) >0

The inequality follows from the Cauchy-Schwarz inequality (a”a)(b' b) >
(a”b)? applied to a; = /z and b; = v;\/Z;.
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Basic properties and examples

Definitions
Examples

Log-determinant

Log-determinant f(X) = log det X is concave on domf = S,

Proof Consider restriction of f to the line through Z € S, to any direction V
e S™

g(t) = logdet(Z + tV)
= logdet(Z'*(I 4+ tZ Y 2vz=1?)Z"/?)

= Z log(1 + tA;) + logdet Z,

i=1

where A1, ..., A\, are the eigenvalues of Z72yz=12,

’ 6 Ai " b )\,2
=y —2_ H=-S"_
g (t) ;1+t>\;’ g (1) ;(14-1‘)\;)2
Since g”’(t) < 0, we conclude that f is concave.
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Basic properties and examples

Definitions
Examples

Sublevel sets and graphs

Definition

The a-sublevel set of a function f : R” — R is defined as

Co = {x € domf|f(x) < a}

Sublevel sets of a convex function are convex. (Converse is false.)

Definition

The graph of a function f : R” — R is {(x, f(x))|x € domf}.
The epigraph of f is epif = {(x, t)|x € domf, f(x) < t}.
The hypograph of f is hypf = {(x, t)|x € domf, f(x) > t}.

A function is convex (concave) if and only if its epigraph (hypograph, resp.) is

convex.
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Basic properties and examples

Definitions
Examples

Epigraph and convex function

Consider the first-order condition for convexity: V x, y € domf, f(y) >
f(x) + VFf(x)"(y — x). Thus, if (y, t) € epif, then t > f(y) > f(x) +
V£(x)T(y — x). Hence Vf(x)T(y — x) — (t — f(x)) < 0. Thus,

e[0T ([1] [ ]) 5o

which means hyperplane in R™*1 defined by (Vf(x), —1) supports epif
at the boundary point (x, f(x)).
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Basic properties and examples

Definitions
Examples

Extensions of Jensen’s inequality

Definition
Jensen’s inequality: V x,y € domf and 0 < A <1, f(Ax+ (1 — A)y) < Af(x)
+ (1= NF(y).

@ To finite sums: V x1,...,xx € domf and V A1, ..., Ak with \; > 0 and

> Ai =1, we have
f()\1X1 +..4+/\ka) < )\1f(X1)+--- +)\kf(Xk).

@ To infinite sums:
@ To integrals: Vp > 0 such that fsp =1 with § C domf,

f(/ p(x)xdx) < [ Fpeye

@ To prob. measures: Let x be a random variable with support in domf.
Then, f is convex if and only if V probability measures of x such that
expectations exist, f(Ex) < Ef(x).
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Basic properties and examples

Definitions
Examples

Holder's inequality from Jensen's inequality

Forp>1,1/p+1/g=1, and x,y € R"

n n 1/p n
S < (1) (Sl
i=1 i=1 i=1

Proof From convexity of —log x, for a,b >0 and 0 < XA < 1, we can get,

1/q

a* b < Xa+ (1 - \)b.

il il

Applying this with a = 1 p=
2. bxlP 2yl

,and A = 1/p yields

1 1
( [xi[? ) /P< lyil? > O 17|
n n — n n '
Zj:l |xi[P Ej:l lyjl9 PZ]:l |xi[P qu:l lyjl9

Summing over i yields the inequality. [J
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Nonnegative weighted sums
g 0 th an affine mapping
mum and supremum

Operations that preserve convexity

Nonnegative weighted sums

Convexity is preserved under nonnegative scaling.

Proof If w > 0 and f is convex, we have
. |10 .
epi(wf) = { 0w ]eplf,

which is convex because the image of a convex set under a linear
mapping is convex. [

If f1,...,f, are convex functions, then V. w; >0,/ =1, ..., m,
f=wifi + - -+ wpfy, is convex.
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ighted sums
ith an affine mapping
se maximum and supremum
Composition

Operations that preserve convexity

Composition with an affine mapping

Suppose f : R" = R, A€ R™™ and b € R". Define g : R™ — R by
g(x) = f(Ax + b),

with domg = {x|Ax + b € domf}. Then, if f is convex, so is g; if f is
concave, so is g.
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Operations that preserve convexity

Pointwise maximum and supremum
Composition

Pointwise maximum and supremum

If f and £, are convex functions, then so is their pointwise maximum,
f(x) = max{fi(x), 2(x)} with domf = dom#f; N dom~.

Proof 0 < A <1 and x,y € domf,

FAx+(1=A)y) = max{A(Ax+ (1= A)y), L(Ax+ (1= A)y)}
< max{Afi(x) + (1= A)h(y), Ma(x) + (1 = A)fa(y)}
< max{Ai(x), Al (x)} + max{(1 = Nfi(y), (1 - A)f(y)}

Amax{f
Af(x) +

x), 2(x)} + (1 = ) max{fi(y), 2(y)}

(
(1=Mfy)- O
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N . ei
Operations that preserve convexity
7 Composition with an affine mapping

Pointwise maximum and supremum
Composition

Pointwise maximum and supremum

If for each y € A, f(x,y) is convex in x, then the function g, defined as

g(x) = sup f(x,y),
yeA

is convex in x. (domg = {x| (x,y) € domf Vy € A, sup 4 f(x,y) < c0})

Application

@ Support function of a set, Sc(x) = sup{x"y|y € C} is convex.

@ Distance to farthest point of a set, f(x) = sup ¢ [|x — y|| is convex.

@ Least-squares as function of weights g(w) = infc Y7, wi(a/ x — b;)?
with domg = {w|infx 7, wi(a/ x — b;)* > —oc}.

@ Max eigenvalue of symm matrices f(X) = sup{y’ Xy| |ly|2 = 1}.

@ Norm of a matrix
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Operations that preserve convexity th an affine mapping

Pointwise maximum and supremum
Composition

Convex as pointwise affine supremum

If f:R"” — R is convex, with domf = R”, then we have
f(x) = sup{g(x)|g affine, g(z) < f(z) for all z}.

Proof (>) The inequality > is clear.
(<) For any x we can find a supporting hyperplane of epif at (x, f(x)):
a € R" and b € R with (a, b) # 0 such that V (z, t) € epif,

2] T ] <0 o0 e bta- <

for all z € domf = R" and all s > 0. This implies b > 0 as easily seen.

Therefore,
g(z) = f(x) + (a/b)" (x — 2) < f(2)

for all z. The function g is an affine underestimator of f and satisfies
g(x) =f(x). O
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Operations that preserve convexity th an affine mapping

mum and supremum

Chain Rule: Review

Consider a twice differentiable f : R" — R™ whose domf is assumed to
be open for simplicity.

@ For m =1, the derivative Df : R" — R of f at x is defined to be
Df(x) = [ Dif(x)---Daf(x) ].

A linear transformation from R” to R which linearly approximates f
at x.
@ For m > 2, the derivative of f at x is defined to be
Dt (x)
Df(x) = ;
Dfin(x)
A linear transformation from R"” to R™ which linearly approximates
f at x.
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Operations that preserve convexity th an affine mapping

mum and supremum

Chain Rule: Review(cont'd)

@ For m =1, we define the gradient of f is a column-wise
representation of its derivative:

le(X)
Vi(x) =
D,f(x)
Thus, Vf(x) is a function from R" — R".

@ For m =1, the Hessian V?f(x) of f is defined to be the derivative
of the gradient Vf

Dllf(X) Dl,,f(X)
V2 (x) = A
Dpif(x) -+ Duaf(x)
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hted sums
an affine mapping
naximum and supremum
Composition

Operations that preserve convexity

Chain Rule: Review(cont'd)

Suppose that h: R"” — R™ is differentiable at x € domh, and that g :
R™ — RP is differentiable at h(x) € domg. (Assume domains are open.)
Let f :==goh:R" — RP by (g o h)(x) = g(h(x)). Then, fis
differentiable at x and its derivative is

DF(x) = D(g o h)(x) = De(h(x))Dh(x).
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N . s ga hted sums
Operatlons that preserve convexity ~ A= _
M an affine mapping
naximum and supremum
Composition

Hessian of composition

When p =1, we have

Vhi(x)"
Df(x) = Dg(h(x))Dh(x) = [ Vg(h(x))" ] :
th(x)T
Hence, V’f(x) = D(Vf(x)) = D(Df(x)")

| | |
= D( Vh1‘(x) Vh,‘,,(x) Vg(?(x)) ] )

Let Djh(x) := [ Dim(x) --- Djhm(x) |7, j=1,...,n. Then,
Dih(x)" | Dih(x)" Vg (h(x))

Vf(x) = D( : Ve(h(x)) ] ) = D( : )

Dah(x)7 | Dyh(x)"Vg(h(x))
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; . Nonnegati
Operatlons that preserve convexity ~ = A= _

7 th an affine mapping
Pointwise maximum and supremum

Composition

Hessian of composition(cont'd)

The following holds for vector-valued functions, a, b: R* — R™.

D(iaj b(x) ZD a;(x)b;

= zm: (b (x)Vaj(x)" + aj(x)Vbj(X)T>

Jj=1

Da(x)Tb(x)

Vai(x)" Vbi(x)"
= bx)" +a(x)" :

Van(x)" Vba(x)"
= b(x)" Da(x) + a(x)" Db(x).
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N . s ga hted sums
Operatlons that preserve convexity ~ A= _

M an affine mapping
naximum and supremum
Composition

Hessian of composition(cont'd)

Therefore, taking a(x) = D;jh(x) and b(x) = Vg(h(x)), for j =1,.

.., n, we

have

D(Djh(x)"Vg(h(x))) = Vg(h(x))"D(Dih(x)) + Dih(x)" D(Vg(h(x)))

Dg(h(x))D(D;h(x)) + D;h(x)"V*(g(h(x))) Dh(x).

Hence,

Dg(h(x))D(D1h(x))
VF(x) = : + Dh(x)"V?g(h(x))Dh(x)

Dg(h(x))D(Dnh(x))

Dg(h(x))V>h(x) + Dh(x)" V?g(h(x))Dh(x).
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ted sums
affine mapping
num and supremum

Operations that preserve convexity

Composition

Hessian of composition(cont'd)

We understand V2h(x) is a ‘3D’ m x n x n matrix whose (k, i, j)-th element is
Djihi(x) and that Dg(h(x))V?h(x) is the linear combination of the 1 x n x n
matrices Djjhi(x) for fixed k's with corresponding coefficients Dyg(h(x))'s

D, D,
i — lhl xig(h(x))
) o

D, h

1n

“linear combination”

506 //I‘%\ﬂh (x)/
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cighted sums
fine mapping
and supremum

Operations that preserve convexity

Composition

Hessian of composition(cont'd)

@ The previous slides are rather for a mathematical practice.

@ For the convexity conditions of composition, it suffices to consider
one-dimensional cases: n =1 and m = 1. Assume g, h twice differ'ble,
domg = domh = R".

F'(x) = g" (h(x))h'(x)* + g’ (h(x)) " (x).

g convex, nondecreasing, h convex = f convex,

g convex, nonincreasing, h concave = f convex,

g concave, nondecreasing, h concave = f concave,
g concave, nonincreasing, h convex = f concave.
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Nonneg ighted sums
Composition with a fine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

Composition(cont'd)

og(x), then g concave, § nondecreasing

x*/2 then g concave, § nondecreasing
= x3/? , then g convex, g not nondecreasing

x)
j=
)
)=

=x%2 for x > 0, = 0 for x < 0 then g convex, g nondecreasing.

(

In general,

g convex, g nondecreasing, h convex = f convex,

g convex, g nonincreasing, h concave = f convex,

g concave, g nondecreasing, h concave = f concave,
g concave, g nonincreasing, h convex = f concave.
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ted sums
an affine mapping
wum and supremum

Operations that preserve convexity

Composition

Composition(cont'd)

Proposition

g convex, g nondecreasing, h convex = f convex.

Proof: [J
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Nonnegative
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

Composition(cont'd)

@ h convex = exp h convex.

h concave, positive = log h concave.
h concave, positive = 1/h(x) concave.

h convex, nonnegative, and p > 1 = h(x)P convex.

h convex = — log(—g(x)) convex on {x|g(x) < 0}.
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cighted sums
fine mapping
and supremum

Operations that preserve convexity

Composition

Composition(cont'd)

Consider g : R™ — R and h: R — R™ with domg = R”™ domh = R.

V2f(x) = Dg(h(x))V2h(x) + Dh(x)"V2g(h(x))Dh(x).

@ g convex, g nondecreasing in each argument, h; convex = f convex,

@ g convex, g nonincreasing in each argument, h; concave = f
convex,

@ g concave, g nondecreasing in each argument, h; concave = f
concave.
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Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

Composition(cont'd)

@ g(z) =z + - - + 7,9, sum of r largest components of z € R™. Then g
is convex and nondecreasing in each z;. Therefore, if h, ..., h, convex
functions on R", f := g o h is convex.

@ g(z) = log(>_7, %) is convex and nondecreasing in each z. Hence if
h; are convex, so is g o h.

@ For0< p<1,g(z) = (3", 2")"" is concave and its extension is
nondecreasing in each z;. Hence if h; are concave and nonnegative
g o h is concave.

@ For p > 1, if h; are convex and nonnegative, (37, hi(x)P)/? is convex.

@ g(z) = (I, z:)"/™ on RT is concave and its extension is

=

nondecreasing in each z;. If h; are nonnegative concave function, so is

(117, &)"™
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Nonnegative weighted sums
ffine mapping
mum and supremum

Operations that preserve convexity

Composition

Minimization

If f is convex in (x,y) and C is nonempty and convex, then the function g,
defined by
= inf f
g(x) = inf £(x,y),

is convex in x if g(x) > —oo for some x. Here, domg = {x| (x,y) € domf for
some y € C}.
Proof: [
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Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

Minimization(cont'd)

Example

(Schur complement) Suppose for some A, C, € S"
f(x,y) = x" Ax + 2x" Bx + x" Cx,

A B

BT C

Consider g(x) = inf f(x, y) which is given by g(x) = x" (A — BCTB")x.

This is convex and hence A— BCTBT = 0. When C is invertible, then
A B

BT C ]

is convex in (x, y) so that { } = 0.

A— BC!BT is called Schur complement of {
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Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

Minimization(cont'd)

(Distance to a set) Distance from x to set S w.r.t. || - || is

dist(x, 5) = inf [lx — |l

Function ||x — y/|| is convex in (x, y), so if S is convex, then dist(x, S) is
convex in Xx.
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Nonnegative weighted sums
ffine mapping
mum and supremum

Operations that preserve convexity

Composition

Perspective of a function

If f:R" — R, then the perspective of f is the function g : R""! — R defined
by
g(x, t) = tf(x/t),
with domain
domg = {(x, t)|x/t € domf,t > 0}

Proposition

If f is convex (concave, resp.), so is its perspective.

Proof: [J
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Nonnegative weighted sums
Composition with an affine mapping
Pointwise mr mum and supremum
Composition

Operations that preserve convexity

Perspective of a function(cont’d)

Suppose f : R” — R is convex, then is
g(x) = (cTx + d)f(Ax + b)/(c"x + d),

with domg = {x|c"x+d >0, Ax + b)/(c"x + d) € domf}.
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Definition
Conjugate function Examples
Properties

Definition

Given f : R” — R, the conjugate f* : R” — R of f is defined as:

f(y) = Sup f(yTX — f(x)).

7

CEVAIED) I
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Definition
Conjugate function Examples

Properties

@ Affine functions f(x) = a’ x + b. Function y"x — a’ x — b is bounded
only when y = a. Thus domf* = {a} and f(a) = —b.

@ Negative logarithm f(x) = — log x with domf = Ry. Function
yTx + log x is bounded only when y < 0 and attains its maximum when
X = _,%' Thus domf* = R__ and f*(y) = —1 — log(—y).

@ Exponential f(x) = €*. Function yx — € attains its supremum only when
y > 0 and then at x = logy. Hence f*(y) = y log(y) — y for y > 0. For
y=0 f(y)=0.

@ Negative entropy f(x) = xlog x for x > 0 (defining f(0) = 0).

@ Strictly convex quadratic f(x) = %XTQX given @ = 0. As y'x — %XTQX
is strictly concave, its unique maxima is attained when x = Q~'y for any
y. Thus f*(y) = %yTQfly.

@ For any set S C R", let Is(x) be its indicator function: dom/s = S and
Is(x) = 0 for x € S. Given y, y"x — Is(x) is bounded only when y ' x is
bounded on S and f*(y) = sup {y” x| x € S} with domf* = {y| sup
{y"x| x € S} < o0}
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Definition
Conjugate function Examples
Properties

Derivative of f(X) = logdet X

For invertible X € R"*", consider f(X) = logdet X. From chain rule,
Df(X) = 25 D(det X). Consider det X expanded w.r.t. ith row:

det X

det X = X x (—1)"7 det X,
j

where, X; is submatrix obtained by deleting row i and column j from X. Thus
55 det X = (—1)" det X and D(det X) = adj(X), and hence
i

D(logdet X) = (X~ 1)".

Thus if X S Sn, D(lOg det X) = X_l. (See an alternative proof in Appendix of the textbook

which seems more intuitive.)
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Definition
Conjugate function Examples

Properties

@ Log-determinant f(X) = logdet X! on S7,. Then
f*(Y) = sup{trYX + logdet X|X € S} for Y € S".

First note that f*(Y) < oo only when Y < 0. For, if Y £ 0,

Y =37 Aivivi" with [|v;]| = 1 and A, > 0 for some r. Then let

X =1+tvv,. Then X has n—1 1's and 1 + t as eigenvalues
corresponding to v;'s for i # r and v,, respectively. Thus

trYX + logdet X = trY + tX + log(1 + t) which is unbounded on t > 0.
When Y < 0, supremum attains when D(trYX + logdet X) = Y + X!
=0, or X = —Y~!. Hence,

f*(Y) = —n+ logdet(—Y ).

@ Norm ||x|| and norm squared ||x||.
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Definition
Conjugate function Examples

Properties

@ As pointwise supremum of affine functions of y, f* is convex.

@ From definition, we have Fenchel's inequality:
F)+(v) > x"y Vx, y.

@ We will see if f is convex and closed, or epif is closed, then f** = f.
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Definition
Conjugate function Examples

Properties

@ For arbitrary z € R" define y = Vf(z). Then we have
f*(y) = 2" VF(z) — f(2).
@ For a> 0 and b € R”, the conjugate of g(x) = af(x) + b is
g’ (y)=af"(y/a) - b.

@ Suppose A € R"*" is nonsingular and b € R". Then the conjugate of
g(x) =f(Ax+ b) is

g ) =Ff(ATy)-b"ATy
with dom g* = ATdom f*.

@ If f(u,v) = fi(u) + f(v), where f; and £, are convex functions with
conjugates ;" and f,°, respectively, then

*(w,z) = {"(w) + £(2).
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Quasiconvex functions

Differentiable quasiconvex functions

Operations that preserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions

Properties

Definition

Definition

A function f : R"” — R is called quasiconvex if its domain and all its

sublevel sets
Sa = {x € domf|f(x) < a}

for a € R, are convex.

@ A function is quasiconcave if —f is quasiconvex.

@ A function that is both quasiconvex and quasiconcave is called quasilinear.
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Quasiconvex functions

Di able quasiconvex functions

Operations that preserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions

Properti

Definition
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Quasiconvex functions
i tiable quasiconvex functions
Operations th eserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions
Properties

sic properties

A function f is quasiconvex if and only if domf is convex and for any
x,y € domf and 0 < A <1,

fF(Ax + (1= A)y) < max{f(x), f(y)}

Proof [
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Quasiconvex functions

Differentiable quasiconvex functions

Operations that preserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions

Properties

Differentiable quasiconvex functions

@ First-order conditions
Suppose f : R" — R is differentiable. Then f is quasiconvex if and only if
domf is convex and for all x,y € domf

fy) < f(x) = VF(x)(y —x) <0.

@ Second-order conditions
Supposer f is twice differentiable. If f is quasiconvex, then for all
x € domf, and all y € R", we have

y Vf(x) =0=y V*f(x)y > 0.
f is quasiconvex if f satisfies
Yy Vf(x)=0=y Vf(x)y >0

for all x € domf and all nonzero y € R".
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nvex functions
able quasiconvex functions
ons that preserve quasiconvexity
Quasiconvex and Log-concave functions -concave functions

Operations that preserve quasiconvexity

@ Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions

f=max{wifi,..., Wnfn}

with w; < 0 and f; quasiconvex, is quasiconvex.

@ Composition
If g : R” — R is quasiconvex and h: R — R is nondereasing, then
f = ho g is quaicionvex.
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Quasiconvex functions
fe tiable quasiconvex functions
Operations that preserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions

Properties

Operations that preserve quasiconvexity

@ Minimization
If f(x,y) is quasiconvex jointly in x and y and C is a convex set, then the
function

g(x) = inf f(x.y)

is quasiconvex.
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Quasiconvex functions
i tiable quasiconvex functions
ations that preserve quasiconvexity
Quasiconvex and Log-concave functions Log-concave functions
Properties

Definition

Definition

A function f : R" — R is logarithmically concave or log-concave if f(x) > 0
for all x € domf and log f is concave. It is said to be logarithmically convex
or log-convex if log f is convex.

Definition

a function f : R” — R, with convex domain and f(x) > 0 for all x € domf,
is log-concave if and only if for all x,y € domf and 0 < A < 1, we have

FOX + (1= N)y) > F(x) M (y)
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nvex functions
able quasiconvex functions
Operations that preserve quasiconvexity
Quasiconvex and Log-concave functions oncave functions
Properties

Properties

@ Twice differentiable log-convex/concave functions
Suppose f is twice differentiable, with domf convex, so

V2 log f(x) = ——V?f(x) — Vf(x)Vf(x)

f ( ) f ( )?
We conclude that f is log-convex if and only if for all x € domf,
f(x)VF(x) = VF(x)VF(x)"

and log-concave if and only if for all x € domf,

F(x)VF(x) < VF(x)VF(x)"
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Convexity with respect to generalized inequalities

Convexity with respect to generalized inequalities

Monotonicity and convexity w.r.t generalized inequality

@ Suppose K C R" is a proper cone with associated generalized inequality
<k. A function f : R" — R is called K-nondecreasing if

x 2k y = f(x) < fly),
and K-increasing if
x 2k y,x #y = f(x) <f(y).

@ Suppose K C R™ is a proper cone with associated generalized inequality
<k. Wesay f: R" — R™ is K- convex if for all x,y, and 0 < A <1,

F(Ax+ (1= A)y) 2k Af(x) + (L= A)f(y)
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Convexity with respect to generalized inequalities

Convexity with respect to generalized inequalities

Homework

3.1, 3.4, 3.9, 3.14, 3.16, 3.18, 3.22, 3.26, 3.28(a) (b)*, 3.39(a-c), 3.43,
3.44, 3.49, 3.57,
* extra credit
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