
Introduction
Basic terminologies

Convex Optimization: Introduction and Basic
Terminologies

A supplementary note to Chapter 2 of Convex Optimization by S. Boyd and L. Vandenberghe

Optimization Lab.

IE department
Seoul National University

22nd July 2009

Optimization Lab. Convex Optimization: Introduction and Basic Terminologies A supplementary note to Chapter 2 of Convex Optimization by S. Boyd and L. Vandenberghe



Introduction
Basic terminologies

Optimization

Optimization

min f0(x) “Objective”
sub. to fi (x) ≤ bi i = 1, . . . ,m, “Constraints”

(1)

where fi : Rn → R for i = 0, 1, . . . ,m.

Definition

Vector x is called feasible if it satisfies all constraints. A feasible solution
x∗ is called optimal if its objective value is minimum: f0(x

∗) ≤ f0(x) for
all feasible x.

Tractability of (1), namely possibility of an efficient solution method
for (1), depends on characteristics of fi ’s.

In general, easy to devise a problem whose feasibility problem is
believed to have no efficient method.
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Convex optimization

Definition

Optimization (1) is convex if fi ’s are all convex: ∀ x, y ∀
0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y), (2)

“Function value of a convex combination of any two points is no
greater than the same convex combination of the two function
values.”
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Convex optimization. Why care?

Easy!

“In fact the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.” - Rockafellar

We can find global optima in polynomial time of input sizes of
problem size and numerical accuracy (modulo some technical
conditions).

Prevalent!

We are discovering new applications that can be formulated as a
convex optimization problem. Especially, it contains conic programs
such as linear programs, second-order cone programs, and
semidefinite programs.
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The goals

1 To develop the skills and background needed to recognize,
formulate, and solve convex optimization problems.

2 To perform in-depth review on how conic programs offer tight
relaxations of NP-hard combinatorial optimization problems to
yield better approximation algorithms.

3 To survey convex optimization problems discovered recently in
such areas as control, signal processing, circuit design, data
modeling, and finance, and, more ambitiously, to discover new
such practical problems.
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Lines and affine sets

A line through x1 and x2 is defined to a set of points y such that
y = (1− λ)x1 + λx2 = x1 + λ(x2 − x1) where λ ∈ R. Thus, y is the sum
of the base point x2 and the direction x1 − x2 scaled by λ.

An affine set is defined to be a set that contains the line through any two
distinct points in the set: for any x1 , x2 ∈ C , with x1 6= x2, and λ ∈ R,
we have λx1 + (1− λ)x2 ∈ C . (Extendible to an equivalent definition in
terms of a finite number of points.)

If C is affine, then for any x0 ∈ C , V = C − x0 = {x − x0|x ∈ C} is a
subspace as closed for scalar multiplication and addition: ∀ x , y ∈ C and
∀λ ∈ R, λ(x − x0) = λx + (1− λ)x0 − x0 ∈ C − x0, and x − x0 + y − x0

= 2( 1
2
x + 1

2
y − x0) ∈ C − x0. Thus, an affine set C is a translation of a

subspace V , C = V + x0. The dimension of C , dim C is defined as the
dimension of V .
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Lines and affine sets

An affine combination of the points x1, . . . , xk is a point of the form:
λ1x1 + · · ·+ λkxk with

∑k
i=1 λi = 1.

The affine hull of a set C , denoted by aff C , is defined to be the set of all
affine combinations of points in C . Thus, aff C is the smallest affine set
that contains C .

The affine dimension of a set C is defined as dim(aff C).
e.g. C = {x ∈ R2|x2

1 + x2
2 = 1} ⇒ dim(aff C) = 2, while the

“dimension” of C is < 2 in usual senses.

Relative interior:

x ∈ relint C ⇔ ∃δ > 0 s.t. B(x , δ) ∩ aff C ⊆ C .
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Affine sets: Some exercises

x2 − x1, x3 − x1, . . ., xn − x1 are linearly independent ⇔ x1 − x2, x3 − x2,
. . ., xn − x2 are linearly independent ⇔ · · · ⇔ x1 − xn, x2 − xn, . . .,
xn−1 − xn are linearly independent.

In this case, we say x1, x2, . . ., xn are affinely independent.

When an affine set C contains the origin the maximum number of affinely
independent points in C is one plus the maximum number of linearly
independent points in C . Otherwise they are the same.

The dimension of affine set C is one less than maximum number of
affinely independent points in C .
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Line segments and convex sets

The line segment between x1 and x2 is the set of points
y = (1− λ)x1 + λx2 = x1 + λ(x2 − x1) where 0 ≤ λ ≤ 1.

A set is called convex if it contains the line segment between any two

points in the set: for any x1, x2 ∈ C , and for any 0 ≤ λ ≤ 1, we have

(1− λ)x1 + λx2 ∈ C .

1 Finitely many points: If C is convex, then
x1, ..., xk ∈ C ,

∑
i λi = 1, λi ≥ 0 ⇒

∑
i λixi ∈ C .

2 Countably many points: If C is convex, then
{xi} ⊆ C ,

∑∞
i=1 λi = 1, λi ≥ 0,

∑∞
i=1 λixi convergent ⇒∑∞

i=1 λixi ∈ C .
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Line segments and convex sets

A convex combination of x1, . . . , xk is a point of the form:
λ1x1 + · · ·+ λkxk with

∑k
i=1 λi = 1,∀λi ≥ 0.

The convex hull of a set C , denoted by convC , is defined to be the
set of convex combinations of points from C . Thus, convC is the
smallest convex set that contains C .

The dimension of a convex set is defined to be its affine dimension.
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Cones

A cone is a set closed under scalar multiplication: ∀x ∈ C and ∀λ ≥ 0,
λx ∈ C .

A convex cone is a set which is convex as well as a cone.

A conic combination of points x1, . . . , xk is a point of the form:
λ1x1 + · · ·+ λkxk with λi ≥ 0 ∀i .
The conic hull of a set C , coneC is defined to be the set of conic
combinations of points in C . Thus, coneC is the smallest convex cone
containing C .

We say coneC is finitely generated if |C | < ∞.
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Examples

The empty set ∅, any single point {x0}, and Rn are affine (hence
convex).

Any line is affine. If it passes through zero, then it is a subspace
(hence a convex cone).

A ray, {x0 + λv |λ ≥ 0}, where v 6= 0, is convex, but not affine.

Any subspace is affine, and a convex cone.
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Hyperplanes and halfspaces

Definition

A hyperplane is a set H = {x : aT x = b}, where a ∈ Rn, a 6= 0, and b ∈ R.

For any x0 ∈ H, {x |aT (x − x0) = 0} = x0 + a⊥, where a⊥ = {v |aT v = 0}

A (closed) halfspace is a set of the form {x : aT x ≤ b}, where a 6= 0.
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Euclidean balls and ellipsoids

Definition

A (Euclidean) ball in Rn is

B(xc , r) = {x : ‖x − xc‖2 ≤ r} = {xc + ru : ‖u‖2 ≤ 1}

where r > 0, and ‖ · ‖2 denotes the Euclidean norm. The vector xc is the center of the
ball and the scalar r is its radius.

Definition

An ellipsoid is
E = {x : (x − xc )

T P−1(x − xc ) ≤ 1}

where P = PT � 0. (Notice it is a ball with radius r when P = r2I .)

The length of axes are
√

λi where λi are eigenvalues of P. The triangle property of

the norm implies the convexity of an ellipsoid.
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Euclidean balls and ellipsoids

Theorem

An ellipsoid can be represented as

{Au + b : ‖u‖2 ≤ 1}

where A is nonsingular.

Proof. For u ∈ B(0, 1), let x = Au + b or u = A−1(x − b). Then,

uT Iu ≤ 1 ⇔ (x − b)T (A−1)TA−1(x − b) = (x − b)T (A−1)TA−1(x − b) ≤ 1

By denoting (A−1)TA−1, symmetric and positive-definite, by P−1, we get

(x − b)TP−1(x − b) ≤ 1.
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Norm balls and norm cones

A function f : Rn → R is called a norm if

1 nonnegative: f (x) ≥ 0,∀x ,
2 definite: f (x) = 0 only if x = 0,
3 homogeneous: f (tx) = |t|f (x),∀x ,∀t ∈ R, and
4 satisfies triangle inequality: f (x + y) ≤ f (x) + f (y), ∀x , y .

A norm ball of radius r and center xc is B‖·‖(xc , r) = {x : ‖x − xc‖ ≤ r}.
The norm cone is C = {(x , t) : ‖x‖ ≤ t} ⊆ Rn+1.
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Polyhedra

Definition

A polyhedron P is the intersection of a finite number of halfspaces:

P = {x |aT
i x ≤ bi , i = 1, ...,m} = {x |Ax ≤ b}.

Definition

A simplex C is the convex hull of a set of affinely indep vectors:

C = conv{v0, ..., vk} = {λ0v0 + ... + λkvk |λ ≥ 0, 1Tλ = 1}

where v0, ..., vk ∈ Rn are affinely independent.
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Fundamental theorem of linear inequalities

Theorem

Let a1, a2, . . ., am b ∈ Rn. Then, either b ∈ cone{a1, a2, . . . , am} or there is a
hyperplane cT x = 0 containing t − 1 independent vectors from a1, a2, . . ., am such
that cT b < 0 and cT ai ≥ 0 for i = 1, . . . , m, where t = rank{a1, a2, . . . , am, b}. But
never both.

Proof May assume t = n. Consider any basis B = {ai1 , ai2 , . . . , ain} of n independent
vectors from a1, a2, . . ., am.

1 If b = Bλ with λ ≥ 0. Then we are in the first case. Done.

2 Choose smallest h among i1, i2, . . ., in such that λh < 0. Let cT x = 0 be
hyperplane generated by D − {ah}. Normalize c so that cT ah = 1. (Then
cT b = λh < 0.)

3 If cT ai ≥ 0 for i = 1, . . . , m, then we are in the second case. Done.

4 Otherwise, choose smallest s with cT as < 0 and D ← (D − {ah}) ∪ {al} and
repeat.
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Fundamental theorem of linear inequalities (cont’d)
Feasibility simplex method
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Fundamental theorem of linear inequalities (cont’d)

Proof(cont’d) Suffices to show this process terminates. Denote, by Bk , the basis B in
kth iteration. If process does not terminate, then there is k < l with Bk = Bl . Let r
be largest index for which ar has been removed from D at the end of one of iterations
k, k + 1, . . ., l − 1. Then ar must have been added back to B. Thus notice that

Bp ∩ {ar+1, . . . , am} = Bq ∩ {ar+1, . . . , am}. (3)

Let B = {ai1 , ai2 , . . . , ain} and b = λi1ai1 + · · · + λinain . Let c ′ be the vector c in
Step 2 of iteration q. Then we have the following contradiction:

0 > (c ′)T b = (c ′)T (λi1ai1 + · · ·+ λinain ) = λi1 (c
′)T ai1 + · · ·+ λin (c

′)T ain > 0.

The last inequality follows from that

if ij < r then λij ≥ 0 and (c ′)T aij ≥ 0;

if ij = r then λij < 0 and (c ′)T aij < 0, and

if ij > r then (c ′)T aij = 0 (from (3) and def of c ′).
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Polyhedra(cont’d)
Farkas-Minkowski-Weyl theorem

Corollary

A cone C is polyhedral, i.e. C = {x |Ax ≤ 0} for some A ∈ Rm×n if and
only if C is finitely generated.

Proof (⇐) Let C = cone{x1, x2, . . . , xm} with xi ∈ Rn. May assume
span{x1, x2, . . . , xm} = Rn as we can extend a halfspace H of
span{x1, x2, . . . , xm} to a halfspace H ′ of Rn so that
H = H ′ ∩ span{x1, x2, . . . , xm}.
From Fundamental theorem, for any y /∈ cone{x1, x2, . . . , xm} there is a
separating hyperplane cT x = 0 containing n − 1 independent vectors
from x1, x2, . . ., xm. Since there are only finite such combinations, C is
the intersection of finite number of corresponding halfspaces, namely
polyhedral.
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Polyhedra(cont’d)
Farkas-Minkowski-Weyl theorem

Proof (cont’d) (⇒) Let C = {x |aT
i x ≤ 0, i = 1, . . . ,m}. Consider

cone{a1, a2, . . . , am} which is, by the above, polyhedral: there are b1, b2,
. . ., bt such that cone{a1, a2, . . . , am} = {x |bT

i x ≤ 0, i = 1, . . . , t}. Our
claim is C = C ′ := cone{b1, b2, . . . , bt}. First notice that C ′ ⊆ C as
bi ∈ C (since bT

i aj ≤ 0).
To establish C ′ ⊇ C , suppose y /∈ C ′. Since C ′ := cone{b1, b2, . . . , bt} is
polyhedral, Fundamental theorem implies ∃ w such that wTbi ≤ 0 ∀ i
and wT y > 0. Hence w ∈ cone{a1, a2, . . . , am} and wT x ≤ 0 for all
x ∈ C . Since wT y > 0 we have y /∈ C .
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Polyhedra(cont’d)

We call a finitely generated convex hull polytope.

Corollary

A set P ⊆ Rn is polyhedral if and only if P = Q + C for some polytope
Q and finitely generated cone C.

Proof (⇒) Say P = {x |Ax ≤ b}. Then consider homogenized cone{(
x
λ

)
|x ∈ Rn, λ ∈ R, Ax − λb ≤ 0

}
.
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Polyhedra

Example

Octahedron in R3

x1 + x2 + x3 ≤ 1
−x1 + x2 + x3 ≤ 1

.

.

.

.

.

.

.

.

.
−x1 − x2 − x3 ≤ 1

 8 equations vs 6 points = conv{±e1,±e2,±e3}

Need 2n equations for polyhedral description but 2n points in conv hull description

Example

Cube in R3

x1 ≤ 1
−x1 ≤ 1

.

.

.

.

.

.

.

.

.
−x3 ≤ 1

 6 equations vs 8 points = conv{(1, 1, 1), (−1, 1, 1), . . . , (−1,−1,−1)}

Need 2n equations in polyhedral edescription, but 2n points for convex hull description.
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Polyhedral representation of a simplex

Suppose that C is a simplex defined by the affinely indep points v0, . . . , vk .

x ∈ C ⇔ x = λ0v0 + λ1v1 + · · ·+ λkvk for some λ s.t ∀λi ≥ 0,
∑

λi = 1
⇔ x = v0 + λ1(v1 − v0) + · · ·+ λk(vk − v0)
⇔ x = v0 + Aλ′

where A =

 | | |
v1 − v0 v2 − v0 · · · vk − v0

| | |

, λ′ = [λ1, . . . , λk ], 1
T λ′ ≤ 1.

Since v0, . . . , vk are affinely independent,

rank(A) = k ⇔ By row operations, we can reduce A to

[
Ik
0

]
⇔ ∃B =

[
B1

B2

]
∈ Rn×n s.t.BA =

[
Ik
0

]
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Polyhedral representation of a simplex

x = v0 + Aλ′, λ′ ≥ 0, 1T λ′ ≤ 1
⇔ Bx = Bv0 + BAλ′, λ′ ≥ 0, 1T λ′ ≤ 1

⇔ Bx = Bv0 +

[
Ik
0

]
λ′, λ′ ≥ 0, 1T λ′ ≤ 1

Thus,

x ∈ C ⇔ B1x = B1v0 + λ′, B2x = B2v0, λ
′ ≥ 0, 1T λ′ ≤ 1

⇔ B2x = B2v0, B1x ≥ B1v0, 1
TB1x ≤ 1 + 1TB1v0
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The positive semidefinite cone

Some sets of matrices:

Rn×n −−−−−→
symmetry Sn −−−−−→

PSDness Sn
+
−−−−→
PDness Sn

++.

Sn
+ is a convex cone: for nonnegative α, β ∈ R and M, N ∈ Sn

+,

xT (αM + βN)x = αxTMx + βxTNx ≥ 0.

Positive semidefinite cone in S2

X =

[
x y
y z

]
⇐⇒ x ≥ 0, z ≥ 0, xz ≥ y 2.
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Intersection

Convexity is preserved under intersection:

Sα is convex for α ∈ A ⇒ ∩α∈ASα is convex.

Example:

Sn
+ = ∩z 6=0{X ∈ Sn : zTXz ≥ 0} where {X ∈ Sn|zTXz ≥ 0} is a linear

function of X .

Let p(t) =
∑m

k=1 xk cos kt. Then,

S = {x ∈ Rm : |p(t)| ≤ 1 for |t| ≤ π/3}

can be expressed as S =
⋂
|t|≤π/3 St where

St = {x | − 1 ≤ (cos t, ..., cosmt)T x ≤ 1}.
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Affine functions

Definition

A function f : Rn → Rm is affine if it is a sum of linear function and a constant,
i.e., if it has the form f (x) = Ax + b, where A ∈ Rm×n and b ∈ Rm.

The image and inverse image of a convex set under an affine function f is
convex:

S ⊆ Rn convex ⇒ f (S) = {f (x)|x ∈ S} is convex.

C ⊆ Rm convex ⇒ f −1(C) = {x ∈ Rn|f (x) ∈ C} is convex.
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Affine functions(cont’d)

Example

1 Scaling and translation preserve convexity.

2 So does a projection: [Im
... On]

[
x
y

]
= x, where x ∈ Rm, y ∈ Rn

3 S1, S2 convex ⇒ So are their sum S1 + S2 and product S1 × S2 :=
{(x1, x2)|x1 ∈ S1, x2 ∈ S2},

4 and partial sum, S := {(x , y1 + y2)|(x , y1) ∈ S1, (x , y2) ∈ S2}.
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Affine functions(cont’d)

Example

Polyhedron = {x |Ax ≤ b, Cx = d}
= {x |f (x) ∈ Rm

+ × {0}}
where f (x) = (b − Ax , d − Cx)

Example

Ellipsoid = {x |(x − xc)
TP−1(x − xc) ≤ 1}, P ∈ Sn

++

= the image of {u|‖u‖2 ≤ 1}
under the affine mapping f (u) = P1/2u + xc

= the inverse image of unit ball

under the affine mapping g(x) = P−1/2(x − xc)
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Linear-fractional and perspective functions

Definition

A perspective function P : Rn+1 → Rn, with dom P = Rn × R++ is defined as

P(z , t) = z/t.

If C ⊆ domP is convex, P(C) is convex.

If C ⊆ Rn is convex. P−1(C) is convex.
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Linear-fractional and perspective functions

Definition

Let g : Rn → Rm+1 be affine, namely, g(x) =

[
A
cT

]
x +

[
b
d

]
. The function

f : Rn → Rm given by f = P ◦ g, i.e.,

f (x) = (Ax + b)/(cT x + d), domf = {x : cT x + d > 0},

is called a linear-fractional (or projective) function.

Both image and inverse image of a convex set under linear-fractional are
convex.

x × {1} −−−−−−−−−→
affine mapping

[
A b

CT d

] [
x
1

]
−−−→
scaling

[
Ax+b
cT x+d

1

]
−−−−−→
projection

Ax+b
cT x+d
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Proper cones and generalized inequalities

Definition

A cone K ⊆ Rn is called a proper cone if

1 K is convex and closed,

2 K is solid, or K has nonempty interior,

3 K is pointed, or K contains no line.

Example :

a. Nonnegative orthant, K = Rn
+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}.

b. Positive semidefinite cone, K = Sn
+.

c. Nonnegative polynomials in [0, 1]

K = {x ∈ Rn : x1 + x2t + x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}.

K is proper and its interior is the set of coeffi. of polynomials positive on
[0, 1] (from uniform continuity).
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Proper cones and generalized inequalities

A proper cone K can be used to define a generalized inequality, which is a
partial ordering on Rn:

x �K y ↔ y − x ∈ K , x ≺K y ↔ y − x ∈ intK .

Example:

Let K be the nonnegative orthant, that is K = Rn
+. Then,

x �K y ⇔ xi ≤ yi , i = 1, . . . , n

Let K be the PSD cone, that is K = Sn
+. Then,

X �K Y ⇔ Y − X ∈ Sn
+
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Proper cones and generalized inequalities

Generalized inequality �K satisfies

1 x �K y , u �K v ⇒ x + u �K y + v ,

2 x �K y , y �K z ⇒ x �K z ,

3 x �K y , α ≥ 0 ⇒ αx �K αy ,

4 x �K x ,

5 x �K y , y �K x ⇒ x = y , and

6 xi �K yi for i = 1, ..., and xi → x , yi → y as i →∞ ⇒ x �K y .

Strict generalized inequality ≺ satisfies

1 x ≺K y ⇒ x �K y ,

2 x ≺K y , u �K v ⇒ x + u ≺K y + v ,

3 x ≺K y , α > 0 ⇒ αx �K αy ,

4 x ⊀K x , and

5 x ≺K y ⇒ x + u ≺K y + v for small enough u and v .
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Minimum and minimal elements

In general, �K is not a linear ordering: there can be x and y such that x �K y
and y �K x .

Definition

A point x ∈ S is the minimum element of S w.r.t. �K if x �K y ,∀y ∈ S.
Equivalently, x ∈ S is the minimum element iff S ⊆ x + K. A point x ∈ S is a
minimal element of S w.r.t. �K if y ∈ S , y �K x ⇒ y = x. Equivalently, x ∈ S
is a minimal element iff (x − K) ∩ S = {x}.
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Separating hyperplane theorem

Theorem

Suppose C and D are disjoint convex sets. Then, ∃a 6= 0, b s.t.

aT x ≤ b,∀x ∈ C , aT x ≥ b,∀x ∈ D.

Then {x |aT x = b} is called a separating hyperplane for C and D.

In some cases, a strict separation can be established: Let C be a closed convex

set and x0 /∈ C . Then there exists a hyperplane {x |aT x = b} that strictly

separates x0 from C , namely, aT x ≤ b for every x ∈ C and aT x0 > b.
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Separating hyperplane theorem(cont’d)

Case 1 : C is compact, and D is closed.
Define dist(C , D) = inf{‖u − v‖2|u ∈ C , v ∈ D}. Then, ∃c ∈ C and d ∈ D
s.t. ‖c − d‖2 = dist(C , D) and ‖c − d‖2 > 0. (Argue that we may also assume
D is also bounded as far as such d is concerned.)
Consider hyperplane f (x) = (d − c)T (x − c+d

2
) = 0 so that a := d − c and

b :=
‖d‖2

2−‖c‖2
2

2
. Need to show f is nonpositive on C and nonnegative on D.

Suppose not: ∃u ∈ D s.t. f (u) = (d − c)T (u − d+c
2

) < 0.
Consider the distance between c and the points on line segment from d to u,
‖d + λ(u − d)− c‖2 and its derivative w.r.t. λ, 1

2
d

dλ
‖d + λ(u − d)− c‖2

2

∣∣
λ=0

= (d − c)T (u − d) = (d − c)T (u − d+c
2

) − 1
2
(d − c)T (d − c) < 0.

It means that the point d + λ(u − d) is closer to c than d for sufficiently small

λ > 0. A contradiction.
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Separating separating hyperplane(cont’d)

Case 2 : C is convex and D = {d}, with d /∈ intC

Subcase 1 d /∈ clC . As the point d itself is compact, from the Case 1,
and we can separate d from clC and hence also from C .

Subcase 2 d ∈ bdC . Then ∃{dn} with dn /∈ clC , which converges to d .

Thus, from Subcase 1, ∃
[

a1

b1

]
, . . .,

[
an

bn

]
, . . ., which satisfy

(an)T x ≤ bn and (an)Tdn ≤ bn for all n. Taking
∥∥∥[

an

bn

]∥∥∥
2

= 1

guarantees a convergent subsequence:
[

ank

bnk

]
→

[
a
b

]
. Then

[
a
b

]
defines a hyperplane separating d from C as easily checked.

Case 3 : C , D are convex. (Most general case)

D is convex. ⇒ −D is convex. ⇒ C + (−D) = C − D is convex. Since 0 /∈
C − D, from Case 2, there is a hyperplane separating 0 from C − D. Thus

there is a such that aT x ≤ aT y for any pair x ∈ C and y ∈ D. Can complete

the proof by considering b := supx∈C aT x .
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Converse of separating separating hyperplane

Theorem

Any two convex sets C and D, at least one of which is open, are disjoint
if and only if there exists a separating hyperplane.

Only if: Say C is open and an affine function is nonpositive on C and
nonnegative on D. Any common element of C and D should have the function
value 0. But, C ’s being open implies the affine function is strictly negative on
it and can not have a zero on C .

Application

Theorem of alternatives for strict linear inequalities

Ax ≺ b are infeasible.
⇐⇒ C = {b − Ax |x ∈ Rn}, D = Rm

++ do not intersect.
⇐⇒ ∃ a separating hyperplane: ∃ a nonzero λ ∈ Rm, µ ∈ R

s.t. λT (b − Ax) ≤ µ ∀x ∈ Rn and λT y ≥ µ ∀y � 0.

⇐⇒ λ 6= 0, λ � 0, AT λ = 0, λTb ≤ 0 as we may assume µ = 0. (Why?)
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Supporting hyperplanes

Definition

Suppose x0 ∈ C ⊆ Rn. If a 6= 0 satisfies aT x ≤ aT x0,∀x ∈ C, then the
hyperplane {x |aT x = aT x0} is called a supporting hyperplane to C at x = x0.

Separating hyperplane theorem immediately implies the following.

Theorem

For any nonempty convex set C and any x0 ∈ bd C, there exists a supporting
hyperplane to C at x0.
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Dual cones

Definition

The dual cone of a cone K is

K∗ = {y |xT y ≥ 0,∀x ∈ K}

K∗ is a cone, and is always convex, even when K is not.

Definition

When a cone is its own dual, we call it self-dual.
e.g. (Rn

+)∗ = Rn
+, (Sn

+)∗ = Sn
+

1 K∗ is closed and convex.

2 K1 ⊆ K2 =⇒ K∗
2 ⊆ K∗

1

3 If K has nonempty interior, then K∗ is pointed.

4 If cl K is pointed, then K∗ has nonempty interior.

5 K∗∗ is the closure of the convex hull of K .
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Dual cones

Example

Self-duality of positive semidefinite cones: (Sn
+)∗ = Sn

+

1 ⊆: Suppose P ∈ Sn
+ satisfies P · Q ≥ 0,∀Q ∈ Sn

+. We want to show that
P ∈ Sn

+.

Suppose, on the contrary, that P /∈ Sn
+. Then, ∃y 6= 0 s.t. yTPy =

tr(yTPy) = tr(P(yyT )) = P · (yyT ) < 0. As yyT ∈ Sn
+, contradiction.

2 ⊇: Pick any Q ∈ Sn
+. We want to show that P · Q ≥ 0 ∀P ∈ Sn

+.

Consider Spectral decomposition P = λ1p1p
T
1 + · · · + λkpkp

T
k . ⇒ P ·Q

= tr(
∑k

i=1 λi (pip
T
i ) · Q) = tr(

∑k
i=1 λip

T
i Qpi ) ≥ 0.

Example

Dual of a norm cone K = {(x , t) ∈ Rn+1 : ‖x | ≤ t} is
K∗ = {(y , s) ∈ Rn+1 : ‖y‖∗ ≤ s}, where ‖y‖∗ = sup{yTu| ‖u‖ ≤ 1}, a norm
called dual norm. For instance, (‖ ‖p)∗ = ‖ ‖q when p−1 + q−1 = 1.
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Dual generalized inequalities

Theorem

K is a proper cone. ⇒ K∗ is a proper cone.

It induces a generalized inequality.

y �K∗ 0 ⇐⇒ yT x ≥ 0,∀x �K 0

Dual characterization of minimum element
x is the minimum element of S w.r.t. �K

⇐⇒ ∀λ �K∗ 0, x is the unique minimizer of λT z over z ∈ S .
⇐⇒ {z |λT (z − x) = 0} is a strict supporting hyperplane to S at x0.

Dual characterization of minimal element
x is minimal if λ �K∗ 0 and x minimizes λT z over z ∈ S .
If S is convex, then for any minimal element x ,
there exists a nonzero λ �K∗ 0 s.t. x minimizes λT z over z ∈ S .
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Homework

2.1, 2.4, 2.9, 2.10, 2.12(e-g), 2.13, 2.18, 2.20, 2.24, 2.28, 2.31, 2.33,
2.35, 2.37, 2.38
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