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Definition

A function f : Rn → R is convex if domf is convex and if for all
x , y ∈ domf , and 0 ≤ λ ≤ 1, we have

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y).

Strictly convex if strict inequality holds whenever x 6= y and
0 < λ < 1.

We say f is concave if −f is convex. An affine function is both
convex and concave.

A function f is convex if it is convex when restricted to any line
intersecting its domain: for any x ∈ domf and v , g(x + tv) is
convex on {t : x + tv ∈ domf }.
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Extended-value extensions

If f is convex we define its extended-value extension,

f̃ (x) =

{
f (x) x ∈ domf
∞ x /∈ domf

With the extended reals, this can simplify notation, since we do not need to
explicitly describe the domain.

Example

For a convex set C , its indicator function IC is defined to be

IC (x) =

{
0 x ∈ C
∞ x /∈ C

.

Suppose domf = Rn. Then, min{f (x) : x ∈ C} is equivalent to minimizing
f + IC .
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Theorem

Suppose f : Rn → R is differentiable. Then f is convex if and only if domf is
convex and

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x , y ∈ domf .

Proof for n = 1. (Only if) Assume f is convex and x , y ∈ domf . Since domf
is convex, we have for all 0 < λ ≤ 1, x + λ(y − x) ∈ domf , and by convexity of
f , f (x + λ(y − x)) ≤ (1− λ)f (x)+λf (y).
Dividing both sides by λ, we obtain

f (y) ≥ f (x) +
f (x + λ(y − x))− f (x)

λ
.

Taking limit as λ → 0, we get f (y) ≥ f (x) + f ′(x)(y − x).
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First-order conditions (cont’d)

Proof for n = 1. (If) Choose any x 6= y and 0 ≤ λ ≤ 1, and let
z = λx + (1− λ)y . Then, by the above,

f (x) ≥ f (z) + f ′(z)(x − z), f (y) ≥ f (z) + f ′(z)(y − z).

Multiplying the first inequality by λ, the second by 1− λ, and adding them
yields

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

Proof for n ≥ 2. Let x , y ∈ domf . Consider restriction of f to the line through

x and y : g(λ) := f (x + λ(y − x) = f ((1− λ)x + λy , and apply the above

case.
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Second-order conditions (cont’d)

Proposition

Assume f is twice differentiable on domf which is open. Then f is convex if
and only if domf is convex and its Hessian is positive semidefinite: ∀x ∈ domf ,

∇2f (x) � 0.

Remark that

for y ∈ domf and z ∈ Rn, define g(λ) := f (y + λz). Then
g ′′(λ) = zT∇2f (y + λz)z . Thus, g ′′(λ) ≥ 0 on {λ|y + λz ∈ domf } if
and only if ∇2f (x) � 0 ∀x ∈ domf .

Thus, it suffices to prove proposition on an open interval of the real line.
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Second-order conditions (cont’d)

Case 1 f : R → R
(Only if) If f is convex, then f (y) ≥ f (x) + f ′(x)(y − x) for all x , y ∈ domf ,
where x < y . Thus,

f (y)− f (x)

y − x
≥ f ′(x).

Taking limit as x → y , we get f ′(y) ≥ f ′(x), which implies that f ′ is monotone
nondecreasing. Hence, f ′′(x) ≥ 0,∀x ∈ domf .
(If) For all x , y ∈ domf , there exists z ∈ domf satisfying

f (y) = f (x) + f ′(x)(y − x) +
1

2
f ′′(z)(y − x)2 ≥ f (x) + f ′(x)(y − x).

The second inequality follows from the hypothesis. Hence f is convex.
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Second-order conditions (cont’d)

Case 2 f : Rn → R
f is convex if and only if g(λ) = f (x + λy) is convex on {λ|x + λy ∈ domf },
∀x , y ∈ domf . Then, by Case 1, the latter holds if and only if g ′′(λ) ≥ 0 on
{λ|x + λy ∈ domf }:

g ′′(t) =
d

dt
g ′(t) =

d

dt

( n∑
i=1

f ′i (x + ty)yi

)

=
n∑

i=1

yi
d

dt
fi (x + λy) =

n∑
i=1

yi∇2f (x + λy)i·y

≥ yT∇2f (x + λy)y ≥ 0,

where ∇2f (x)i· is the i-th row of ∇2f (x). Therefore, ∇2f (x) � 0 for all

x ∈ domf .
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Some simple examples

Example

Exponential eax is convex on R for a ∈ R.

Powers xa are convex on R++ for a ≥ 1 or a ≤ 0, and concave for
0 ≤ a ≤ 1.

Powers of absolute value, |x |p for p ≥ 1, is convex on R.

Logarithm log x is convex on R++.

Negative entropy x log x is convex on R++. (Also on R+ if
defined as 0 for x = 0.)
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Norms

Every norm on Rn is convex.

Proof Remark that every norm function has the following properties:

Positive homogeneity: ‖λx‖ = λ‖x‖

Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

Positive definiteness: ‖x‖ = 0 if and only if x = 0.

We will use triangle inequality and positive definiteness.

For 0 ≤ λ ≤ 1, ‖λx + (1− λ)y)‖ ≤ ‖λx‖ + ‖(1− λ)y‖ = λ‖x‖ +

(1− λ)‖y‖.
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Max function

Max function, f (x) = max{x1, . . . , xn} is convex on Rn.

Proof

f (λx + (1− λ)y) = max
i
{λxi + (1− λ)yi}

≤ λ max
i

xi + (1− λ) max
i

yi

= λf (x) + (1− λ)f (y).
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Log-sum-exp

Log-sum-exp function f (x) = log(ex1 + · · ·+ exn) is convex on Rn.

Proof The Hessian of the log-sum-exp function is

∇2f (x) =
1

(1T z)2
(
(1T z)diag(z)− zzT

)
,

where z = (ex1 , . . . , exn). We must show that for all v , vT∇2f (x)v ≥ 0,
but

vT∇2f (x)v =
1

(1T z)2

(( n∑
i=1

zi

)( n∑
i=1

v2
i zi

)
−

( n∑
i=1

vizi

)2
)
≥ 0.

The inequality follows from the Cauchy-Schwarz inequality (aTa)(bTb) ≥
(aTb)2 applied to ai =

√
zi and bi = vi

√
zi .
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Log-determinant

Log-determinant f (X ) = log det X is concave on domf = Sn
++.

Proof Consider restriction of f to the line through Z ∈ Sn
++ to any direction V

∈ Sn:

g(t) = log det(Z + tV )

= log det(Z 1/2(I + tZ−1/2VZ−1/2)Z 1/2)

=
n∑

i=1

log(1 + tλi ) + log det Z ,

where λ1, . . . , λn are the eigenvalues of Z−1/2VZ−1/2.

g ′(t) =
n∑

i=1

λi

1 + tλi
, g ′′(t) = −

n∑
i=1

λ2
i

(1 + tλi )2
.

Since g ′′(t) ≤ 0, we conclude that f is concave.
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Sublevel sets and graphs

Definition

The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ domf |f (x) ≤ α}

Sublevel sets of a convex function are convex. (Converse is false.)

Definition

The graph of a function f : Rn → R is {(x , f (x))|x ∈ domf }.
The epigraph of f is epif = {(x , t)|x ∈ domf , f (x) ≤ t}.
The hypograph of f is hypf = {(x , t)|x ∈ domf , f (x) ≥ t}.

A function is convex (concave) if and only if its epigraph (hypograph, resp.) is

convex.

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Definitions
Examples

Epigraph and convex function

Consider the first-order condition for convexity: ∀ x , y ∈ domf , f (y) ≥
f (x) +∇f (x)T (y − x). Thus, if (y , t) ∈ epif , then t ≥ f (y) ≥ f (x) +
∇f (x)T (y − x). Hence ∇f (x)T (y − x) − (t − f (x)) ≤ 0. Thus,

(x , t) ∈ epif ⇒
[
∇f (x)
−1

]T ( [
y
t

]
−

[
x

f (x)

] )
≤ 0,

which means hyperplane in Rn+1 defined by (∇f (x),−1) supports epif
at the boundary point (x , f (x)).

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Definitions
Examples

Extensions of Jensen’s inequality

Definition

Jensen’s inequality: ∀ x , y ∈ domf and 0 ≤ λ ≤ 1, f (λx + (1− λ)y) ≤ λf (x)
+ (1− λ)f (y).

To finite sums: ∀ x1, . . . , xk ∈ domf and ∀ λ1, . . ., λk with λi ≥ 0 and∑
i λi = 1, we have

f (λ1x1 + . . . + λkxk) ≤ λ1f (x1) + · · ·+ λk f (xk).

To infinite sums:

To integrals: ∀p ≥ 0 such that
∫

S
p = 1 with S ⊆ domf ,

f

(∫
S

p(x)xdx

)
≤

∫
S

f (x)p(x)dx .

To prob. measures: Let x be a random variable with support in domf .
Then, f is convex if and only if ∀ probability measures of x such that
expectations exist, f (Ex) ≤ Ef (x).
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Hölder’s inequality from Jensen’s inequality

For p > 1, 1/p + 1/q = 1, and x , y ∈ Rn

n∑
i=1

xiyi ≤
( n∑

i=1

|xi |p
)1/p( n∑

i=1

|yi |q
)1/q

.

Proof From convexity of − log x , for a, b ≥ 0 and 0 ≤ λ ≤ 1, we can get,

aλb1−λ ≤ λa + (1− λ)b.

Applying this with a =
|xi |p∑
j |xj |p

, b =
|yi |q∑
j |yj |q

, and λ = 1/p yields

(
|xi |p∑n
j=1 |xj |p

)1/p( |yi |q∑n
j=1 |yj |q

)1/q

≤ |xi |p

p
∑n

j=1 |xj |p
+

|yi |q

q
∑n

j=1 |yj |q
.

Summing over i yields the inequality.
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Nonnegative weighted sums

Convexity is preserved under nonnegative scaling.

Proof If w ≥ 0 and f is convex, we have

epi(wf ) =

[
I 0
0 w

]
epif ,

which is convex because the image of a convex set under a linear
mapping is convex.

If f1, . . . , fm are convex functions, then ∀ wi ≥ 0, i = 1, . . ., m,

f = w1f1 + · · ·+ wmfm is convex.
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Composition with an affine mapping

Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax + b),

with domg = {x |Ax + b ∈ domf }. Then, if f is convex, so is g ; if f is

concave, so is g .
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Pointwise maximum and supremum

If f1 and f2 are convex functions, then so is their pointwise maximum,

f (x) = max{f1(x), f2(x)} with domf = domf1 ∩ domf2.

Proof 0 ≤ λ ≤ 1 and x , y ∈ domf ,

f (λx + (1− λ)y) = max{f1(λx + (1− λ)y), f2(λx + (1− λ)y)}
≤ max{λf1(x) + (1− λ)f1(y), λf2(x) + (1− λ)f2(y)}
≤ max{λf1(x), λf2(x)}+ max{(1− λ)f1(y), (1− λ)f2(y)}
= λ max{f1(x), f2(x)}+ (1− λ) max{f1(y), f2(y)}
= λf (x) + (1− λ)f (y).
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Pointwise maximum and supremum

If for each y ∈ A, f (x , y) is convex in x , then the function g , defined as

g(x) = sup
y∈A

f (x , y),

is convex in x . (domg = {x | (x , y) ∈ domf ∀y ∈ A, supy∈A f (x , y) < ∞})

Application

Support function of a set, SC (x) = sup{xT y |y ∈ C} is convex.

Distance to farthest point of a set, f (x) = supy∈C ‖x − y‖ is convex.

Least-squares as function of weights g(w) = infx

∑n
i=1 wi (a

T
i x − bi )

2

with domg = {w | infx

∑n
i=1 wi (a

T
i x − bi )

2 > −∞}.
Max eigenvalue of symm matrices f (X ) = sup{yTXy | ‖y‖2 = 1}.
Norm of a matrix

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Convex as pointwise affine supremum

If f : Rn → R is convex, with domf = Rn, then we have

f (x) = sup{g(x)|g affine, g(z) ≤ f (z) for all z}.

Proof (≥) The inequality ≥ is clear.
(≤) For any x we can find a supporting hyperplane of epif at (x , f (x)):
a ∈ Rn and b ∈ R with (a, b) 6= 0 such that ∀ (z , t) ∈ epif ,[

a
b

]T [
x − z

f (x)− t

]
≤ 0. Or, aT (x − z) + b(f (x)− f (z)− s) ≤ 0,

for all z ∈ domf = Rn and all s ≥ 0. This implies b > 0 as easily seen.
Therefore,

g(z) = f (x) + (a/b)T (x − z) ≤ f (z)

for all z . The function g is an affine underestimator of f and satisfies

g(x) = f (x).

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Chain Rule: Review

Consider a twice differentiable f : Rn → Rm whose domf is assumed to
be open for simplicity.

For m = 1, the derivative Df : Rn → R of f at x is defined to be

Df (x) =
[

D1f (x) · · ·Dnf (x)
]
.

A linear transformation from Rn to R which linearly approximates f
at x .

For m ≥ 2, the derivative of f at x is defined to be

Df (x) =

 Df1(x)
...

Dfm(x)

 .

A linear transformation from Rn to Rm which linearly approximates
f at x .
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Chain Rule: Review(cont’d)

For m = 1, we define the gradient of f is a column-wise
representation of its derivative:

∇f (x) =

 D1f (x)
...

Dnf (x)

 .

Thus, ∇f (x) is a function from Rn → Rn.

For m = 1, the Hessian ∇2f (x) of f is defined to be the derivative
of the gradient ∇f

∇2f (x) =

 D11f (x) · · · D1nf (x)
...

. . .
...

Dn1f (x) · · · Dnnf (x)

 .
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Chain Rule: Review(cont’d)

Suppose that h : Rn → Rm is differentiable at x ∈ domh, and that g :
Rm → Rp is differentiable at h(x) ∈ domg . (Assume domains are open.)
Let f := g ◦ h : Rn → Rp by (g ◦ h)(x) = g(h(x)). Then, f is
differentiable at x and its derivative is

Df (x) = D(g ◦ h)(x) = Dg(h(x))Dh(x).
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Hessian of composition

When p = 1, we have

Df (x) = Dg(h(x))Dh(x) =
[
∇g(h(x))T

]  ∇h1(x)T

...
∇hm(x)T

 .

Hence, ∇2f (x) = D(∇f (x)) = D(Df (x)T )

= D

( | |
∇h1(x) · · · ∇hm(x)

| |

 |
∇g(h(x))

|

).

Let Djh(x) :=
[

Djh1(x) · · · Djhm(x)
]T

, j = 1, . . . , n. Then,

∇2f (x) = D

( D1h(x)T

...
Dnh(x)T


 |
∇g(h(x))

|

) = D

( D1h(x)T∇g(h(x))
...

Dnh(x)T∇g(h(x))

).
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Hessian of composition(cont’d)

The following holds for vector-valued functions, a, b: Rn → Rm.

Da(x)Tb(x) = D

( m∑
j=1

aj(x)bj(x)

)
=

m∑
j=1

D
(
aj(x)bj(x)

)
=

m∑
j=1

(
bj(x)∇aj(x)T + aj(x)∇bj(x)T

)

= b(x)T

 ∇a1(x)T

...
∇an(x)T

+ a(x)T

 ∇b1(x)T

...
∇bn(x)T


= b(x)TDa(x) + a(x)TDb(x).

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Hessian of composition(cont’d)

Therefore, taking a(x) = Djh(x) and b(x) = ∇g(h(x)), for j = 1, . . . , n, we
have

D(Djh(x)T∇g(h(x))) = ∇g(h(x))TD(Djh(x)) + Djh(x)TD(∇g(h(x)))

= Dg(h(x))D(Djh(x)) + Djh(x)T∇2(g(h(x)))Dh(x).

Hence,

∇2f (x) =

 Dg(h(x))D(D1h(x))
...

Dg(h(x))D(Dnh(x))

+ Dh(x)T∇2g(h(x))Dh(x)

:= Dg(h(x))∇2h(x) + Dh(x)T∇2g(h(x))Dh(x).
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Hessian of composition(cont’d)

We understand ∇2h(x) is a ‘3D’ m × n × n matrix whose (k, i , j)-th element is
Dijhk(x) and that Dg(h(x))∇2h(x) is the linear combination of the 1× n × n
matrices Dijhk(x) for fixed k’s with corresponding coefficients Dkg(h(x))’s.
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Hessian of composition(cont’d)

The previous slides are rather for a mathematical practice.

For the convexity conditions of composition, it suffices to consider
one-dimensional cases: n = 1 and m = 1. Assume g , h twice differ’ble,
domg = domh = Rn.

f ′′(x) = g ′′(h(x))h′(x)2 + g ′(h(x))h′′(x).

g convex, nondecreasing, h convex ⇒ f convex,
g convex, nonincreasing, h concave ⇒ f convex,
g concave, nondecreasing, h concave ⇒ f concave,
g concave, nonincreasing, h convex ⇒ f concave.
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Composition(cont’d)

Example

g(x) = log(x), then g concave, g̃ nondecreasing

g(x) = x1/2, then g concave, g̃ nondecreasing

g(x) = x3/2, then g convex, g̃ not nondecreasing

g(x) = x3/2 for x ≥ 0, = 0 for x < 0 then g convex, g̃ nondecreasing.

In general,

g convex, g̃ nondecreasing, h convex ⇒ f convex,
g convex, g̃ nonincreasing, h concave ⇒ f convex,
g concave, g̃ nondecreasing, h concave ⇒ f concave,
g concave, g̃ nonincreasing, h convex ⇒ f concave.
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Composition(cont’d)

Proposition

g convex, g̃ nondecreasing, h convex ⇒ f convex.

Proof:
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Composition(cont’d)

Example

h convex ⇒ exp h convex.
h concave, positive ⇒ log h concave.
h concave, positive ⇒ 1/h(x) concave.
h convex, nonnegative, and p ≥ 1 ⇒ h(x)p convex.
h convex ⇒ − log(−g(x)) convex on {x |g(x) < 0}.
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Composition(cont’d)

Consider g : Rm → R and h : R → Rm with domg = Rm domh = R.

∇2f (x) = Dg(h(x))∇2h(x) + Dh(x)T∇2g(h(x))Dh(x).

g convex, g̃ nondecreasing in each argument, hi convex ⇒ f convex,

g convex, g̃ nonincreasing in each argument, hi concave ⇒ f
convex,

g concave, g̃ nondecreasing in each argument, hi concave ⇒ f
concave.
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Composition(cont’d)

Example

g(z) = z[1] + · · ·+ z[r ], sum of r largest components of z ∈ Rm. Then g
is convex and nondecreasing in each zi . Therefore, if h1, . . ., hm convex
functions on Rn, f := g ◦ h is convex.

g(z) = log(
∑m

i=1 ezi ) is convex and nondecreasing in each zi . Hence if
hi are convex, so is g ◦ h.

For 0 < p ≤ 1, g(z) = (
∑m

i=1 zp
i )1/p is concave and its extension is

nondecreasing in each zi . Hence if hi are concave and nonnegative
g ◦ h is concave.

For p ≥ 1, if hi are convex and nonnegative, (
∑m

i=1 hi (x)p)1/p is convex.

g(z) = (
∏m

i=1 zi )
1/m on Rm

+ is concave and its extension is
nondecreasing in each zi . If hi are nonnegative concave function, so is
(
∏m

i=1 gi )
1/m.
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Minimization

If f is convex in (x , y) and C is nonempty and convex, then the function g ,
defined by

g(x) = inf
y∈C

f (x , y),

is convex in x if g(x) > −∞ for some x . Here, domg = {x | (x , y) ∈ domf for
some y ∈ C}.
Proof:
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Minimization(cont’d)

Example

(Schur complement) Suppose for some A, C , ∈ Sn

f (x , y) = xTAx + 2xTBx + xTCx ,

is convex in (x , y) so that

[
A B

BT C

]
� 0.

Consider g(x) = infx f (x , y) which is given by g(x) = xT (A− BC †BT )x .
This is convex and hence A− BC †BT � 0. When C is invertible, then

A− BC−1BT is called Schur complement of

[
A B

BT C

]
.
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Minimization(cont’d)

Example

(Distance to a set) Distance from x to set S w.r.t. ‖ · ‖ is

dist(x , S) = inf
y∈S

‖x − y‖.

Function ‖x − y‖ is convex in (x , y), so if S is convex, then dist(x , S) is
convex in x .
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Perspective of a function

If f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined
by

g(x , t) = tf (x/t),

with domain
domg = {(x , t)|x/t ∈ domf , t > 0}

Proposition

If f is convex (concave, resp.), so is its perspective.

Proof:
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Perspective of a function(cont’d)

Example

Suppose f : Rn → R is convex, then is

g(x) = (cT x + d)f (Ax + b)/(cT x + d),

with domg = {x |cT x + d > 0, Ax + b)/(cT x + d) ∈ domf }.
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Definition

Given f : Rn → R, the conjugate f ∗ : Rn → R of f is defined as:

f ∗(y) = sup
x∈dom f

(yT x − f (x)).
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Affine functions f (x) = aT x + b. Function yT x − aT x − b is bounded
only when y = a. Thus domf ∗ = {a} and f (a) = −b.

Negative logarithm f (x) = − log x with domf = R++. Function
yT x + log x is bounded only when y < 0 and attains its maximum when
x = − 1

y
. Thus domf ∗ = R−− and f ∗(y) = −1− log(−y).

Exponential f (x) = ex . Function yx − ex attains its supremum only when
y > 0 and then at x = log y . Hence f ∗(y) = y log(y)− y for y > 0. For
y = 0, f ∗(y) = 0.

Negative entropy f (x) = x log x for x ≥ 0 (defining f (0) = 0).

Strictly convex quadratic f (x) = 1
2
xTQx given Q � 0. As yT x − 1

2
xTQx

is strictly concave, its unique maxima is attained when x = Q−1y for any
y . Thus f ∗(y) = 1

2
yTQ−1y .

For any set S ⊆ Rn, let IS(x) be its indicator function: domIS = S and
IS(x) = 0 for x ∈ S . Given y , yT x − IS(x) is bounded only when yT x is
bounded on S and f ∗(y) = sup {yT x | x ∈ S} with domf ∗ = {y | sup
{yT x | x ∈ S} < ∞}.
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Derivative of f (X ) = log det X

For invertible X ∈ Rn×n, consider f (X ) = log det X . From chain rule,
Df (X ) = 1

det X
D(det X ). Consider det X expanded w.r.t. ith row:

det X =
∑

j

Xij × (−1)i+j det X̄ij ,

where, X̄ij is submatrix obtained by deleting row i and column j from X . Thus
∂

∂Xij
det X = (−1)i+j det X̄ij and D(det X ) = adj(X ), and hence

D(log det X ) = (X−1)T .

Thus if X ∈ Sn, D(log det X ) = X−1. (See an alternative proof in Appendix of the textbook

which seems more intuitive.)
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Log-determinant f (X ) = log detX−1 on Sn
++. Then

f ∗(Y ) = sup{trYX + log det X |X ∈ Sn
++} for Y ∈ Sn.

First note that f ∗(Y ) < ∞ only when Y ≺ 0. For, if Y ⊀ 0,
Y =

∑n
i=1 λiviv

T
i with ‖vi‖ = 1 and λr ≥ 0 for some r . Then let

X = I + tvrv
T
r . Then X has n − 1 1’s and 1 + t as eigenvalues

corresponding to vi ’s for i 6= r and vr , respectively. Thus
trYX + log det X = trY + tλ + log(1 + t) which is unbounded on t ≥ 0.

When Y ≺ 0, supremum attains when D(trYX + log det X ) = Y + X−1

= 0, or X = −Y−1. Hence,

f ∗(Y ) = −n + log det(−Y−1).

Norm ‖x‖ and norm squared 1
2
‖x‖2.
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As pointwise supremum of affine functions of y , f ∗ is convex.

From definition, we have Fenchel’s inequality:

f (x) + f ∗(y) ≥ xT y ∀ x , y .

We will see if f is convex and closed, or epif is closed, then f ∗∗ = f .
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For arbitrary z ∈ Rn define y = ∇f (z). Then we have

f ∗(y) = zT∇f (z)− f (z).

For a > 0 and b ∈ Rn, the conjugate of g(x) = af (x) + b is

g∗(y) = af ∗(y/a)− b.

Suppose A ∈ Rn×n is nonsingular and b ∈ Rn. Then the conjugate of
g(x) = f (Ax + b) is

g∗(y) = f ∗(A−T y)− bTA−T y

with dom g∗ = ATdom f ∗.

If f (u, v) = f1(u) + f2(v), where f1 and f2 are convex functions with
conjugates f ∗1 and f ∗2 , respectively, then

f ∗(w , z) = f ∗1 (w) + f ∗2 (z).
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Definition

A function f : Rn → R is called quasiconvex if its domain and all its
sublevel sets

Sα = {x ∈ domf |f (x) ≤ α}
for α ∈ R, are convex.

A function is quasiconcave if −f is quasiconvex.

A function that is both quasiconvex and quasiconcave is called quasilinear.

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Quasiconvex functions
Differentiable quasiconvex functions
Operations that preserve quasiconvexity
Log-concave functions
Properties

Definition

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Conjugate function
Quasiconvex and Log-concave functions

Convexity with respect to generalized inequalities

Quasiconvex functions
Differentiable quasiconvex functions
Operations that preserve quasiconvexity
Log-concave functions
Properties

Basic properties

Theorem

A function f is quasiconvex if and only if domf is convex and for any
x , y ∈ domf and 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ max{f (x), f (y)}.

Proof
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Differentiable quasiconvex functions

First-order conditions
Suppose f : Rn → R is differentiable. Then f is quasiconvex if and only if
domf is convex and for all x , y ∈ domf

f (y) ≤ f (x) ⇒ ∇f (x)T (y − x) ≤ 0.

Second-order conditions
Supposer f is twice differentiable. If f is quasiconvex, then for all
x ∈ domf , and all y ∈ Rn, we have

yT∇f (x) = 0 ⇒ yT∇2f (x)y ≥ 0.

f is quasiconvex if f satisfies

yT∇f (x) = 0 ⇒ yT∇2f (x)y > 0

for all x ∈ domf and all nonzero y ∈ Rn.
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Operations that preserve quasiconvexity

Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions

f = max{w1f1, . . . , wmfm}

with wi ≤ 0 and fi quasiconvex, is quasiconvex.

Composition
If g : Rn → R is quasiconvex and h : R → R is nondereasing, then
f = h ◦ g is quaicionvex.
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Operations that preserve quasiconvexity

Minimization
If f (x , y) is quasiconvex jointly in x and y and C is a convex set, then the
function

g(x) = inf
y∈C

f (x , y)

is quasiconvex.
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Definition

Definition

A function f : Rn → R is logarithmically concave or log-concave if f (x) > 0
for all x ∈ domf and log f is concave. It is said to be logarithmically convex
or log-convex if log f is convex.

Definition

a function f : Rn → R, with convex domain and f (x) > 0 for all x ∈ domf ,
is log-concave if and only if for all x , y ∈ domf and 0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≥ f (x)λf (y)1−λ
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Properties

Twice differentiable log-convex/concave functions
Suppose f is twice differentiable, with domf convex, so

∇2 log f (x) =
1

f (x)
∇2f (x)− 1

f (x)2
∇f (x)∇f (x)T .

We conclude that f is log-convex if and only if for all x ∈ domf ,

f (x)∇2f (x) � ∇f (x)∇f (x)T

and log-concave if and only if for all x ∈ domf ,

f (x)∇2f (x) � ∇f (x)∇f (x)T
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Monotonicity and convexity w.r.t generalized inequality

Suppose K ⊆ Rn is a proper cone with associated generalized inequality
�K . A function f : Rn → R is called K-nondecreasing if

x �K y ⇒ f (x) ≤ f (y),

and K-increasing if

x �K y , x 6= y ⇒ f (x) < f (y).

Suppose K ⊆ Rm is a proper cone with associated generalized inequality
�K . We say f : Rn → Rm is K- convex if for all x , y , and 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) �K λf (x) + (1− λ)f (y)
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Homework

3.1, 3.4, 3.9, 3.14, 3.16, 3.18, 3.22, 3.26, 3.28(a) (b)*, 3.39(a-c), 3.43,
3.44, 3.49, 3.57,

* extra credit
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