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Introduction

Optimization

Optimization
min  fo(x) “Objective” (1)
sub.to fi(x)<b; i=1,...,m, "“Constraints”

where f; : R" - R for i =0,1,..., m.

Definition

Vector x is called feasible if it satisfies all constraints. A feasible solution

*

x* is called optimal if its objective value is minimum: fy(x*) < fo(x) for
all feasible x.

@ Tractability of (1), namely possibility of an efficient solution method
for (1), depends on characteristics of f;'s.

@ In general, easy to devise a problem whose feasibility problem is
believed to have no efficient method.
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Convex optimization

Definition
Optimization (1) is convex if f;'s are all convex: ¥ x, y ¥V
0< A< 1, we have

F(Ax + (1= A)y) < Af(x) + (L= Nf(y), (2)

“Function value of a convex combination of any two points is no
greater than the same convex combination of the two function
values.”
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Convex optimization. Why care?

@ Easy!
“In fact the great watershed in optimization isn't between linearity
and nonlinearity, but convexity and nonconvexity.” - Rockafellar

We can find global optima in polynomial time of input sizes of
problem size and numerical accuracy (modulo some technical
conditions).

@ Prevalent!
We are discovering new applications that can be formulated as a
convex optimization problem. Especially, it contains conic programs
such as linear programs, second-order cone programs, and
semidefinite programs.
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The goals

@ To develop the skills and background needed to recognize,
formulate, and solve convex optimization problems.

@ To perform in-depth review on how conic programs offer tight
relaxations of NP-hard combinatorial optimization problems to
yield better approximation algorithms.

© To survey convex optimization problems discovered recently in
such areas as control, signal processing, circuit design, data
modeling, and finance, and, more ambitiously, to discover new
such practical problems.
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and affine sets

@ A line through x; and x; is defined to a set of points y such that
y=(1=X)x1+ I =x +A(x2 — x1) where A € R. Thus, y is the sum
of the base point x2 and the direction x; — x» scaled by A.

@ An affine set is defined to be a set that contains the line through any two
distinct points in the set: for any x; , x2 € C, with x; # x2, and A € R,
we have Ax; + (1 — A\)x; € C. (Extendible to an equivalent definition in
terms of a finite number of points.)

@ If C is affine, then for any xo € C, V=C —x = {x —x|x € C} is a
subspace as closed for scalar multiplication and addition: V x, y € C and
VA eR, )\(X—xo)—)\x+(1—)\)xo—xo €C—xp,and x —x0 + y — X0
=2(3x+ 3y — x0) € C — xo. Thus, an affine set C is a translation of a
subspace V, C = V + xp. The dimension of C, dim C is defined as the
dimension of V.
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and affine sets

@ An affine combination of the points xi,...,xx is a point of the form:
A1x1 + - 4+ Aexk with Zf:l Ai=1.

@ The affine hull of a set C, denoted by aff C, is defined to be the set of all
affine combinations of points in C. Thus, aff C is the smallest affine set
that contains C.

@ The affine dimension of a set C is defined as dim(aff C).
eg. C={xeR?xf +x3 =1} = dim(aff C) = 2, while the
“dimension” of C is < 2 in usual senses.

@ Relative interior:

x € relint C < 36 >0 s.t. B(x,8)Naff CC C.
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Affine sets: Some exercises

@ X» — X1, X3 — X1, ..., Xop — X1 are linearly independent < x; — x2, X3 — X2,
., Xn — X2 are linearly independent & -+ & X1 — Xp, X2 — Xn, - . -,
Xn—1 — Xp are linearly independent.

In this case, we say x1, x2, ..., x, are affinely independent.

When an affine set C contains the origin the maximum number of affinely
independent points in C is one plus the maximum number of linearly
independent points in C. Otherwise they are the same.

@ The dimension of affine set C is one less than maximum number of
affinely independent points in C.
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Line segments and convex sets

@ The line segment between x; and x. is the set of points
y=(1=Xxi+ XM =x1+Ax2— x1) where 0 <\ < 1.

@ A set is called convex if it contains the line segment between any two
points in the set: for any xi,x € C, and for any 0 < A < 1, we have
1-=-Xx+XeC.

@ Finitely many points: If C is convex, then
X1y .oy Xk € C,ZI-)\,' =LA >0 = ZI-)\,'X,' e C.

@ Countably many points: If C is convex, then
{x}CC Y2 =1, X>0, 32, \ix; convergent =
2721 Aixi € C.
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Line segments and convex sets

@ A convex combination of xi,..., Xy is a point of the form:
A1xy + o 4 Arxi with ZLI Ai=1,¥\ >0.

@ The convex hull of a set C, denoted by convC, is defined to be the
set of convex combinations of points from C. Thus, convC is the
smallest convex set that contains C.

@ The dimension of a convex set is defined to be its affine dimension.
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Dual cones and generalized inequalities

@ A cone is a set closed under scalar multiplication: Vx € C and VA > 0,
Ax € C.

@ A convex cone is a set which is convex as well as a cone.

@ A conic combination of points xi,...,xx is a point of the form:
A1x1 + -0+ Aexk with A; > 0 V.

@ The conic hull of a set C, coneC is defined to be the set of conic
combinations of points in C. Thus, coneC is the smallest convex cone
containing C.

@ We say coneC is finitely generated if |C| < oco.
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Examples

@ The empty set ), any single point {xo}, and R" are affine (hence
convex).

@ Any line is affine. If it passes through zero, then it is a subspace
(hence a convex cone).

@ A ray, {xo+ Av|A > 0}, where v # 0, is convex, but not affine.

@ Any subspace is affine, and a convex cone.
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Hyperplanes and halfspaces

Definition

A hyperplane is a set H= {x :a'x = b}, wherea € R",a # 0, and b € R.

For any xo € H, {x]|a” (x — x) = 0} = xo + a*, where a* = {v|a’ v = 0}
A (closed) halfspace is a set of the form {x : a’x < b}, where a # 0.

x5

acute angle
a

obtuse angle
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Euclidean balls and ellipsoids

Definition

A (Euclidean) ball in R" is

Blxe,r) = {x:lIx = xell2 < r} = {xc + ru: |Jull2 < 1}

where r > 0, and || - |2 denotes the Euclidean norm. The vector xc is the center of the
ball and the scalar r is its radius.

Definition

An ellipsoid is
E={x:(x—x)"P 7 }x—x) <1}

where P = PT - 0. (Notice it is a ball with radius r when P = r?[.)

The length of axes are \/A; where \; are eigenvalues of P. The triangle property of

the norm implies the convexity of an ellipsoid.
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Euclidean balls and ellipsoids

An ellipsoid can be represented as

{Au+b: [l

IA

1}

where A is nonsingular.

Proof. For u € B(0,1), let x=Au+ b or u

A7Y(x — b). Then,
W ln<le(x—b (AN A (x=b)=(x-b"(AN A (x=b<1
By denoting (A™')T A7, symmetric and positive-definite, by P™*, we get

(x=b)" P (x—b)<1. O
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Norm balls and norm cones

@ A function f : R” — R is called a norm if

@ nonnegative: f(x) > 0,Vx,

@ definite: f(x) =0 only if x =0,

© homogeneous: f(tx) = |t|f(x),Vx,Vt € R, and

@ satisfies triangle inequality: f(x + y) < f(x) + f(y), Vx, .
@ A norm ball of radius r and center xc is Bj.|(xc, r) = {x : || x — xc|| < r}.
@ The norm coneis C = {(x,t) : ||x|| < t} C R™.
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Polyhedra

Definition

A polyhedron P is the intersection of a finite number of halfspaces:

P={xla]x < b, i=1,..,m} = {x]Ax < b}.

Definition

A simplex C is the convex hull of a set of affinely indep vectors:

C = conv{vg, ..., ik} = {Aovo + ... + Mew[A > 0,17\ =1}

where vy, ..., vk € R" are affinely independent.
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Fundamental theorem of linear inequalities

Let aj, ap, ..., am b € R". Then, either b € cone{ai, az,...,am} or there is a
hyperplane c’™x=0 containing t — 1 independent vectors from a1, az, ..., am such
that cTb <0 and cTa; >0 fori=1,...,m, where t = rank{a1, ay, ...,am, b}. But
never both.

Proof May assume t = n. Consider any basis B = {a;, aj,,...,a;,} of nindependent
vectors from ay, az, ..., am.

@ If b= BX with A > 0. Then we are in the first case. Done.

e Choose smallest h among i1, fp, ..., in such that Ay, < 0. Let cTx =0 be
hyperplane generated by D — {a,}. Normalize ¢ so that c”a;, = 1. (Then
cTh=X,<0)

@ Ifca;>0fori=1,...,m, then we are in the second case. Done.

@ Otherwise, choose smallest s with ¢”as < 0 and D — (D — {ap}) U {a/} and
repeat.
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Fundamental theorem of linear inequalities (cont'd)

Feasibility simplex method
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Fundamental theorem of linear inequalities (cont'd)

Proof(cont’d) Suffices to show this process terminates. Denote, by By, the basis B in
kth iteration. If process does not terminate, then there is k < | with B, = B,. Let r
be largest index for which a, has been removed from D at the end of one of iterations
k, k+1,...,1—1. Then a, must have been added back to B. Thus notice that

Bpm{ar+17~~~:am}:Bqﬂ{aﬂrlv”wam}- (3)

Let B ={aj,a,,...,aj,} and b = X\ga;; + --- + A a;,. Let ¢’ be the vector c in
Step 2 of iteration g. Then we have the following contradiction:

0> ()Tb= ()T (Nyay + -+ Nyai,) = Xy () Tay +---+ X, (') a;, > 0.
The last inequality follows from that

@ if i; < rthen \; >0 and (c’)Ta,-j >0

@ if jj = r then A; < 0and (¢')"a; <0, and

@ if j; > r then (c’)Ta; = 0 (from (3) and def of ¢’). [J
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Polyhedra(cont 'd)

Farkas-Minkowski-Weyl theorem

A cone C is polyhedral, i.e. C = {x|Ax < 0} for some A € R™*" jf and
only if C is finitely generated.

Proof (<) Let C = cone{xy, xa,...,xm} with x; € R". May assume
span{xy, Xz, ..., Xm} = R" as we can extend a halfspace H of
span{xi, Xz, ..., Xm} to a halfspace H' of R" so that

H = H Nspan{xi, X2, ..., Xm}

From Fundamental theorem, for any y ¢ cone{xy, x2,...,xn} there is a
separating hyperplane ¢’ x = 0 containing n — 1 independent vectors
from x1, x2, ..., Xm. Since there are only finite such combinations, C is
the intersection of finite number of corresponding halfspaces, namely
polyhedral.
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Polyhedra(cont 'd)

Farkas-Minkowski-Weyl theorem

Proof (cont'd) (=) Let C = {x]|a/x <0, i=1,...,m}. Consider
cone{as, a, ..., am} which is, by the above, polyhedral: there are by, by,
..+, by such that cone{ar, as,...,am} = {x|b/x <0, i=1,...,t}. Our
claimis C = C’ := cone{by, by, ..., b }. First notice that C' C C as

b; € C (since b/ a; < 0).

To establish C' O C, suppose y ¢ C’. Since C' := cone{by, by,..., b;} is
polyhedral, Fundamental theorem implies 3 w such that w’b; <0V i
and w'y > 0. Hence w € cone{aj, as,...,am} and w’x < 0 for all

x€ C.Sincew ™y >0wehavey ¢ C. O
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Polyhedra(cont 'd)

We call a finitely generated convex hull polytope.

A set P C R" is polyhedral if and only if P = Q + C for some polytope
Q and finitely generated cone C.

Proof (=) Say P = {x|Ax < b}. Then consider homogenized cone

{<§)|XER”,>\6R, Ax—)\bgo}.
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Polyhedra

Octahedron in R3

X1 +x2 +x3 < 1

—x1 +x2 +x3 < 1
. 8 equations vs 6 points = conv{=te;, *ep, ez}

—X] — Xp — X3 < 1

Need 2" equations for polyhedral description but 2n points in conv hull description

Cube in R3
X1 < 1
—X1 < 1
. 6 equations vs 8 points = conv{(1,1,1),(—-1,1,1),...,(—1, -1, -1)}
—X3 < 1

Need 2n equations in polyhedral edescription, but 2" points for convex hull description.
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Polyhedral representation of a simplex

Suppose that C is a simplex defined by the affinely indep points v, .. ., v.
x€C & x=Xw+Avi+-+ v for some Ast VA >0, \=1
S x=v+M(vi —vo)+ -+ (v — )
o x =+ AN
| | |
where A= | vi—w w—w - vi—v |, N=[y....,\x,1"TN<1
|
Since v, ..., vk are affinely independent,
rank(A) = k < By row operations, we can reduce A to Ig

_ Bl nxn _ Ik
o3[ 8] cxrnrons|t]
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Polyhedral representation of a simplex

x=w+AN, N >0,1"TN <1
& Bx=Bw+ BAN, N >0,1TN <1

lk ] N, N >0,17N <1

<:>Bx:Bv0+{ 0

Thus,

x€C & Bix=Blw+)N,Bx=Bw, N >01")N<1
< Box = BzVo7 Bix > 51Vo, lTBlX <1+ 1T31Vo
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The positive semidefinite cone

@ Some sets of matrices:

Rnxn symmetry S" PSDness Si PDness Si+

@ S' is a convex cone: for nonnegative a, 3 € R and M, N € ST,

xT(aI\/I + BN)x = ax” Mx + 8x" Nx > 0.
@ Positive semidefinite cone in S?

X=|*7

y <:>x20,220,x22y2.
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Intersection

Convexity is preserved under intersection:
S is convex for @ € A = NaeaSa is convex.
Example:

@ ST =M,0{X €S": 2" Xz > 0} where {X € S"|z" Xz > 0} is a linear
function of X.

@ Let p(t) = >, xkcos kt. Then,
S={xeR":|p(t)| <1for |t| < m/3}
can be expressed as S =, <, /3 St where

Se = {x| — 1< (cost,....cosmt)"x < 1}.
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Affine functions

Definition

A function f : R" — R"™ is affine if it is a sum of linear function and a constant,
i.e., if it has the form f(x) = Ax + b, where A € R™*" and b € R".

The image and inverse image of a convex set under an affine function f is
convex:

@ S CR" convex = f(S) = {f(x)|x € S} is convex.
@ C CR™ convex = f~(C) = {x € R"|f(x) € C} is convex.
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Affine functions(cont’d)

@ Scaling and translation preserve convexity.

@ So does a projection: [I, O] { ; } = x, where x e R",y € R”

© 51,5 convex = So are their sum S; + S, and product S; X Sy =
{(X17X2)‘X1 € 51,X2 € 52},

@ and partial sum, S := {(x,y1 + y2)|(x, 1) € S1,(x,y2) € S»}.
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Affine functions(cont’d)

Polyhedron = {x|Ax < b, Cx = d}
— {xIf(x) € RT x {0}
where f(x) = (b — Ax,d — Cx)

Ellipsoid = {x|(x — xc)"P 7 (x — xc) <1},P € ST,
= the image of {ul||ull> < 1}
under the affine mapping f(u) = PY?u + x.
= the inverse image of unit ball
under the affine mapping g(x) = P~Y?(x — xc)
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Linear-fractional and perspective functions

Definition
A perspective function P : R™"" — R", with dom P = R" x Ry, is defined as

P(z,t) = z/t.

@ If C C domP is convex, P(C) is convex.

@ If C CR"is convex. P~Y(C) is convex.
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Linear-fractional and perspective functions

Definitio

Let g : R" — R™™* be affine, namely, g(x) = { ;47— ] X+ [ Z } . The function

f:R" > R" givenby f =Pog, ie,
f(x) = (Ax+ b)/(c"x + d), domf ={x:c' x+d >0},

is called a linear-fractional (or projective) function.

@ Both image and inverse image of a convex set under linear-fractional are
convex.

I A b . Ax+b .
X X {1} affine mapping |: CT d :| I: ){ :| scaling |: CTi+d projection %
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Proper cones and generalized inequalities

Definition

A cone K C R" is called a proper cone if
@ K is convex and closed,
@ K is solid, or K has nonempty interior,

© K is pointed, or K contains no line.

Example :
a. Nonnegative orthant, K =R} = {x € R": x; > 0,i =1,...,n}.
b. Positive semidefinite cone, K = S7].
c. Nonnegative polynomials in [0, 1]
K={xeR" cxp ot +xati 4+ xt" P >0fort e [0,1]}.

K is proper and its interior is the set of coeffi. of polynomials positive on
[0,1] (from uniform continuity).
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Proper cones and generalized inequalities

A proper cone K can be used to define a generalized inequality, which is a
partial ordering on R":

X3Iky o y—xeK,x<ky—y—xecintK.

Example:

@ Let K be the nonnegative orthant, that is K = R’.. Then,
x=2ky&exi<y,i=1...,n
@ Let K be the PSD cone, that is K = S. Then,

X2k YeoY-_Xes!
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Proper cones and generalized inequalities

Generalized inequality <k satisfies
Q x=2ky,uzkv=x+tuzky+tv,
Q x=ky,y=2kz=>xZkz,
Q x=ky,a>0= ax 2k ay,
Q x =k x,
Q x=ky,y=kx=x=y,and
Q xi=2kyifori=1,...,and x; —» x,y; — y asi — 00 = X =k y.
Strict generalized inequality < satisfies
Q x<ky=>x=ky,
Q x<ky,u=kv=x+tu=<ky+yv,
Q x <ky,a>0= ax 2k ay,
Q x Ak x, and

@ x <k y = x+u=<ky-+v for small enough u and v.
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Dual cones and generalized inequalities

Minimum and minimal eleme

In general, <k is not a linear ordering: there can be x and y such that x Ak y
and y Ak x.

Definition

A point x € S is the minimum element of S w.r.t. <k if x Xk y,Vy € S.
Equivalently, x € S is the minimum element iff S C x + K. A point x € S is a
minimal element of S w.r.t. 2k ify €S,y <k x = y = x. Equivalently, x € S
is @ minimal element iff (x — K) N S = {x}.
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Separating hyperplane theorem

Suppose C and D are disjoint convex sets. Then, 3a # 0, b s.t.

a'x< b,Vx € C,aTx > b,Vx € D.

Then {x|a’ x = b} is called a separating hyperplane for C and D.

In some cases, a strict separation can be established: Let C be a closed convex
set and xo ¢ C. Then there exists a hyperplane {x|a’” x = b} that strictly
separates xp from C, namely, alx < b for every x € C and axo > b.
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Separating hyperplane theorem(cont'd)

Case 1 : C is compact, and D is closed.

Define dist(C, D) = inf{||lu — v||2|u € C,v € D}. Then, 3c€ C and d € D
s.t. ||c — d|2 = dist(C, D) and ||c — d|]> > 0. (Argue that we may also assume
D is also bounded as far as such d is concerned.)

Consider hyperplane f(x) = (d — ¢)"(x — <%¢) = 0 so that a:= d — c and

2— 2 . .. .
b:= M. Need to show f is nonpositive on C and nonnegative on D.

Suppose not: Ju € D s.t. f(u) = (d —c)"(u— %) <.

Consider the distance between ¢ and the points on I|ne segment from d to u,
|d + A(u — d) — |2 and its derivative w.r.t. A, 32| d+ A(u—d) — cH%‘A:O
=(d—c)(u—d)=(d—c)(u—-%5°) — 3(d—c)"(d—c) <0.

It means that the point d + A(u — d) is closer to ¢ than d for sufficiently small
A > 0. A contradiction.
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Separating separating hyperplane(cont'd)

Case 2 : C is convex and D = {d}, with d ¢ intC

Subcase 1 d ¢ clC. As the point d itself is compact, from the Case 1,
and we can separate d from clC and hence also from C.
Subcase 2 d € bdC. Then 3{d"} with d" ¢ clC, which converges to d.

Thus, from Subcase 1, 3 zi R [Z:} ..., which satisfy
(a")"x < b" and (a")"d" < b" for all n. Taking H [Z:] H =1
2

Nk
guarantees a convergent subsequence: [an] — [7]. Then []]
defines a hyperplane separating d from C as easily checked.

Case 3 : C,D are convex. (Most general case)

D is convex. = —D is convex. = C + (—D) = C — D is convex. Since 0 ¢
C — D, from Case 2, there is a hyperplane separating 0 from C — D. Thus
there is a such that a’x < a’y for any pair x € C and y € D. Can complete
the proof by considering b := sup,.ca’ x. [J
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Converse of separating separating hyperplane

Any two convex sets C and D, at least one of which is open, are disjoint
if and only if there exists a separating hyperplane.

Only if: Say C is open and an affine function is nonpositive on C and
nonnegative on D. Any common element of C and D should have the function
value 0. But, C's being open implies the affine function is strictly negative on
it and can not have a zero on C. [J

Application

Theorem of alternatives for strict linear inequalities

Ax < b are infeasible.
< C={b— Ax|x € R"},D =RT, do not intersect.
<= 3 a separating hyperplane: 3 a nonzero A\ € R, € R
st. AT(b—Ax) < pV¥x € R" and \Ty > uVy > 0.
= AX#£0,A>=0,A"A=0,\"b< 0 as we may assume j = 0. (Why?)
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Supporting hyperplane

Definition

Suppose xo € C C R". If a # 0 satisfies a’ x < a' xo,Vx € C, then the
hyperplane {x\aTx = aTXO} is called a supporting hyperplane to C at x = xg.

Separating hyperplane theorem immediately implies the following.

For any nonempty convex set C and any xo € bd C, there exists a supporting
hyperplane to C at xo.
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Dual cones

Definition

The dual cone of a cone K is

K* = {y|x"y > 0,Vx € K}

K™ is a cone, and is always convex, even when K is not.

Definition

When a cone is its own dual, we call it self-dual.
eg (R})"=RY,(S1)" =S8}

@ K~ is closed and convex.

Q KiCKo= K C K/

© If K has nonempty interior, then K™ is pointed.
© If ¢/ K is pointed, then K* has nonempty interior.
© K** is the closure of the convex hull of K.
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Dual cones

Self-duality of positive semidefinite cones: (S1)* = S}
@ C: Suppose P € S} satisfies P- Q > 0,VQ € SI.. We want to show that
PeSt.
Suppose, on the contrary, that P ¢ S7.. Then, 3y #0 s.t. y' Py =
tr(y" Py) = t{(P(yy")) = P-(yy") < 0. Asyy” €S, contradiction.
@ D: Pick any Q € S',. We want to show that P-Q >0 VP € S/.

Consider Spectral decomposition P = Mipip{ + -+ + Meprpy . = P - Q
= (31, Xilpip]) - Q) = (i, Aipl Qpi) > 0.

Example

Dual of a norm cone K = {(x,t) € R™™ : ||x | < t} is
K*={(y,s) € R™ : ||ly|l. < s}, where ||y|l« = sup{y " u| |u|| <1}, a norm
called dual norm. For instance, (|| |[p)« = || ||q when p=' + q~* = 1.

Optimization Lab. Convex Optimization: Introduction and Basic Terminologies A s



Affine and cor
Some important e

Basic terminologies

Separating and supporting hyperplanes hyperplane
Dual cones and generalized inequalities

Dual generalized inequalities

K is a proper cone. = K™ is a proper cone.

It induces a generalized inequality.

y ke 0 <= y ' x>0,Vx =k 0

@ Dual characterization of minimum element
x is the minimum element of S w.r.t. <k
<= VX >x= 0, x is the unique minimizer of A7z over z € S.
<= {z|\T(z — x) = 0} is a strict supporting hyperplane to S at xo.

@ Dual characterization of minimal element
x is minimal if A =k~ 0 and x minimizes A\ z over z € S.

If S is convex, then for any minimal element x,
there exists a nonzero A >k 0 s.t. x minimizes A zoverzeS.
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2.1, 24,209,210, 2.12(e-g), 2.13, 2.18, 2.20, 2.24, 2.28, 2.31, 2.33,
2.35, 2.37, 2.38
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