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Logic
A formal system for describing knowledge and 
implementing reasoning on knowledge.

Logic consists of
1. A language describing knowledge (states of affairs) 

where its syntax describes how to make sentences 
and its semantics states how to interpret sentences

2. A set of rules for deducing the entailments of a set 
of sentences. 



1-1. Propositional Logic
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Propositional Logic

• Propositional logic treats simple sentences as 
atomic entities and constructs more complex 
sentences from simpler sentences using Boolean
connectives.
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Propositions and Proposition Variables

• Definition:
1. A proposition is simply a declarative sentence with 

a definite meaning, having a truth value that’s either 
true (T) or false (F) (never both, neither, or 
somewhere in between).

2. A proposition (statement) may be denoted by a 
variable like P, Q, R,…, called a proposition 
(statement) variable.

• Note the difference between a proposition and a 
proposition variable.
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Examples:

• “It is raining.”  (In a given situation.)
• “Seoul is the capital of South Korea.”  
• “1 + 2 = 3”

But, the following are NOT propositions:
• “Who’s there?” (interrogative, question)
• “La la la la la.” (meaningless interjection)
• “Just do it!” (imperative, command)
• “Yeah, I sorta dunno, whatever...” (vague)
• “1 + 2” (expression with a non-true/false value)
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1. Operator or connective combines one or more operand 
expressions into a larger expression (e.g., “+” in numeric 
expressions).

2. Unary operators take 1 operand (e.g., −3).
3. binary operators take 2 operands (e.g., 3 ´ 4).
4. Propositional or Boolean operators operate on 

propositions or truth values instead of on numbers.

Operators / Connectives
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Some Popular Boolean Operators

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary Ù

Disjunction operator OR Binary Ú

Exclusive-OR operator XOR Binary Å

Implication operator IMPLIES Binary ®

Biconditional operator IFF Binary ↔



AI & CV Lab, SNU 11

Negation Operator

The unary negation operator “¬” (NOT) transforms a 
prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

Truth table for NOT: p Øp
T F
F T

Operand
column

Result
column
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Conjunction Operator

The binary conjunction operator “Ù” (AND) combines 
two propositions to form their logical conjunction.

Example:
If p = “I will have salad for lunch.” and q = “I will 

have steak for dinner.”, then pÙq = “I will have 
salad for lunch and I will have steak for dinner.”
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• Note that a
conjunction
p1 Ù p2 Ù … Ù pn
of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and Ù operations together are sufficient to 
express any Boolean truth table!

Conjunction Truth Table

p q pÙq  
F F F  
F T F  
T F F  
T T T  
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Disjunction Operator

The binary disjunction operator “Ú” (OR) combines 
two propositions to form their logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
pÚq=“Either my car has a bad engine, or

my car has a bad carburetor.”
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• Note that pÚq means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,
because it includes the
possibility that both p and q are true.

• “¬” and “Ú” together are also universal.

Disjunction Truth Table

p q pÚq  
F F F  
F T T  
T F T  
T T T  
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Nested Propositional Expressions

• Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s grown or I’ve 
shrunk.” = f Ù (g Ú s)

− (f Ù g) Ú s would mean something different
− f Ù g Ú s would be ambiguous

• By convention, “¬” takes precedence over both “Ù” and 
“Ú”.

− ¬s Ù f means   (¬s) Ù f  ,   not ¬ (s Ù f)
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Example

Let p=“It rained last night”, 
q=“The sprinklers came on last night,” 
r=“The lawn was wet this morning.”

Translate each of the following into English:
¬p =  “It didn’t rain last night.”
r Ù ¬p =  “The lawn was wet this morning, 

and it didn’t rain last night.”
¬r Ú p Ú q = “Either the lawn wasn’t wet this 

morning, or it rained last night, or 
the sprinklers came on last night.”
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Exclusive-Or Operator

The binary exclusive-or operator “Å” (XOR) combines 
two propositions to form their logical “exclusive or”. 

p = “I will earn an A in this course,”
q = “I will drop this course,”
p Å q = “I will either earn an A for this course, 

or I will drop it (but not both!)”
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• Note that pÅq means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

Exclusive-Or Truth Table

p q pÅq 
F F F 
F T T 
T F T 
T T F 
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Implication Operator

The implication p ® q states that p implies q.
I.e., If p is true, then q is true; but if p is not true, then 

q could be either true or false.
Example: 

Let p = “You study hard.”
q = “You will get a good grade.”
p ® q = “If you study hard, then you will get 

a good grade.” (else, it could go either way)

antecedent consequent
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Implication Truth Table

• p ® q is false only when
p is true but q is not true.

• p ® q   does not say
that p causes q!

• p ® q   does not require
that p or q are ever true!

• Example: “(1=0) ® pigs can fly” is TRUE!

p q p®q 
F F T 
F T T 
T F F 
T T T 
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Examples

• “If this lecture ends, then the sun will rise tomorrow.” 
True or False?

• “If Tuesday is a day of the week, then I am a penguin.” 
True or False?

• “If 1+1=6, then Bush is president.” 
True or False?

• “If the moon is made of green cheese, then I am richer than 
Bill Gates.” True or False?
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English Phrases Meaning p ® q

• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for q”
• “q is necessary for p”
• “q follows from p”
• “q is implied by p”
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Converse, Inverse, Contrapositive

Some terminology, for an implication p ® q:
• Its converse is: q ® p.
• Its inverse is: ¬p ® ¬q.
• Its contrapositive: ¬q ® ¬ p.
• One of these three has the same meaning (same truth 

table) as p ® q.  Can you figure out which?
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How do we know for sure?

Proving the equivalence of p ® q and its 
contrapositive using truth tables:

p q Øq Øp p®q Øq ®Øp
F F T T T T
F T F T T T
T F T F F F
T T F F T T
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Biconditional operator

The biconditional p « q states that p is true if and only 
if (iff) q is true.

p = “You can take the flight.”
q = “You buy a ticket”
p « q = “You can take the flight if and only if you buy a ticket.”
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Biconditional Truth Table

• p « q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of Å’s!

− p « q means ¬(p Å q)
• p « q does not imply

p and q are true, or cause each other.

p q p « q
F F T
F T F
T F F
T T T
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Boolean Operations Summary

• We have seen 1 unary operator (out of the 4 possible) and 
5 binary operators (out of the 16 possible).  Their truth 
tables are below.

p q Øp pÙq pÚq pÅq p®q p«q
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T
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Well-formed Formula (wff) 
for Propositional Logic

• Definition:
1. Any statement variable is a wff.
2. For any wff p, ¬p is a wff.
3. If p and q are wffs, then (p Ù q ), (p Ú q ), 

(p ® q ) and (p « q ) are wffs.
4. A finite string of symbols is a wff only when it is 

constructed by steps 1, 2, and 3.
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Examples

• By definition of a wff,

− wff:  ¬(PÙQ), (P ®(P Ú Q)), (¬P Ù Q), 
((P®Q) Ù(Q®R))«(P® R)),

− not wff: (P ®Q) ®(ÙQ), (P ® Q,
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Tautology

• Definition:
A well-formed formula (wff) is a tautology if for every truth 
value assignment to the variables appearing in the formula, the 
formula has the value of true.

• Example: (p Ú Øp)
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Substitution Instance

• Definition:
A wff A is a substitution instance of another formula B if 
A is formed from B by substituting formulas for variables 
in B under condition that the same formula is substituted 
for the same variable each time that variable is occurred.

• Theorem: 
A substitution instance of a tautology is a tautology
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Contradiction

• Definition:
A wff is a contradiction if  for every truth value 
assignment to the variables in the formula, the formula 
has the value of false.

• Example: (p Ù Øp)
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Valid Consequence
• Definition:

A (well-formed) formula B is a valid consequence of a formula 
A, denoted by Aㅑ B, if for all truth assignments to variables 
appearing in A and B, the formula B has the value of true 
whenever the formula A has the value of true.

• Definition:
A formula B is a valid consequence of a formula A1,…, An 
(A1,…, Anㅑ B) if for all truth value assignments to the 
variables appearing in A1,…, An and B, the formula B has 
the value of true whenever the formula A1,…, An have 
the value of true.



AI & CV Lab, SNU 35

• Theorem:
Aㅑ B if and only if ㅑ (A ®B)

• Theorem: 
A1,…, Anㅑ B if and only if (A1 Ù…Ù An)ㅑB

• Theorem:
A1,…, An ㅑ B if and only if

(A1 Ù…Ù An-1) ㅑ (An ® B)
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Logical Equivalence

• Definition:
Two wffs, A and B, are logically equivalent
if and only if A and B have the same truth values for 
every truth value assignment to all variables 
contained in A and B.
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• Theorem:
If a formula A is equivalent to a formula B then  ㅑA«B.

• Theorem:
If a formula D is obtained from a formula A by replacing 
a part of A, say C, which is itself a formula, by another 
formula B such that CÛB, then AÛD
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• Example: Prove that pÚq Û Ø(Øp Ù Øq).

p q ppÚÚqq ØØpp ØØqq ØØpp  ÙÙ  ØØqq ØØ((ØØpp  ÙÙ  ØØqq))
F F
F T
T F
T T

Proving Equivalence via Truth Tables

F
T

T
T

T

T

T

T
T
T

F
F

F

F

F
F
F

F

T
T
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Equivalence Theorems

• Identity:             pÙT Û p      pÚF Û p
• Domination:      pÚT Û T      pÙF Û F
• Idempotent:       pÚp Û p       pÙp Û p
• Double negation:       ØØp Û p
• Commutative: pÚq Û qÚp    pÙq Û qÙp
• Associative: (pÚq)Úr Û pÚ(qÚr)

(pÙq)Ùr Û pÙ(qÙr)
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• Distributive:     pÚ(qÙr) Û (pÚq)Ù(pÚr)
pÙ(qÚr) Û (pÙq)Ú(pÙr)

• De Morgan’s:
Ø(pÙq) Û Øp Ú Øq
Ø(pÚq) Û Øp Ù Øq

• Trivial tautology/contradiction:
p Ú Øp Û T         p Ù Øp Û F
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Defining Operators via Equivalences

Using equivalences, we can define operators in terms 
of other operators.

• Exclusive or:   pÅq Û (pÚq)ÙØ(pÙq)
pÅq Û (pÙØq)Ú(qÙØp)

• Implies:           p®q Û Øp Ú q
• Biconditional: p«q Û (p®q) Ù (q®p)

p«q Û Ø(pÅq)
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Examples
Let p and q be the proposition variables denoting

p: It is below freezing.
q: It is snowing.

Write the following propositions using variables, p and q, and 
logical connectives.

a) It is below freezing and snowing. 
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) It is either below freezing or it is snowing, but it is not snowing if it is 

below freezing.
g) That it is below freezing is necessary and sufficient for it to be snowing

p Ù q 
p Ù Ø q 

Ø p Ù Ø q
p Ú q

p ® q

(p Ú q) Ù ( p ® Ø q)

p « q



1-2. Predicate Logic
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(First-order) Predicate Logic

• Predicate logic represents a sentence in terms of objects 
and predicates on objects (i.e., properties of objects or 
relations between objects), as well as Boolean connectives 
and quantifiers. 

• In propositional logic every expression is a sentence, 
which represents a fact. First-order predicate logic has 
sentences, but it also has terms, which represent objects. 
Constant symbols, variables, and function symbols are 
used to build terms, and quantifiers and predicate symbols
are used to build sentences.
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Syntax and Semantics
• Constant symbols: A, B, John,…
• Variables: x, y, z, …
• Predicate symbols: ROUND, BROTHER,… where a predicate 

symbol refers to a particular relation in the model. For 
example, the BROTHER symbol referring to the relation of 
brotherhood is a binary predicate symbol having two objects.

• Function symbols: father, color,… where a function symbol 
maps its objects into some object.

where predicate and function symbols are often given by 
mnemonic strings. 
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Terms
• A term is a logical expression that refers to an object, which is 

defined as follows:
• Definition: 

1. Constant symbols and variables are terms.
2. If x is a term and h is a function symbol, h(x) is a term. 
3. A finite string is a term only when it is constructed by         
steps 1 and 2.

• Examples:
x, John, color(x), father(John), mother(father(John))



Functions and Predicates

• Arguments of functions and predicates are given by 
terms.  

• Examples:
father(John), mother(Sue), father(mother(Sue)),
MARRIED(John, Sue), FEMALE(x), MEMBER(Sue,y)
PARENT(mother(Sue), Tom) 
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Universe of Discourse (U.D.)

• Definition:
The collection of values that a variable x can take is 
called x’s universe of discourse.
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Quantifiers

• Definition:
1. Quantifiers provide a notation that allows us to quantify 

(count) how many objects in the universe of discourse 
satisfy a given predicate.

2. “"” is the FOR ALL or universal quantifier.
"x P(x) means for all x in the u.d., P holds.

3. “$” is the EXISTS or existential quantifier.
$x P(x) means there exists an x in the u.d. (that is, 1 or 
more) such that P(x) is true.
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Universal Quantifier "

• Example: 
Let the u.d. of x be parking spaces at SNU.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), "x P(x), 
is the proposition:
1. “All parking spaces at SNU are full.”
2. “Every parking space at SNU is full.”
3. “For each parking space at SNU, that space is full.”
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Existential Quantifier $

• Example: 
Let the u.d. of x be parking spaces at SNU.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), $x P(x), 
is the proposition:
1. “Some parking space at SNU is full.”
2. “There is a parking space at SNU that is full.”
3. “At least one parking space at SNU is full.”
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Free and Bound Variables

• Definition:
1. An expression like P(x) is said to have a free 

variable x (meaning, x is undefined).
2. A quantifier (either " or $) operates on an 

expression having one or more free variables, and 
binds one or more of those variables, to produce an 
expression having one or more bound variables.
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Examples

1. P(x,y) has 2 free variables, x and y.
2. "x P(x,y) has 1 free variable y, and one bound 

variable x. 
3. "x "y P(x,y) has zero free variables, which  

represents a proposition.
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Nesting of Quantifiers

Example: 
Let the u.d. of x and y be people.
Let L(x,y)=“x likes y” 

(A predicate with 2 free variables).
Then $y L(x,y) = “There is someone whom x likes.” 

(A predicate with 1 free variable, x)
Then "x $y L(x,y) = “Every one has someone whom they 

like.”
(A predicate with 0 free variables)
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Well-formed Formula (wff)                                     
for Predicate Logic

• Definition:
A wff for (the first-order) predicate logic
1. Every predicate formula  is a wff.
2. If P is a wff, ¬P is a wff.
3. Two wffs parenthesized and connected by Ù, Ú, « , ®

form a wff.
4. If P is a wff and x is a variable then ("x)P and ($x)P 

are wffs.
5. A finite string of symbols is a wff only when it is 

constructed by steps 1-4.
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Examples

Let R(x,y)=“x relies upon y”. Express the following in    
unambiguous English:
1. "x $y R(x,y) = Everyone has someone to rely on.
2. $y "x R(x,y) = There’s a poor overburdened soul whom 

everyone relies upon (including himself)!
3. $x "y R(x,y) = There’s some needy person who relies 

upon everybody (including himself).
4. "y $x R(x,y) = Everyone has someone who relies upon 

them.
5. "x "y R(x,y) = Everyone relies upon everybody. (including 

themselves)!
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Natural language is ambiguous!

• “Everybody likes somebody.”
− For everybody, there is somebody they like,

• "x $y Likes(x,y)
− or, there is somebody (a popular person) whom 

everyone likes.
• $y "x Likes(x,y)

• “Somebody likes everybody.”
− Same problem: Depends on context, emphasis.

[Probably more likely.]
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More to Know About Binding

• "x $x P(x) - x is not a free variable in 
$x P(x), therefore the "x binding isn’t used.

• ("x P(x)) Ù Q(x) - The variable x is outside of the 
scope of the "x quantifier, and is therefore free.  
Not a proposition!

• ("x P(x)) Ù ($x Q(x)) – This is legal, because there 
are 2 different x’s!
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Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,… 
"x P(x) Û P(a) Ù P(b) Ù P(c) Ù … 
$x P(x) Û P(a) Ú P(b) Ú P(c) Ú …

• From those, we can prove the laws:
"x P(x) Û Ø($x ØP(x))
$x P(x) Û Ø("x ØP(x))
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More Equivalence Laws

• "x "y P(x,y) Û "y "x P(x,y)
$x $y P(x,y) Û $y $x P(x,y)

• "x (P(x) Ù Q(x)) Û ("x P(x)) Ù ("x Q(x))
$x (P(x) Ú Q(x)) Û ($x P(x)) Ú ($x Q(x))
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Defining New Quantifiers

• Definition:
$!x P(x) is defined to mean “P(x) is true of exactly one x in 
the universe of discourse.”

• Note that $!x P(x) Û $x (P(x) Ù Ø$y (P(y) Ù (y¹ x)))
“There is an x such that P(x), where there is no y such that P(y) and y
is other than x.”
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Higher-order Logic
• First-order logic gets its name from the fact that one can 

quantify over objects (the first-order entities that actually exist 
in the world) but not over relations or functions on those 
objects. Higher-order logic allows us to quantify over relations 
and functions as well as over objects. For example, in higher-
order logic we can say that two objects are equal if and only if 
all properties applied to them are equivalent. Or we could say 
that two functions are equal if and only if they have the same 
value for all arguments:
1. ("x)("y) (x=y) ↔ ("P)(P(x)↔P(y))
2. ("f)("g)  (f=g)  ↔ ("x)(f(x)=g(x))



Logic for Monotonic Reasoning   
and Nonmonotonic Reasoning

• A logic is monotonic if, when some new sentences 
are added to the knowledge base, all the sentences 
entailed by the original knowledge base are still 
entailed by the new larger knowledge base. 
Otherwise, it is nonmonotonic. 
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Examples
Let F(x, y) be the statement “x loves y,” where the universe of 
discourse for both x and y consists of all people in the world. Use 
quantifiers to express each of these statements.

a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
f) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself
j) There is someone who loves no one besides himself or herself.

("x) F(x, Jerry)
("x)($y) F(x,y)
($y) ("x) F(x,y)
Ø ($ x)("y) F(x,y)
($x) Ø F(Lydia,x)
($x)("y) ØF(x,y)

($!x)("y)F(y,x)

($x) ($y) ((x≠y) Ù F(Lynn,x) Ù F(Lynn,y) Ù ("z) ( F(Lynn,z) ® (z=x) Ú (z=y) ) )
("x) F(x,x)

($x) ("y) F(x,y) « x=y)
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1. Let p, q, and r be the proposition variables such that  
p :  You have the flu.
q :  You miss the final examination
r :  You pass the course

Express each of the following formulas as an English sentence.
(a) (p®Ør)Ú(q®Ør)
(b) (pÙq) Ú (ØqÙr)

Exercise
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2. Let p, q, and r be the proposition variables such that
p : You get an A on the final exam.
q : You do every exercise in this book
r : You get an A in this class

Write the following propositions using p, q, r, and logical connectives.

(a) You get an A on the final, but you don’t do every exercise in this 
book; nevertheless, you get an A in this class.

(b) Getting an A on the final and doing every exercise in this book is 
sufficient for getting an A in this class.
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3. Assume the domain of all people. 
Let J(x) stand for “x is a junior”, S(x) stand for “x is a senior”, and L(x, y) 
stand for “x likes y”. Translate the following into well-formed formulas:

(a) All people like some juniors.
(b) Some people like all juniors.
(c) Only seniors like juniors.
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4. Let B(x) stand for “x is a boy”, G(x) stand for “x is a girl”, and T(x,y) 
stand for “x is taller than y”. Complete the well-formed formula 
representing the given statement by filling out ? part.

(a) Only girls are taller than than boys:  (?)(∀y)((? ∧ T(x,y)) → ?)
(b) Some girls are taller than boys:  (∃x)(?)(G(x) ∧ (? → ?))
(c) Girls are taller than boys only:  (?)(∀y)((G(x) ∧ ?) → ?)
(d) Some girls are not taller than any boy:  (∃x)(?)(G(x) ∧ (? → ?))
(e) No girl is taller than any boy:  (?)(∀y)((B(y) ∧ ?) → ?)



1-3. Proofs and Inference Rules
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Proof Terminology

• Theorem
A statement that has been proven to be true.

• Axioms, postulates, hypotheses, premises
Assumptions (often unproven) defining the structures
about which we are reasoning.

• Lemma
A minor theorem used as a stepping-stone to proving a 

major theorem.



• Corollary
A minor theorem proved as an easy consequence 
of a major theorem.

• Theory
The set of all theorems that can be proven from a
given set of axioms.

• Rules of inference
Patterns of deriving conclusions from hypotheses: 

Sound and Complete. 
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Depending on Inference Rules

• Deduction:   A→B, A ⇒ B   
• Induction:    

x→B, y→B,  x,y∈A ⇒ ∀z ∈A,  z→B 
• Abduction:   A→B, B ⇒ A
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Graphical Visualization

…

Various Theorems
The Axioms

of the Theory

A Particular Theory

A proof
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Inference Rules: General Form

• Inference Rule: 
Pattern establishing that if we know that a set of 
antecedent statements of certain forms are all true, 
then a certain related consequent statement is true 
(valid arguments). 

• antecedent 1
antecedent 2 … 
\ consequent           “\” means “therefore”
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Inference Rules: Implications

• Each logical inference rule corresponds to an 
implication that is a tautology.

• antecedent 1               Inference rule
antecedent 2 … 
\ consequent

• Corresponding tautology: 
((ante. 1) Ù (ante. 2) Ù …) ⇒ consequent
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Implication Tautologies

I1 P Ù Q⇒ P
I2 P Ù Q⇒ Q
I3 P⇒P Ú Q
I4 Q⇒P Ú Q
I5 ØP⇒P →Q
I6 Q⇒P →Q
I7 Ø(P →Q) ⇒ P
I8 Ø(P →Q) ⇒ ØQ
I9 P, Q⇒P Ù Q
I10 ØP, P Ú Q⇒Q

I11 P, P →Q⇒Q
I12 ØQ, P →Q⇒ ØP
I13 P → Q, Q → R⇒ P → R
I14 P Ú Q, P → R, Q → R ⇒ R
I15 ("x)A(x) Ú ("x)B(x)

⇒ ("x)(A(x) Ú B(x))
I16 ($x)(A(x) Ù B(x)) 

⇒($x)A(x) Ù ($x)B(x)
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Biconditional Tautologies: Equivalences
E1 Ø Ø P ⇔ P
E2 P Ù Q ⇔ Q Ù P
E3 P Ú Q ⇔ Q Ú P
E4 (P Ù Q) Ù R ⇔ P Ù (Q Ù R)
E5 (P Ú Q) Ú R ⇔ P Ú (Q Ú R)
E6 P Ù (Q Ú R) ⇔ (P Ù Q) Ú (P Ù R)
E7 P Ú (Q Ù R) ⇔ (P Ú Q) Ù (P Ú R)
E8 Ø(P Ù Q) ⇔ ØP Ú ØQ 
E9 Ø(P Ú Q) ⇔ ØP Ù Ø Q
E10 P Ú P ⇔ P
E11 P Ù P ⇔ P
E12 R Ú (P Ù ØP) ⇔ R
E13 R Ù (P Ú ØP) ⇔ R
E14 R Ú (P Ú ØP) ⇔ T
E15 R Ù (P Ù ØP) ⇔ F
E16 P→ Q ⇔ ØP Ú Q
E17 Ø(P→ Q) ⇔ P Ù ØQ

E18 P → Q ⇔ ØQ → ØP
E19 P→(Q→R) ⇔ (P Ù Q) → R
E20 Ø(P↔Q) ⇔ (P↔ØQ)
E21 (P↔Q) ⇔ (P→Q) Ù (Q → P)
E22 (P↔Q) ⇔ (P Ù Q) Ú (ØP Ù ØQ)
E23 ($x)(A(x) Ú B(x)) ⇔ ($x)A(x) Ú ($x)B(x)
E24 ("x)(A(x) Ù B(x)) ⇔ ("x)A(x) Ù ("x)B(x)
E25 Ø($x)A(x) ⇔ ("x)ØA(x)
E26 Ø("x)A(x) ⇔ ($x)ØA(x)
E27 ("x)(A Ú B(x)) ⇔ A Ú ("x)B(x)
E28 ($x)(A Ù B(x)) ⇔ A Ù ($x)B(x)
E29 ("x)A(x)→B ⇔ ($x)(A(x)→B)
E30 ($x)A(x)→B ⇔ ("x)(A(x)→B)
E31 A→("x)B(x) ⇔ ("x)(A→B(x))
E32 A→($x)B(x) ⇔ ($x)(A→B(x))
E33 ($x)(A(x)→B(x)) ⇔ ("x)A(x)→$xB(x))
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Formal Proofs

• Definition:
1. A formal proof of a conclusion C, given premises p1, 

p2,…,pn consists of a sequence of steps, each of which 
applies some inference rule to premises or to previously-
proven statements (as antecedents) to yield a new true 
statement (the consequent).

2. Inference Rules
• Rule P : premise
• Rule T : tautology
• Rule CP : conditional premise

• Note that a proof demonstrates that if the premises are true, 
then the conclusion is true.
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Examples:

1. Suppose we have the following premises:
(1) It is not sunny and it is cold.
(2) We will swim only if it is sunny. 
(3) If we do not swim, then we will canoe. 
(4) If we canoe, then we will be home early.

Given these premises, prove using inference rules
the theorem, “We will be home early”.
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Proof:
Let us adopt the following abbreviations:
sunny = “It is sunny”; cold = “It is cold”; 
swim = “We will swim”; canoe = “We will canoe”;
early = “We will be home early”.
Then, the premises can be represented by the following 
formulas:
Øsunny Ù cold, swim ® sunny, Øswim ® canoe, 
canoe ® early. 
Based on these formulas, the proof would be
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Step Inference Rule
(1) Øsunny Ù cold P
(2) Øsunny T, (1) and I1

(3) swim®sunny P
(4) Øswim T, (2), (3) and I12
(5) Øswim®canoe P
(6) canoe T, (4), (5) and I11

(7) canoe®early P
(8) early T, (6), (7), and I11
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2. Show that (R®S) can be derived from (P ®(Q ®S)), 
(ØR Ú P), and Q. (Instead of deriving R ®S directly, we 
shall include R as an additional premise and show S can be
derive from there premises.)

Proof:
Step Inference Rule
(1) ØR Ú P P
(2) R P (assumed premise)
(3) P T, (1), (2) and I10
(4) P®(Q ®S) P
(5) Q ®S T, (3), (4) and I11
(6) Q P
(7) S T, (5), (6) and I11
(8) R ® S CP, (2), (7)
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3.  Show that S Ú R can be derived from (P Ú Q), (P ® R) and
(Q ® S).

Proof:
Step Inference Rule
(1) P Ú Q P
(2) ØP ® Q T, (1) , E1 and E16
(3) Q ® S P
(4) ØP ® S T, (2), (3), and I13
(5) ØS® P T, (4) , E18 and E1
(6) P ® R P
(7) ØS ® R T, (5), (6), and I13
(8) S Ú R T, (7), E16 and E1
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Inference Rules for Quantifiers

• "x P(x) Universal Specification (US)
\P(o) (substitute any object o)

• P(g) (for general element g of u.d.)
\"x P(x) Universal Generalization (UG)

• $x P(x) Existential Specification (ES)
\P(c) (substitute some object c)

• P(o) (for some extant object o) 
\$x P(x) Existential Generalization (EG)
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Examples:
1. Show that 
("x) (P(x) ® Q(x)) Ù ("x) (Q(x) ® R(x))⇒ ("x) (P(x) ® R(x))

Proof:
Step Inference Rule
(1) ("x) (P(x) ® Q(x)) P
(2) P(y) ® Q(y) US, (1)
(3) ("x) (Q(x) ® R(x))       P
(4) Q(y) ® R(y) US, (3)
(5) P(y) ® R(y) T, (2), (4) and I13

(6) ("x) (P(x) ® R(x)) UG, (5)



AI & CV Lab, SNU 86

2.  Show that from   ($x) (F(x) Ù S(x)) ® ("y) (M(y) ® W(y)) and 
($y) (M(y) Ù ØW(y)), the conclusion ("x) (F(x) ® Ø S(x)) logically 
follows.

Proof:
Step Inference Rule
(1) ($y) (M(y) Ù ØW(y))                                                    P
(2) M(z) Ù ØW(z)                                                               ES, (1)
(3) Ø (M(z) ® W(z))                                                          T, (2) and E17
(4) ($y) Ø (M(y) ® W(y))                                                  EG, (3)
(5) Ø("y)(M(y) ® W(y))                                                   T, (4) and E26
(6) ($x) (F(x) Ù S(x)) ® ("y) (M(y) ® W(y))                   P
(7) Ø($x) (F(x) Ù S(x))                                                      T, (5), (6) and I12
(8) ("x) Ø(F(x) Ù S(x))                                                      T, (7) and E25
(9) Ø(F(x) Ù S(x))                                                              US, (8) 
(10) F(x) ® Ø S(x)                                                               T, (9), E8 and E16
(11) ("x) (F(x) ® Ø S(x))                                                    UG, (10) 
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Restriction

• UG applicable variable should not be free in any of the given 
premises

• UG should not be applied to the free variables after ES making 
some other variable free in a prior step.

("x)($z) A(z,x)
⇒ ($z)A(z,x)                      by US
⇒ A(z,x)                            by ES
⇒ ("x)A(z,x)                     by UG (not allowed!)
⇒ ($z) ("x)A(z,x)             by EG contradiction!



AI & CV Lab, SNU 88

Proof Methods for Implications

For proving implications p®q, we have:
• Direct proof: Assume p is true, and prove q.
• Indirect proof: Assume Øq, and prove Øp.
• Vacuous proof: Prove Øp by itself.
• Trivial proof: Prove q by itself.
• Proof by cases: 

Show p®(a Ú b), and (a®q) and (b®q).
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Example of Direct Proof

• Definition: 
An integer n is called odd iff n=2k+1 for some integer k; n
is even iff n=2k for some k.

• Axiom:
Every integer is either odd or even.

• Theorem:
(For all numbers n) If n is an odd integer, then n2 is an odd 
integer.

Proof:  
If n is odd, then n = 2k+1 for some integer k.  Thus, n2 = 
(2k+1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.  Therefore n2 is 
of the form 2j + 1 (with j the integer 2k2 + 2k), thus n2 is 
odd. □
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Example of Indirect Proof

• Theorem:  (For all integers n) 
If 3n+2 is odd, then n is odd.

Proof:
Suppose that the conclusion is false, i.e., that n is even.  
Then n=2k for some integer k.  Then 3n+2 = 3(2k)+2 = 
6k+2 = 2(3k+1).  Thus 3n+2 is even, because it equals 2j
for integer j = 3k+1.  So 3n+2 is not odd.  We have shown 
that ¬(n is odd)→¬(3n+2 is odd), thus its contra-positive 
(3n+2 is odd) → (n is odd) is also true. □
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Example of Vacuous Proof

• Theorem: If n is both odd and even, then n2 = n + n.
Proof:

The statement “n is both odd and even” is necessarily false, 
since no number can be both odd and even.  So, the 
theorem is vacuously true. □
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Example of Trivial Proof

• Theorem:  (For integers n) If n is the sum of two prime 
numbers, then either n is odd or n is even.
Proof:  

Any integer n is either odd or even.  So the conclusion of 
the implication is true regardless of the truth of the 
antecedent.  
Thus the implication is true trivially. □
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Proof by Contradiction

1. A method for proving p.
2. Assume Øp, and prove both q and Øq for some 

proposition q.
3. Thus Øp® (q Ù Øq)
4. (q Ù Øq) is a trivial contradiction, equal to F
5. Thus Øp®F, which is only true if Øp=F
6. Thus p is true.
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Proving Existentials

1. A proof of a statement of the form $x P(x) is called 
an existence proof.

2. If the proof demonstrates how to actually find or 
construct a specific element a such that P(a) is true, 
then it is a constructive proof.

3. Otherwise, it is nonconstructive.
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Constructive Existence Proof

• Theorem: 
There exists a positive integer n that is the sum of 
two perfect cubes in two different ways:

• equal to j3 + k3 and l3 + m3 where j, k, l, m are 
positive integers, and {j,k} ≠ {l,m}

Proof:  
Consider n = 1729,  j = 9, k = 10, 
l = 1, m = 12.  Now just check that the equalities 
hold.
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Nonconstructive Existence Proof
• Theorem: 

There are infinitely many prime numbers.

Proof:
Any finite set of numbers must contain a maximal element, so we 
can prove the theorem  if we can just show that there is no largest 
prime number.
I.e., show that for any prime number, there is a larger number 
that is also prime.
More generally: For any number, $ a larger prime.
Formally: Show "n $p ((p>n) ® (p is prime)).
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Given n>0, prove there is a prime p>n.
Consider x = n!+1.  Since x>1, we know 

(x is prime)Ú(x is composite).

Case 1: x is prime.  
Obviously x>n, so let p=x and we’re done.

Case 2: x has a prime factor p.  
But if p£n, then x mod p = 1. 
So p>n, and we’re done.
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Uniqueness Proof

• Some theorems assert the existence of a unique 
element with a particular property.

• To prove a statements of this type, we show 
following two parts.
1. Existence: element x with a desired property exists
2. Uniqueness: if y ≠ x, then y does not have the 

desired property
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Example of Uniqueness Proof

• Theorem: 
“Every integer has a unique additive inverse.”
Proof:  

If p is an integer, we find that p+q=0 where p=-q and 
q is also an integer. Consequently, there exists an 
integer q such that p+q=0. (Existence)
if r is an integer with r≠q such that p+r=0. then 
p+q=p+r. So We can show q=r, which contradicts 
our assumption r≠q. Consequently, there is a unique 
integer q such that p+q=0. □
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Exercise
1. Prove that the square of an even number is an even 

number using
(a) A direct proof
(b) An indirect proof
(c) A proof by contradiction

2. Prove formally using inference rules that 
R∧(P∨Q) logically follows from (P∨Q), (Q→R), 
(P→M), and ¬M. 

3. Prove that if n is a positive integer, then n is a even  
if and only if 7n+4 is even.



4.   Let P, Q, R and S be statement variables. 
Prove formally the following.
(a) ØPÙQ, Ø QÚR, R→S ⇒ P→S
(b) ØPÙ (PÚQ) ⇒ Q

5.  Show the following implication.
(a) ("x)(P(x)ÚQ(x)), ("x)ØP(x) ⇒($x)Q(x)
(b) Ø(($x)P(x) ÙQ(a))⇒($x)P(x)→ØQ(a)
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Introduction to Set Theory

• A set is a new type of structure, representing an 
unordered collection of zero or more distinct 
(different) objects.

• Set theory deals with operations between, relations 
among, and statements about sets.
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Naive Set Theory
• A set is any collection of objects (elements) that we 

can describe. (Basic premise)

• The naive set theory, however, leads to logical inconsistencies, known 
as paradoxes: 
Russell’s paradox:

1. A set being a member of itself: Possible from the case that the set of 
concepts is itself a concept, and hence this set is apparently a member 
of itself.  The assertions (x    x) and (x    x) are therefore predicates 
which can be used to define sets:

2. Define S to be  S={x| x    x }.
3. Is S a member of itself?

• Set theory is formulated to avoid Russell’s paradox: Restrictions on 
the ways in which sets can be related, which imply that no set is
permitted to be a member of itself. (Other paradoxes exist?) 

Ï Î

Ï
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Basic notations for Sets

• For sets, we’ll use variables S, T, U, …

• We can denote a set S in writing by listing all of its 
elements in curly braces: 

− {a, b, c} is the set of 3 objects denoted by a, b, and c.

• Set builder notation: For any predicate symbol P, 
{x| P(x)} is the set of all x such that P(x). (or the set 
of all x holding the property P.)
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Basic properties of Sets

• Sets are inherently unordered:
− No matter what objects a, b, and c denote, 

{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);
multiple listings make no difference!

− If a=b, then {a, b, c} = {a, c} = {b, c} = 
{a, a, b, a, b, c, c, c, c}. 

− This set contains at most 2 elements!
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Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without 
end, unending).

• Symbols for some special infinite sets:
N = {1, 2, …}    The Natural numbers.
Z = {…, -2, -1, 0, 1, 2, …}  The Zntegers.
R = The “Real” numbers, such as 
374.1828471929498181917281943125…

• Infinite sets come in different sizes!
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Empty Set

• Definition:
A set which does not contain any elements is an 
empty set, denoted by Æ or {} or {x| False}

• Example:
xÏÆ for any x
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Subset and Superset
• Definition:

Let S and T be any two sets. S is a subset of T (T 
is a superset of S), denoted by SÍT, if and only if
every element of S is an element of T, i.e., 
("x)((xÎS) ® (xÎT)).

• Example:
ÆÍS,  SÍS.
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Set Equality
• Definition:

Let A and B be any two sets. A and B are said to be equal 
if and only if they contain exactly the same elements, i.e., 
A=B if and only if (AÍ B) Ù (BÍ A).

• Note that it does not matter how the set is defined or 
denoted.

• Example: 
{1, 2, 3, 4} = 
{x | x is an integer where x>0 and x < 5 } = 
{x | x is a positive integer whose square is  > 0 and 
< 25}
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Proper Subset and Superset

• Definition:
Let S and T be any two sets. S is a proper subset of
T (T is a proper superset of S), denoted by S Ì T, 
if and only if  S Í T  and S ≠ T.

S
T

Venn Diagram equivalent of S Ì T

Example:
{1,2} Ì {1,2,3}
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Sets are objects, too!

• The objects that are elements of a set may themselves
be sets.

• Example:
Let S={x | x Í {1,2,3}}.
Then S={Æ, 

{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}

• Note that 1 ¹ {1} ¹ {{1}}.
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Element of  (Member of)

• Definition:
1. xÎS (“x is in S”) is the proposition that object x is

an element or member of set S.
• Example: 

3ÎN,  “a”Î{x| x is a letter of the alphabet}

2.    xÏS = Ø(xÎS)      “x is not in S”
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Cardinality and Finiteness

• The cardinality of S, denoted by |S|, is a measure of 
how many different elements S has.

• Example:
|Æ|=0, |{1,2,3}| = 3, |{a,b}| = 2, |{{1,2,3},{5}}| = 2.

• If |S|ÎN, then S is said to be finite.
Otherwise, S is said to be infinite.
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Power Set

• Definition:
Let S be a set. The power set (S) of S is the set 
of all subsets of S, i.e.,     (S) = {x | xÍS}.

• Example: ({a,b}) = {Æ, {a}, {b}, {a,b}}.
• Sometimes     (S) is written 2S.
• Note that for finite S,  |   (S)| = 2|S|.
• It turns out that |   (N)| > |N|.

There are different sizes of infinite sets where N is a 
set of all natural numbers.

Ã
Ã

Ã
Ã

Ã
Ã
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Ordered n-tuples

• Definition:
For nÎN, an ordered n-tuple or a sequence of length 
n is defined to be (a1, a2, …, an). The first element is 
a1, etc.

• These are like sets, except that duplicates matter and the 
order makes a difference.

• Note (1, 2) ¹ (2, 1) ¹ (2, 1, 1).
• Empty sequence, singlets, pairs, triples, quadruples, 

quintuples, …,  n-tuples.
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Cartesian Products of Sets

• Definition:
Let A and B be any two sets. 
The Cartesian product A´B is defined to be
A´B = {(a, b) | aÎA Ù bÎB }.

• Example: 
{a, b}´{1,2} = {(a,1), (a, 2), (b,1), (b, 2)}

• Note that for two finite sets, A and B,  
1.  |A´B| = |A||B|.
2.  A´B ≠ B´A.
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Union Operator

• Definition:
Let A and B be any two sets. The union AÈB of 
A and B is the set containing all elements that are 
either in A, or in B (or, of course, in both), i.e., 
AÈB = {x | xÎA Ú xÎB}.

• Note that AÈB contains all the elements of A and it 
contains all the elements of B:

(AÈB Ê A) Ù (AÈB Ê B)
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• {a,b,c}È{2,3} = {a,b,c,2,3}
• {2,3,5}È{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} 

Example of Union
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Intersection Operator

• Definition:
Let A and B be any two sets. The intersection
AÇB of A and B is the set containing all 
elements that are simultaneously in A and in B, 
i.e., 
AÇB={x | xÎA Ù xÎB}.

• Note that AÇB is a subset of A and it is a subset of B:
(AÇB Í A) Ù (AÇB Í B)
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• {a,b,c}Ç{2,3} = Æ
• {2,4,6}Ç{3,4,5} = {4}

Example of Intersection
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Disjointedness

• Definition:
Let A and B be any two sets. A and B are called 
disjoint if and only if their intersection is empty 
(AÇB=Æ).

• Example: 
The set of even integers is disjoint with the set of 
odd integers.
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Inclusion-Exclusion Principle

• How many elements are in AÈB?
|AÈB| = |A| + |B| - |AÇB|.

• Example:
How many students are on our class email list?  
Consider a set E = I È M where 
I = {s | s turned in an information sheet} and
M = {s | s sent the TAs their email address}.
Since some students did both, 
|E| = |IÈM| = |I| + |M| - |IÇM|
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Set Difference

• Definition:
Let A and B be any two sets. 

1. The set difference, A-B, of A and B is the set of 
all elements that are in A but not in B.

2. A-B is also called the complement of B with 
respect to A.



AI & CV Lab, SNU 125

Example

1. {1,2,3,4,5,6} - {2,3,5,7,9,11} = {1,4,6}
2. Z - N = {… , -1, 0, 1, 2, … } - {1, … }

= {x | x is an integer but not a nat. number}
= {x | x is a negative integer or x=0}
= {… , -3, -2, -1, 0}
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Universal Set & Complement of a Set
• Definition (Universal Set):

A set is a universal set or a universe of discourse, 
denoted by U, if it includes every set under discussion.

• Definition (Complement of a Set):
Let A be a set. The complement of A in U, denoted 
by     , is the set of all elements of U which are not 
elements of A, i.e., 

= U - A.
Example:

If U=N, 

A

,...},,,,{},{ 7642153 =

A
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• An equivalent definition, when U is clear:

}|{ AxxA Ï=

A
U

A
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Set Identity Theorems

For any sets, A, B, and C, the following holds:
1. Identity:          AÈÆ=A, AÇU=A
2. Domination:   AÈU=U,    AÇÆ=Æ
3. Idempotent:      AÈA = A = AÇA
4. Double complement: 
5. Commutative:  AÈB=BÈA,   AÇB=BÇA
6. Associative:    AÈ(BÈC)=(AÈB)ÈC

AÇ(BÇC)=(AÇB)ÇC

AA =)(
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DeMorgan’s Theorem for Sets

• Theorem: 

Let A and B be sets. Then the following holds:

BABA

BABA

È=Ç

Ç=È
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Example:
Let A, B, and C be sets. Show that  A∩(B∪C) = (A∩B)∪(A∩C).

Proof:
1. Show A∩(B∪C) Í (A∩B)∪(A∩C):

Let xÎA∩(B∪C). Then by definition of ∩, xÎA and x Î (B∪C). 
By definition of ∪, xÎB or xÎC.

Case 1: Let xÎB.  Then by definition of ∩, xÎA∩B. 
By definition of  by ∪, xÎ(A∩B)∪(A∩C).

Case 2: Let xÎC. Then by definition of ∩, xÎA∩C. 
By definition of  by ∪, xÎ(A∩B)∪(A∩C).

From case 1 and 2, xÎ(A∩B)∪(A∩C). 
By definition of Í ,  A∩(B∪C)Í(A∩B)∪(A∩C).

2. Show (A∩B)∪(A∩C) Í A∩(B∪C):  Similarly done. 
From 1 and 2, A∩(B∪C) = (A∩B)∪(A∩C) by definition of set equality. 
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• Theorem:
If A and B are two sets, the following statements 

are equivalent.

(1) A⊆B
(2) A ∩ B = A
(3) A ∪ B = B
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Generalized Unions & Intersections

• Since union & intersection are commutative and 
associative, we can extend them from operating on 
ordered pairs of sets (A, B) to operating on 
sequences of sets (A1,…, An), or even unordered sets
of sets.
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Generalized Union

1. Binary union operator: A ∪ B
2. n-ary union:

A1 ∪ A2 ∪ … ∪ An = ((…((A1 ∪ A2) ∪ …) ∪ An)
(grouping & order is irrelevant)

3. “Big ∪” notation:

4. For infinite sets of sets:

U
n

i
iA

1=

U
XA

A
Î
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Generalized Intersection

1. Binary intersection operator: A ∩ B
2.   n-ary intersection:

A1 ∩ A2 ∩ … ∩ Anº((…((A1 ∩ A2) ∩ …) ∩ An)
(grouping & order is irrelevant)

3.   “Big ∩” notation:

4.   For infinite sets of sets:

I
n

1i
iA

=

I
XA

A
Î
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Exercise
1. Let A and B be sets. Show that

(a) (A ∩ B) Í A
(b) A ∪(B-A) = A ∪ B
(c) A ∩ B = A  if and only if A ∪ B = B
(d) A- (A∩ B) =  A-B
(e)  ¬(A∪B) = ¬A ∩ ¬B

2. Let A, B and C be sets. Show that 
(A-B)-C = (A-C)-(B-C).



3. Let A and B be two sets. Prove or disprove each of 
the followings:

(a)                     ⊆ where           is the 
power set of the set A.

(b)

AI & CV Lab, SNU 136

)( BAÈÃ)()( BA ÃÈÃ )(AÃ

)()()( BABA ÃÈÃÍÈÃ



AI & CV Lab, SNU 137

4. Which of the following are true for all sets, A, B, and C ?  
Give a counter example if the answer is false (No proof is 
necessary if the answer is true).

(a) If A∩B = Ø and B∩C = Ø, then A∩C = Ø.
(b) If A∈B and ¬(B⊆C), then ¬(A∈C).
(c) If A∈B and B∈C, then ¬(A∈C).
(d) (A∩B)∪C = A∩(B∪C) if and only if C⊆A.
(e) Ø∈A.
(f) If A⊆B and B∈C, then A ⊆ C
(g) If A ∈B, then {A} ⊆ B
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Binary Relations

• Definition: 
Let A and B be any two sets. A binary relation R
from A to B is a subset of A×B.  

• The notation aRb means (a,b)ÎR.
− Example: 

a≤b means (a,b)Î≤
where ≤ denotes the relation of partial ordering.
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Complementary Relations

• Definition:
Let R⊆A×B be any binary relation. Then,    , the 
complement of R, is the binary relation defined 
by

= {(a,b) | (a,b)ÏR} = (A×B) − R

• Note that the complement of      is R.

R

R

R
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Inverse Relations

• Definition:
An inverse relation of a binary relation R⊆A×B, 

denoted by  R-1, is defined to be
R-1 = {(b, a) | (a, b)ÎR}.

• Theorem:
1. (R1∪R2)-1=R1

-1∪R2
-1

2. (R1 ∩ R2)-1=R1
-1 ∩ R2

-1
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Relations on a Set

• Definition:
1. A (binary) relation from a set A to itself is 

called a relation on the set A.
2. The identity relation IA on a set A is the set,
IA =  {(a,a)|aÎA}.
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Properties of Relations
• Definition:
1. A relation R on A is reflexive if for every a in A, (a, a) ÎR.
2. A relation R on A is irreflexive if for every a in A, (a, a) ÏR.
3. A relation R on A is symmetric if for every a and b in A, if (a,b)ÎR, 

then (b,a)ÎR.
4. A relation R on A is antisymmetric if for every a and b in A, if

(a,b)ÎR and (b,a)ÎR, then (a=b).
5. A relation R on A is asymmetric if for every a and b in A, if

(a,b)ÎR, then (b,a)ÏR. 
6. A relation R on A is transitive if for every a, b, and c in A, if

(a,b)ÎR and (b,c)ÎR, then (a,c)ÎR.

• Note  “irreflexive” ≠ “not reflexive”!
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Composite Relations

• Definition:
Let R⊆A×B , and S⊆B×C.  Then the composite of R and 
S, denoted by R o S, is defined to be  
R o S = {(a,c) | (a,b)ÎR Ù (b,c)ÎS  for some b in B}

• Definition:
The nth power Rn of a relation R on a set A can be defined 
recursively by Rn+1 = RnoR for all n≥0  where R0 = IA.
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• Theorem: 
Let R1, R2, and R3 be relations on a set A. Then
1. R1o (R2 ∩ R3) ⊆(R1 o R2) ∩ (R1 o R3)
2. R1 o (R2∪R3) = (R1 o R2) ∪ (R1 o R3)

• Theorem:
Let R be a relation on a set A, i.e. R ⊆ A×A, and IA
be a identity relation on a set A, (IA={<x,x>|x∈A}).
Then the following holds:
1. R is reflexive iff IA ⊆ R
2. R is irreflexive iff IA ∩ R = Æ
3. R is symmetric iff R = R−1

4. R is asymmetric iff R ∩ R−1 = Æ
5. R is antisymmetric iff R ∩ R−1⊆ IA
6. R is transitive iff R o R ⊆ R
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Walk, path, cycle, loop, sling
• Definition:

Given a directed graph G=<N, V> where N is a set of nodes
and V is a set of edges,
1.  A walk is a sequence x0, x1, …, xn of the vertices of a  

directed graph such that xixi+1, 0≤i≤n-1, is an edge.
2.  The length of a walk is the number of edges in the walk.
3.  If a walk holds xi≠xj (i≠j) i, j =0, …, n, (i.e., no edge is 

repeated), the walk is called a path.
4.  If a walk holds xi≠xj (i≠j) i, j =0, …, n, except x0=xn, the 

walk is called a cycle.
5.  A loop is a cycle of length one.
6.  A sling is a cycle of length two.  
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• Theorem:
Given a directed graph G=<N, R> where N is a set of nodes 
and R is a set of edges,
1. R is reflexive iff G has a loop at every node.
2. R is irreflexive iff G has no loop at any node.
3. R is symmetric iff if G has a walk of length one between 

two distinct nodes, then it has a sling between them.
4. R is asymmetric iff if G has a walk of length one between 

two distinct nodes, then it has no sling between them and 
no loop at any node.

5. R is antisymmetric iff if G has a walk of length one 
between two distinct nodes, then it has no sling between 
them.

6. R is transitive iff if G has a walk of length two between 
two nodes, then it has a walk of length one between them.
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Digraph Reflexive, Symmetric
It is extremely easy to recognize the reflexive/irreflexive/ 

symmetric/antisymmetric properties by graph inspection.

P
P

P
P
P

P

Reflexive:
Every node
has a loop

Irreflexive:
No node

has a loop

Symmetric:
Every link is
bidirectional

P P
Antisymmetric:

No link is
bidirectional

P P

P
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Closures of Relations

• Definition:
For any property X, the “X closure” of a set R is defined as 

the “smallest” superset of R that has the given property.

• Theorem:
1. The reflexive closure of a relation R on A is obtained by 

adding (a,a) to R for each aÎA,   i.e., r(R) = R È IA.
2. The symmetric closure of R is obtained by adding (b,a) to R

for each (a,b) in R,  i.e., s(R) = R È R−1.
3. The transitive closure or connectivity relation of R is obtained 

by repeatedly adding (a,c) to R for each (a,b),(b,c) in R, i.e.,
U

+Î

=
Zn

nRRt )(
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Equivalence Relations

• Definition:
A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric, and transitive.
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Equivalence Classes

• Definition:
Let R be any equivalence relation on a set A.  For each 
a in A, the equivalence class of a with respect to R, 
denoted by [a]R, is 

[a]R = { b | <a,b> Î R}
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• Examples:
1. “Strings a and b are the same length.” 

• [a] = the set of all strings of the same length as a.
2. “Integers a and b have the same absolute value.”

• [a] = the set {a, −a}
3. “Real numbers a and b have the same fractional part 

(i.e., a − b Î Z).”
• [a] = the set {…, a−2, a−1, a, a+1, a+2, …}

4. “Integers a and b have the same residue modulo m.”  
(for a given m>1)
• [a] = the set {…, a−2m, a−m, a, a+m, a+2m, …}
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• Theorem:
Let R be an equivalence relation on a set A. 
1. For every x in A,  x Î [x]R.
2. If <x, y> Î R, then [x]R=[y]R . 

• Theorem:
Let R be an equivalence relation on a set A. 
If <x, y> ÏR, then [x]R∩ [y]R = Æ.
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Partition and Covering of a Set

• Definition:
Let S be a give set and A= {A1, A2, …, Am } where 

each Ai , i=1, … m, is a non-empty subset of S and
= S.

1.   Then the set A is called a covering of S, and 
the sets A1, A2, …, Am are said to cover S. 

2.    If the elements of A, which are subsets of S, are 
mutually disjoint, then A is called a partition of S, 
and the sets A1, A2, …, Am are called the blocks of 
the partition.

U
m

1i
iA

=
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Refinement and a Quotient Set

• Definition:
Let R be an equivalence relation on a set A, then 
A/R= {[x]R|x Î A} is called a quotient set of A 
modulo R.

• Theorem:
Let R be an equivalence relation on a set A, then the 
quotient set of A modulo R is a partition of A.
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Relation induced by the Partition

• Definition:
Let A be a set. Let π = {A1, A2, …, An } be a partition of A. 
Rπ is a relation induced by the partition π and defined as 
follows.
Rπ={<x, y>|(x ÎAi)∧(y ÎAi) for some i}

• Theorem:
Let A be a set. Let π = {A1, A2, …, An } be a partition A and 
Rπ be the relation induced by the partition π. Then, Rπ is 
an equivalence relation on A.
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Refinement
• Definition:

Let π1 and π2 be two partitions of a set A. π2 is a refinement 
of π1, (π2 refines π1), if for every block Bi in π2, there 
exists some block Aj in π1 such that Bi⊆Aj.

• Theorem:
Let π and π' be two partitions of a nonempty set A and let 
Rπ and Rπ' be the equivalence relations induced by π and 
π' respectively. Then π' refines π if and only if Rπ'⊆Rπ.



AI & CV Lab, SNU 158

Partial Orderings

• Definition: 

1. A relation R on a set S is called a partial ordering or 
partial order iff it is reflexive, antisymmetric, and 
transitive.

2. A set S together with a partial ordering R is called a 
partially ordered set, or poset, denoted by (S, R).
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• Example:
Consider the “greater than or equal to” relation ≥ 

(defined by {(a, b) | a ≥ b}). Is ≥ a partial ordering on 
the set of integers?

Proof:
1. ≥ is reflexive, because a ≥ a for every integer a.
2. ≥ is antisymmetric, because if a ≥ b ∧ b ≥ a, then a=b.
3. ≥ is transitive, because if a ≥ b and b ≥ c, then a ≥ c.

Consequently, (Z, ≥) is a partially ordered set.
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• Example:
Is the “inclusion relation” Í on the power set of a set S 

a partial ordering ?

Proof:

1. Í is reflexive, because A Í A for every set A.

2. Í is antisymmetric,  because if A Í B Ù B Í A, then A =B.

3. Í is transitive, because if A Í B and B Í C, then 

A Í C.

Consequently, (    (S), Í) is a partially ordered setÃ
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Partially Ordered Sets

• In a poset the notation a £ b denotes that (a, b)Î £ . 

Note that the symbol £ is used to denote the relation in any poset, 
not just the “less than or equal” relation. The notation a < b denotes 
that a £ b, but a ¹ b. If a < b we say “a is less than b” or “b is 
greater than a”.

• For two elements a and b of a poset (S, £), it is  possible that 
neither a £ b nor b £ a. For instance, in (     (Z), Í), {1, 2} is not 
related to {1, 3}, and vice versa, since neither is contained within 
the other.

Ã
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• Definition: 

1. The elements a and b of a poset (S, £) are called 
comparable if either a £ b or b £ a.

2. The elements a and b of a poset (S, £) are called 
incomparable if neither a £ b nor b £ a.
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• Definition : 
If (S, £) is a poset and every two elements of S are 
comparable, (S, £) is called a totally ordered or linearly
ordered set, and £ is called a total order or linear order. 
A totally ordered set is also called a chain.
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• Example 1: Is (Z, £) a totally ordered poset?

Yes, because a £ b or b £ a for all integers a and b.

• Example 2: Is (Z+, |) a totally ordered poset?

No, because it contains incomparable elements

such as 5 and 7.
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Hasse Diagram

• Definition :
Let G be a digraph representing a poset, (A, ≤).
The Hasse diagram of (A, ≤) is constructed from G
by
1. All loops are omitted.
2. An arc is not present in a Hasse diagram if it is 

implied by the transitivity of the relation.
3. All arcs point upward and arrow heads are not used.
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Example of Hasse Diagram

• { <a, b> | a≤b } on {1, 2, 3, 4}
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Greatest Elements and Least Elements

• Definition:
Let  (A, ≤) be a poset and B be a subset of A.
1. An element a Î B is a greatest element of B iff 

for every element a' Î B, a'≤a.
2. An element a Î B is a least element of B iff for 

every element a' Î B, a ≤ a'. 

• Theorem:
Let (A, ≤) be a poset and B ⊆ A. if a and b are 
greatest (least) elements of B, then a=b
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Least Upper Bound (lub)

• Definition:
Let (A, ≤) be a poset and B be a subset of A.

1. An element a Î A is an upper bound for B iff for 
every element a' Î B, a' ≤a.

2. An element a Î A is a least upper bound (lub) for B
iff a is an upper bound for B and for every upper 
bound a' for B,  a ≤a'.
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Greatest Lower Bound (glb)

• Definition:
Let (A, ≤) be a poset and B be a subset of A.

1. An element a ÎA is a lower bound for B iff for 
every element a'Î B, a ≤ a'.

2. An element a Î A is a greatest lower  bound (glb)
for B iff a is a lower bound for B and for every 
lower bound a' for B, a'≤ a.
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lub and glb

• Theorem:
Let (A, ≤) be a poset and B⊆A.
1. If b is a greatest element of B, then b is a lub of B.
2. If b is an upper bound of B and b Î B, then b is a greatest 

element of B.

• Theorem:
Let (A, ≤) be a poset and B⊆A.
If a least upper bound (or a greatest lower bound) for B 
exists, then it is unique.
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Lattices

• Definition:
A poset is a lattice if every pair of elements has a lub and 
a glb. 

• Theorem:
Let <L, ≤> be a lattice. If x*y (x+y) denotes the glb (lub) for
{x, y}, then the following holds: for any a, b, and c in L,

(i) a*a=a (i') a+a=a                        (idempotent)
(ii) a*b=b*a (ii') a+b=b+a (commutative)
(iii) (a*b)*c= a*(b*c) (iii') (a+b)+c= a+(b+c)  (associative)

(iv) a*(a+b)=a               (iv') a+(a*b)=a                (absorption)
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Exercise
1. For each of the following relation R on set A, state whether or not R is 

reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and 
transitive.

(a) A = {1, 2, …., 9}
R = {<x,y> | x+y=10}

(b) A = a set of real numbers 
R = {<x,y> | |x|≤|y| }

(c) A = a set of natural numbers
R = {<x,y> | x-y=2k,  k Î A }

2. Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of theses statements

(a)  R∪S is reflexive
(b)  R∩S is reflexive
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3. Show that the relation R on a set A is symmetric if and 
only if R=R-1, where R-1 is the inverse relation.

4. Let R1 and R2 be arbitrary relations on a set A. 
Prove or disprove the following assertions.
(a) If R1 and R2 are reflexive, then R1°R2 is reflexive.
(b) If R1 and R2 are transitive, then R1°R2 is transitive.
(c) If R1 and R2 are symmetric, then R1°R2 is symmetric.  
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5. Show that the relation R on a set A is symmetric if and 
only if R=R-1, where R-1 is the inverse relation. 

6. Let A be a set of ordered pairs of positive integers and R
be a relation on A such that <(x,y),(u,v)> Î R if and only 
if x+v = y+u. Determine whether or not R is an 
equivalence relation.

7. Let R1 and R2 be two equivalence relations on a nonempty set A.
Prove or disprove the following :

(a) R1ÈR2 an equivalence relation.
(b) R1ÇR2 an equivalence relation.



AI & CV Lab, SNU 175

8. If R is a partial ordering relation on a set X and A Í X, show 
that RÇ(A´A) is a partial ordering on A. 

9. Let S be a set of all partitions defined on a nonempty set A. The 
relation R on a set S is defined to be <π1, π2> ∈ R if and only 
if π1 refines π2 (π1 is the refinement of π2).
(a) Show that R is a partial ordering.
(b) Is a p.o. set <S, R> a lattice? If yes, prove it. Otherwise, 

explain why.
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10.  Let <A, ≤ > be a lattice. Prove that for every x, y, and z in A,
(a) x*(y*z) = (x*y)*z
(b) x+(x*y) = x
where x*y is glb(x,y) and x+y is lub(x,y).

11. Let <E(A), ⊆> be a p.o.set where E(A) is a set of all 
equivalence relations defined on a set A.
(a) For every x and y in E(A), is xÇy the glb of {x,y} ?
(b) For every x and y in E(A), is xÈy the lub of {x,y} ?
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Functions

• Definition: 
Let A and B be two sets. A relation f from A to B
is called a function if for every x in A, there is a 
unique y in B such that <x, y> ∈ f

• A function f ⊆ A × B may be written by f : A→ B
and <x, y> ∈ f written by f(x)=y.
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Graphical Representations

• Functions can be represented graphically in several 
ways:

• •

A B

a b

f

f

•
•
•
•

•
•

•
•

•
x

y

PlotBipartite GraphLike Venn diagrams

A B
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Some Function Terminology

• Definition:
Let f:A®B and f(a)=b (where a in A and b in B). 
Then,

1. A is the domain of f.  
2. B is the codomain of f.
3. b is the image of a under f.
4. a is a pre-image of b under f.
5. The range RÍB of f is R = {b | (a, b) Î f for some

a}.
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Images of Sets under Functions

• Definition:
Given f:A®B, and S Í A, the image of S under f
is defined to be the set of all images (under f) of 
the elements of S: f(S) = { f(w) | wÎS}

• Note the range of f can be defined as simply the 
image (under f) of f’s domain!
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Range versus Codomain

• The range of a function might not be its whole 
codomain.

• The codomain is the set that the function is declared
to map all domain values into.

• The range is the particular set of values in the 
codomain that the function actually maps elements 
of the domain to.
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Range vs. Codomain - Example

• Suppose I declare to you that: “f is a function mapping 
students in this class to the set of grades {A,B,C,D,E}.”

• At this point, you know f’s codomain is: {A,B,C,D,E}, and 
its range is unknown!

• Suppose the grades turn out all As and Bs.
• Then the range of f is {A,B}, but its codomain is still 

{A,B,C,D,E}!
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Restriction and Extension

• Definition:
If f: X → Y and A⊆X,  then f ∩ (A×Y) is a 
function from A to Y called the restriction of f to 
A and is sometimes written as f/A, If g is a 
restriction of f, then f is called the extension of g.
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Operators

• Definition:
An n-ary operator On over the set S is a function from 
the set of ordered n-tuples of elements of S to S itself.

On : Sn → S
• Example:

1. If S={T,F}, Ø can be seen as a unary operator, and 
Ù,Ú are binary operators on S.

2. È and Ç are binary operators on the set of all sets.
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Function Operators

• If · (“dot”) is any operator over B, then we can extend 
· to also denote an operator over functions f:A®B.

• Definition:
Given any binary operator ·:B´B®B and two 
functions, f:A®B and g:A®B,
the function, (f · g):A®B, is defined to be such that  
"aÎA, (f · g)(a) = f(a)·g(a).
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Example

• Let + and × be addition and multiplication (binary) 
operators over R, respectively. Then, two functions, 
f:R®R and g:R®R, can be also added and 
multiplied:
1. (f + g):R®R, where (f + g)(x) = f(x) + g(x)
2. (f × g):R®R, where (f × g)(x) = f(x) × g(x)
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Function Composition

• Definition:
Let g:A®B and f:B®C be two functions. Then 
the function composition, f◦g, from A to C is
f◦g = { <x,y> | (∃z)((<x,z>Îg) Ù (<z,y>Îf))}

• Note that ◦ (like Cartesian ´, but unlike +,Ù,È) is 
not commutative. (Generally, f◦g ¹ g◦f.)
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• Theorem:
Let g:A®B and f:B®C be functions. Then the 
function composition f◦g is a function from A to 
C and (f◦g)(a) = f(g(a)) for all a in A

• Theorem:
Composition of functions is associative: If f, g,
and h are functions, then (f◦g)◦h= f◦(g◦h)
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Partial Function

• Definition:
Let X and Y be sets. A partial function f with 
domain X and codomain Y is any function from 
X´ to Y, where X´⊆X. 
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One-to-One (Injective) Functions

• Definition:
A function f : A®B is one-to-one, or injective, or 
an injection, if every element of its range has only
1 pre-image : (for every x and y in A, if f(x)=f(y),
then x=y)
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Illustration of One-to-One
• Bipartite (2-part) graph representations of functions that 

are (or not) one-to-one:

•
•
•
•

•
•

•
•

•

One-to-one

•
•
•
•

•
•

•
•

•

Not one-to-one

•
•
•
•

•
•

•
•

•
Not even a 
function!
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Onto (Surjective) Functions

• Definition:
A function f : A®B is onto or surjective or a surjection
if for every b in B, there exists a in A such that f(a)=b.
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Illustration of Onto

• Some functions that are (or not) onto their 
codomains:

Onto
(but not 1-1)

•
•
•
•

•

•

•
•

•
Not Onto
(not 1-1)

•
•
•
•

•

•

•
•

•

Both 1-1
and onto

•
•
•
•

•
•
•

•
1-1 but
not onto

•
•
•
•

•
•
•

•

•
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Bijective Functions

• Definition:
A function f : A®B is one-to-one and onto, or a 
one-to-one correspondence, or bijective, or a
bijection if it is both one-to-one and onto.
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• Theorem:
Let f◦g: A®C be a composite function where 
g: A®B and f: B®C.

1. If f and g are surjective, then f◦g is surjective.
2. If f and g are injective, then f◦g is injective.
3. If f and g are bijective, then f◦g is bijective.
4. If f◦g is surjective, then f is surjective.
5. If f◦g is injective, then g is injective.
6. If f◦g is bijective, then f is surjective and g is 

injective.
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Constant Function

• Definition:
Let a function f: X→Y is a constant function if 
there exist some y in Y such that f(x)=y for every 
x in X
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Identity Function

• Definition:
For any domain A, the identity function I: A®A
(variously written, IA, 1, 1A) is the unique 
function such that for every a in A, I(a)=a.

• Note that the identity function is one-to-one and 
onto (bijective).

• Note that if f: X→Y, then f = f◦I = I◦f
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• The identity function:

Identity Function Illustration

•
•

•
•

•
•

•
•

•

Domain and range x

y
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Inverse Function

• Definition:
Let f:X®Y be a bijection from X to Y. The 
inverse function of f, denoted by f -1 , is the 
converse relation of f.

• Theorem:
1. Let f be a bijective function f:X®Y. Then f -1 is 

a  bijective function, f -1: Y ® X .
2. If f is bijective, then (f -1) -1 = f .
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• Definition:
Let h:A®B and g:B®A. If g ◦ h = IA, then g is a left 

inverse of h and h is a right inverse of g.

• Theorem:
Let f:A®B with A≠ Ø.  Then

1. f has a left inverse if and only if f is injective.
2. f has a right inverse if and only if f is surjective.
3. f has a left and a right inverse if and only if f is 

bijective.
4. If f is bijective, then the left and the right inverse of 

f are equal.
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A Couple of Key Functions

• In discrete math, we will frequently use the 
following functions over real numbers:
1. ëxû (“floor of x”) is the largest (most positive) 

integer £ x.
2. éxù (“ceiling of x”) is the smallest (most 

negative) integer ³ x.
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Finite Set and Cardinality
• Definition:

A set A is finite if there is some natural number n∈N
such that there is a bijection from the set  {1, 2, …, n} 
of the first n natural numbers to the set A. 
The integer n is called the cardinality of A, and we 
say “A has n elements,” or “ n is the cardinal number
of A.” The cardinality of A is denoted by |A|. A set is 
infinite if it is not finite.

• Theorem:
Let A and B be finite sets, and suppose there is a 
bijection from A to B. Then |A|=|B|
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Countability

• Definition:
A set A is of cardinality אo denoted |A|= אo if 
there is a bijection from N to A where N is a set 
of all natural numbers.

• Definition:
A set A is countably infinite if |A|= אo . The set A
is countable or denumerable if it is either finite 
or countably infinite. The set A is uncountable or 
uncountably infinite if it is not countable.
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Cardinality

• Definition:
For any two (possibly infinite) sets A and B, we 
say that A and B have the same cardinality 
(written |A|=|B|) if there exists a bijection from A
to B.
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Countable versus Uncountable

• Countable: All elements of S can be enumerated in 
such a way that any individual element of S will 
eventually be counted in the enumeration.  Examples: 
N, Z.

• Uncountable: No series of elements of S (even an 
infinite series) can include all of S’s elements.
Examples: R, R2,    (N) Ã
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Examples of Countable Sets

• Theorem:
The set of integers is countable.

• Theorem: 
The set of all ordered pairs of natural numbers 
(n,m) is countable.
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Example of Uncountable Sets

• Theorem: 
The open interval
[0,1) = {rÎR| 0 £ r < 1} is uncountable.

Proof :
By diagonalization: (Cantor, 1891)

1. Assume there is a series {ri} = r1, r2, ... containing 
all elements rÎ[0,1).

2. Consider listing the elements of {ri} in decimal 
notation (although any base will do) in order of 
increasing index: ...  (continued on next slide)
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A postulated enumeration of the reals:
r1 =  0.d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8…
r2 =  0.d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8…
r3 =  0.d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8…
r4 =  0.d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8…
.
.
Now, consider a real number generated by taking
all digits di,i that lie along the diagonal in this figure
and replacing them with different digits.

That real doesn’t appear in the list!
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Transfinite Numbers

• The cardinalities of infinite sets are not natural numbers, 
but are special objects called transfinite cardinal numbers.

• The cardinality of the natural numbers, À0:º|N|, is the first 
transfinite cardinal number.  (There are none smaller.) 

• The continuum hypothesis claims that |R|=À1, the second 
transfinite cardinal.

• Proven impossible to prove or disprove!
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Exercise
1. For each of the following functions, determine

(1) whether the function is injective, surjective, or  
bijective

(2) the image of function
(3) an express for f-1 if the inverse function is  

defined

(a) f : R ® R+,       f (x) = 2x

(b) f : [0,∞] ® R,   f (x) = 1/(1+ x)
(c) f : N ® N´N,    f (n) = < n , n +1> 
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2. Suppose f and f ◦g are one-to-one. Does it
follow that g is one to one?

3. Suppose that f is a bijective function from Y to 
Z and g is a bijective function from X to Y. 
Show that the inverse (f ◦g)-1 of the composition f ◦ g
given by (f ◦g)-1 = g-1 ◦ f-1 .
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4. Let f : A ® B and g : B ® C .  Prove that 
(a) if f ◦g  is injective, then  f is injective. 
(b) if f ◦g  is surjective, then g is surjective.

5. Find the cardinal number of each set 
(a) A = {a, b, c,, …. ,y, z}. 
(b) B = {10, 20, 30, 40, …}. 

6. Show that two sets, (-∞,+∞) and (0,1) have 
the same cardinality.



Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
5. Graphs & Trees



AI & CV Lab, SNU 215

5-1. Graphs
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What are Graphs?

• General meaning in everyday math: 
A plot or chart of numerical data using a coordinate 
system.

• Technical meaning in discrete mathematics:
A particular class of discrete structures (to be 
defined) that is useful for representing relations and 
has a convenient webby-looking graphical 
representation.

Not
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Simple Graphs

• Definition:
A simple graph G=(V,E)
consists of:

• a set V of vertices or nodes (V corresponds to the 
universe of the relation R), and

• a set E of edges / arcs / links: unordered pairs of 
[distinct?] elements u,v Î V, such that uRv.

Visual Representation
of a Simple Graph
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• Let V be the set of states in the far-southeastern U.S.:
V={FL, GA, AL, MS, LA, SC, TN, NC}

• Let E={{u,v}|u adjoins v}
={{FL,GA},{FL,AL},{FL,MS},
{FL,LA},{GA,AL},{AL,MS},
{MS,LA},{GA,SC},{GA,TN},
{SC,NC},{NC,TN},{MS,TN},
{MS,AL}}

Example of a Simple Graph

TN

ALMS

LA

SC

GA
FL

NC
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Multigraphs

• Like simple graphs, but there may be more than one edge 
connecting two given nodes.

• Definition:
A multigraph G=(V, E, f ) consists of a set V of vertices, a 
set E of edges (as primitive objects), and a function
f:E®{{u,v}|u,vÎV Ù u¹v}.

• Example:
Nodes are cities, edges
are segments of major highways.

Parallel
edges
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Pseudographs

• Like a multigraph, but edges connecting a node to itself are 
allowed.

• Definition:
A pseudograph G=(V, E, f ) where
f:E®{{u,v}|u,vÎV}.  Edge eÎE is a loop if 
f(e)={u,u}={u}.

• Example: 
Nodes are campsites in
a state park, edges are
hiking trails through the woods.

loop
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Directed Graphs

• Correspond to arbitrary binary relations R, which 
need not be symmetric.

• Definition:
A directed graph (V, E) consists of a set of 
vertices V and a binary relation E on V.

• Example: 
V = people, E={(x,y) | x loves y}
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Walk, Path, Cycle, Loop, and Sling

• Definition:
1. A walk is a sequence x0, x1, …, xn of the nodes of a 

digraph such that xixi+1, 0≤i≤n-1, is an edge.
2. The length of a walk is the number of edges in the 

walk.
3. A walk x0, x1, …, xn is called a path if it holds xi≠xj

for i≠j, i,j=0, …, n.
4. A path x0, x1, …, xn is called a cycle if it holds 

x0=xn..
5. A cycle of length one is called a loop.
6. A cycle of length two is called a sling. 
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Directed Multigraphs

• Like directed graphs, but there may be more than one edge 
from a node to another.

• Definition:
A directed multigraph G=(V, E, f ) consists of a set V of 
vertices, a set E of edges, and a function f:E®V´V.

• Example: 
The WWW is a directed multigraph.

• V = web pages, E = hyperlinks.
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Types of Graphs: Summary

• Keep in mind this terminology is not fully standardized...

Term 
Edge 
type 

Multiple 
edges ok? 

Self- 
loops ok? 

Simple graph Undir. No No 
Multigraph Undir. Yes No 
Pseudograph Undir. Yes Yes 
Directed graph Directed No Yes 
Directed multigraph Directed Yes Yes 
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Graph Terminology

• Adjacent, connects, endpoints, degree, initial, 
terminal, in-degree, out-degree, complete, cycles, 
wheels, n-cubes, bipartite, subgraph, and union.
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Adjacency

Let G be an undirected graph with edge set E.  
Let eÎE be (or map to) the pair {u,v}.  
Then we say:
• u, v are adjacent / neighbors / connected.
• Edge e is incident with vertices u and v.
• Edge e connects u and v.
• Vertices u and v are endpoints of edge e.
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Degree of a Vertex

• Let G be an undirected graph, vÎV a vertex.
• The degree of v, deg(v), is its number of incident 

edges. (Except that any self-loops are counted 
twice.)

• A vertex with degree 0 is isolated.
• A vertex of degree 1 is pendant.
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Handshaking Theorem

• Theorem:
Let G be an undirected (simple, multi-, or 
pseudo-) graph with vertex set V and edge set E.  
Then

• Corollary: 
Any undirected graph has an even number of 
vertices of odd degree.

Ev
Vv

2)deg( =å
Î
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Directed Adjacency

• Let G be a directed (possibly multi-) graph, and let e
be an edge of G that is (or maps to) (u, v).  Then we 
say:
− u is adjacent to v, v is adjacent from u
− e comes from u, e goes to v.
− e connects u to v, e goes from u to v
− the initial vertex of e is u
− the terminal vertex of e is v
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Directed Degree

• Definition:
Let G be a directed graph, v a vertex of G.

1. The indegree of v, deg-(v), is the number of 
edges going to v.

2. The outdegree of v, deg+(v), is the number of 
edges coming from v.

3. The degree of v, deg(v)=deg-(v)+deg+(v), is the 
sum of v’s in-degree and out-degree.
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Directed Handshaking Theorem

• Theorem:
Let G be a directed (possibly multi-) graph with 
vertex set V and edge set E.  Then:

• Note that the degree of a node is unchanged by 
whether we consider its edges to be directed or 
undirected.

Evvv
VvVvVv

=== ååå
ÎÎ

+

Î

- )deg(
2
1)(deg)(deg
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Special Graph Structures

Special cases of undirected graph structures:
• Complete Graphs Kn

• Cycles Cn

• Wheels Wn

• n-Cubes Qn

• Bipartite Graphs
• Complete Bipartite Graphs Km,n
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Complete Graphs
• Definition:

For any nÎN, a complete graph on n vertices, Kn, 
is a simple graph with n nodes in which every 
node is adjacent to every other node: "u,vÎV: 
u¹v«{u,v}ÎE.

K1 K2 K3 K4 K5 K6

Note that Kn has                edges.2
)1(1

1

-
=å

-

=

nni
n

i
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Cycles
• Definition:

For any n³3, a cycle on n vertices, Cn, is a 
simple graph where V={v1,v2,… ,vn} and 
E={{v1,v2},{v2,v3},…,{vn-1,vn},{vn,v1}}.

C3 C4 C5 C6 C7 C8

How many edges are there in Cn?
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Wheels

• Definition:
For any n³3, a wheel Wn, is a simple graph obtained by 
taking the cycle Cn and adding one extra vertex vhub and 
n extra edges {{vhub,v1}, {vhub,v2},…,{vhub,vn}}.

W3 W4 W5 W6 W7 W8

How many edges are there in Wn?
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n-Cubes (hypercubes)

• Definition:
For any nÎN, the hypercube Qn is a simple 
graph consisting of two copies of Qn-1 connected 
together at corresponding nodes.  Q0 has 1 node.

Q0 Q1 Q2 Q3 Q4

Number of vertices: 2n.  Number of edges:Exercise to try! 
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• Definition:
For any nÎN, the hypercube Qn can be defined 
recursively as follows:
1. Q0={{v0},Æ} (one node and no edges)
2. For any nÎN, if Qn=(V,E), where 

V={v1,…,va} and E={e1,…,eb}, then 
Qn+1=(VÈ{v1´,…,va´}, 
EÈ{e1´,…,eb´}È{{v1,v1´},{v2,v2´},…,
{va,va´}}) where v1´,…,va´ are new vertices, 
and where if ei={vj,vk} then ei´={vj´,vk´}. 
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Bipartite Graphs
• Definition:

A simple graph G is called bipartite if its vertex 
set V can be partitioned into two disjoint sets V1
and V2 such that every edge in the graph 
connects a vertex in V1 and a vertex in V2 (so 
that no edge in G connects either two vertices in 
V1 or two vertices in V2)

V1 V2
a bipartite
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Complete Bipartite Graphs
• Definition:

Let m, n be positive integers. The complete 
bipartite graph Km,n is the graph whose vertices 
can be partitioned V = V1 ∪ V2 such that
1. |V1| = m
2. |V2| = n
3. For all x ∈ V1 and for all y ∈ V2, there is an 

edge between x and y
4. No edge has both its endpoints in V1 or both 

its endpoints in V2
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Example:

V1 V2
K2,3

K3,4

V1

V2
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Subgraphs

• Definition:
A subgraph of a graph G=(V,E) is a graph 
H=(W,F) where WÍV and FÍE.

G H
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Graph Unions

• Definition:
The union G1ÈG2 of two simple graphs 
G1=(V1, E1) and G2=(V2,E2) is the simple graph 
(V1ÈV2, E1ÈE2).
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Graph Representations & Isomorphism

• Graph representations:
− Adjacency lists.
− Adjacency matrices.
− Incidence matrices.

• Graph isomorphism:
Two graphs are isomorphic if and only if they 
are identical except for their node names.



AI & CV Lab, SNU 244

Adjacency Lists

• A table with 1 row per vertex, listing its adjacent 
vertices.

a b

dc
f

e

Vertex Adjacent Vertices 
a 
b 

b, c 
a, c, e, f 

c a, b, f 
d  
e b 
f c, b 
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Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each 
edge incident from that node.
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Adjacency Matrices

• Matrix A=[aij], where aij is 1 if {vi, vj} is an edge of 
G, 0 otherwise.
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Graph Isomorphism

• Definition:
Simple graphs G1=(V1, E1) and G2=(V2, E2) are 
isomorphic if there exists a bijection f:V1®V2 such that 
for every a and b inV1, a and b are adjacent in G1 if and 
only if f(a) and f(b) are adjacent in G2.

• f is the “renaming” function that makes the two graphs 
identical.

• Definition can easily be extended to other types of graphs.
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Graph Invariants under Isomorphism

Necessary but not sufficient conditions for 
G1=(V1, E1) to be isomorphic to G2=(V2, E2):

1. |V1|=|V2| and |E1|=|E2|.
2. The number of vertices with degree n is the 

same in both graphs.
3. For every proper subgraph g of one graph, there 

is a proper subgraph of the other graph that is 
isomorphic to g.
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Isomorphism Example

• If isomorphic, label the 2nd graph to show the 
isomorphism, else identify difference.

a
b

cd

e
f

b

d

a

e
fc



AI & CV Lab, SNU 250

Are these Isomorphic?

• If isomorphic, label the 2nd graph to show the 
isomorphism, else identify difference.

a
b

c

d

e

* Same # of vertices

* Same # of edges

* Different # of verts of
degree 2! (1 vs. 3)
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Connectedness

• Definition:
An undirected graph is connected if and only if there is 
a walk between every pair of distinct vertices in the 
graph.

• Theorem: 
There is a path between any pair of vertices in a 
connected undirected graph.
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Directed Connectedness

• Definition:
1. A directed graph is strongly connected if there 

is a directed path from a to b for any two 
vertices a and b.  

2. It is weakly connected if the underlying 
undirected graph (i.e., with edge directions 
removed) is connected.

• Note that strongly implies weakly but not vice-
versa.
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Euler Circuits and Paths
• Definition:
1. An Euler circuit in a graph G is a circuit containing every 

edge of G.
2. An Euler path in G is a walk containing every edge of G.

• Example:
a b

e

cd

a, e, c, d, e, b, a

Euler circuit

a, c, d, e, b, d, a, b

Euler path

a b

c d e
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Hamilton Circuits and Paths
• Definition:
1. A Hamilton circuit is a circuit that traverses each vertex in G

exactly once.
2. A Hamilton path is a walk that traverses each vertex in G 

exactly once.
• Example:

ce

a, b, c, d, e, a

Hamilton circuit

a, b, c, d

Hamilton path

d c

a b

d

a b



5-2. Trees
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Trees

• Definition: 

A tree is an acyclic directed graph such that (1) there 
is  exactly one node, called the root of the tree, 
which has indegree 0, (2) every node other than the 
root has indegree l, and (3) for every node a of the 
tree, there is a directed path from the root to a.



• Definition:
In a tree, any node which has outdegree 0 is called a 
terminal node or a leaf; all other nodes are called 
branch/ interior/ internal nodes. The level of any 
node is the length of its path from the root where the 
level of the root is 0. The height of the tree is the 
maximum of the levels of nodes. 
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• Definition:

1. If v is a node in a tree other than the root, the parent of v is 
the unique node u such that there is a directed edge from u to 
v.

2. When u is the parent of v, v is called the child of u.
3. Nodes with the same parent are called siblings.
4. The ancestors of a node other than the root are those nodes 

in the path from the root to this node, excluding the node 
itself but including the root.

5. The descendants of a node v are those nodes that have v as 
an ancestor.
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• Definition: 

If a is a node in a tree, then the subtree with a as its 
root is the subgraph of the tree consisting of a and its 
descendants.
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Examples

Example 1: Family tree

Bob

James

Christine

Frank Joyce Petra
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Example 2: File system

temp

/

usr

bin spool ls

bin
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Example 3: Arithmetic expressions

×

+ -

y z x y
•This tree represents the expression (y + z)×(x - y).
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• Definition:

1. A tree is called an m-ary tree if every internal vertex has 
no more than m children. 

2. A tree is called a full m-ary tree if every internal vertex 
has exactly m children.

3. An m-ary tree with m = 2 is called a binary tree.
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• Theorem: 

1. A tree with n vertices has (n – 1) edges.

2. A full m-ary tree with i internal vertices contains  n = m·i
+ 1 vertices.
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Tree Traversal

• Procedures for systematically visiting every vertex 
of an ordered tree are called traversal algorithms.
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Preorder Traversal

T1 T2 Tn...

r

Step 2
Visit T1 in 
preorder

Step 1
Visit r

Step 3
Visit T2 in 
preorder

Step n+1
Visit Tn in 
preorder

• Definition:
Let T be an ordered tree with 
root r. 
If T consists only of r, then r is 
the preorder traversal of T. 
Otherwise, suppose that T1, T2, 
…, Tn are the subtrees at r from 
left to right in T. The preorder 
traversal begins by visiting r. It 
continues by traversing T1 in 
preorder, then T2 in preorder, and 
so on, until Tn is traversed in 
preorder.
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Inorder Traversal

T1 T2 Tn...

r

Step 1
Visit T1 in 
inorder

Step 2
Visit r

Step 3
Visit T2 in 
inorder

Step n+1
Visit Tn in 
inorder

• Definition:
Let T be an ordered tree with root 
r. 
If T consists only of r, then r is 
the inorder traversal of T. 
Otherwise, suppose that T1, T2, …, 
Tn are the subtrees at r from left 
to right. The inorder traversal
begins by traversing visiting T1 in 
inorder, then visiting r. It 
continues by traversing T2 in 
inorder, then T3 in inorder, …, 
and finally Tn in inorder
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Postorder Traversal

• Definition:
Let T be an ordered tree with root 
r. If T consists only of r, then r is 
the postorder traversal of T. 
Otherwise, suppose that T1, T2, …, 
Tn are the subtrees at r from left to 
right. The postorder traversal
begins by traversing T1 in 
postorder, then T2 in postorder, …, 
then Tn in postorder, and ends by 
visiting r.

T1 T2 Tn...

r

Step 1
Visit T1 in 
postorder

Step n+1
Visit r

Step 2
Visit T2 in 
postorder

Step n
Visit Tn in 
postorder
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Example of Traversal

• Preorder : a, b, e, j, k, n, o, 
p, f, c, d, g, l, m, h, i

• Inorder : j, e, n, k, o, p, b, f, 
a, c, l, g, m, d, h, i

• Postorder : j, n, o, p, k, e, f, 
b, c, l, m, g, h, i, d, a

a

b c d

e
f

g

h i

j
k l m

n o p
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Exercise

1. Let G be a graph. Prove that there must be an even 
number of vertices of odd degree.

2. Prove that in any graph with two or more vertices, 
there must be two vertices of the same degree.
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3.   List the order of the nodes of the following 
binary tree visited by each of preorder, inorder, 
and postorder traversal algorithm.
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6-1. Algebras
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Algebra

• Definition:
An algebra is characterized by specifying the following 
three components:

• A set called the carrier of the algebra, 
• Operators defined on the carrier, and
• Distinguished elements of the carrier, called the 

constants of the algebra.
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Closed with respect to operation

• Definition:
Let ◦ and ᅀ be binary and unary operations on a 
set T and let T' be a subset of T. Then T' is closed 
with respect to ◦, if a, b Î T' implies a◦b Î T'. The 
subset T' is closed with respect to ᅀ, if a Î T'
implies ᅀa Î T'.
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Subalgebra

• Definition:
Let A=<S, ◦,ᅀ, k> and A'=<S', ◦',ᅀ', k'> be 
algebras. Then A' is a subalgebra of A if 

• S'⊆S
• a◦'b=a◦b for all a, bÎS'
• ᅀ′a= ᅀa for all aÎ S'
• k'=k.
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Identity and Zero Element

• Definition:
Let ◦ be a binary operation of S. 
− An element 1ÎS is an identity (or unit) for the 

operation ◦ if every x Î S, 
1◦x=x◦1=x

− An element 0 Î S is a zero for the operation ◦ if for 
every x Î S

0◦x=x◦0=0
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• Definition:
Let ◦ be a binary operation on S. 
1. An element 1l (1r) is a left (right) identity for the 

operation ◦ if for every x Î S,
1l◦x=x  (x◦1r=x)

2. An element 0l (0r) is a left (right) zero for the 
operation ◦. If for every x Î S,

0l◦x=0  (x◦0r=0)
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Inverse Element

• Definition:
Let ◦ be a binary operation on S and 1 an identity for 
the operation ◦. 

1. If x◦ y=1, then x is a left inverse of y and y is a right 
inverse of x with respect to the operation ◦. 

2. If both x◦ y=1 and y◦x=1 then x is an inverse of y
with respect to the operation ◦.
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Semigroup

• Definition:
A semigroup is an algebra with signature <S, ◦> where 
◦ is a binary associative operation: for every a, b, and c
in S,  a◦ (b◦ c)= (a◦ b)◦ c

• Theorem:
If <S, ◦> is a semigroup and <T, ◦> is a subalgebra of 
<S, ◦>, the <T, ◦> is a semigroup.
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Monoid

• Definition:
A monoid is an algebra with signature <S, ◦, 1> where ◦
is a binary associative operation on S and 1 is an identity 
for the operation ◦. i.e. the following axioms hold for all 
elements a, b, and c in S:

• a◦(b◦c) = (a◦b)◦c
• a◦1 = a
• 1◦a = a
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Group

• Definition:
A group is an algebra with signature <S, ◦, ¯, 1> where ◦ is an 
associative binary operation on S, the constant 1 is an identity for 
the operation on ◦ and ¯ is a unary operation defined over S such 
that for all xÎ S,      is an inverse for x with respect to ◦.

• Theorem:
Let <S, ◦, ¯, 1> be a group. Every element of S has a unique inverse 
in S.

x



AI & CV Lab, SNU 283

Homomorphism

• Definition:
Let A=<S, ◦,ᅀ, k> and A'=<S', ◦',ᅀ', k'> be 
two algebras with the same signature and let the 
function h:S→S' be such that

• h(x◦y)=h(x)◦'h(y),
• h(ᅀx)=ᅀ'h(x)
• h(k)=k'.

Then h is called homomorphism for A to A'.
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Epimorphism, Monomorphism, and 
Isomorphism

• Definition:
1. h is epimorphism if h is onto and 

homomorphism.
2. h is monomorphism if h is one-to-one and 

homomorphism.
3. h is isomorphism if h is bijection and 

homomorphism.
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Congruence Relation

• Definition:
Given an algebra A=<S, ◦,ᅀ> with a binary operation ◦ and a 
unary operation ᅀ, an equivalence relation E on S is a right (left) 
congruence relation on A if and only if for every x, y, and z in S,

1. if <x, y>Î E, then <x◦ z, y◦ z>Î E  (<z◦ x, z◦ y>Î E)
2. if <x, y>Î E, then <ᅀx,ᅀy>Î E.
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• Definition:
Given an algebra A=<S, ◦,ᅀ>, an equivalence relation E
on S is a congruence relation on A if and only if it is a left 
and right congruence relation on A.

• Theorem:
Let A=<S, ◦> be an algebra with a binary operation ◦ and 
let E be an equivalence relation on S. Then E is a 
congruence relation on A if and only if  for every x1, x2, y1,
and y2 in S,
(<x1, x2>Î E ∧ <y1,y2>Î E)⇒ <x1◦ y1, x2◦ y2>Î E



6-2. Lattices
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Lattices

• Definition:
A poset <L,≤> is a lattice if every two  

elements in L has a lub and a glb. 



• Theorem:
Let <L, ≤> be a lattice. Then for every a, b, and c in L,

1. a*a=a, a+a=a (idempotent)
2. a*b=b*a, a+b=b+a      (commutative)
3. (a*b)*c= a*(b*c),  (a+b)+c= a+(b+c) (associative)
4. a*(a+b)=a, a+(a*b)=a     (absorption)
where * and + represent the glb and the lub, respectively. 
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• Theorem:
Let <L, ≤> be a lattice. Then for every a and b in L, 

a≤ b  if and only if a*b=a ⇔ a+b=b

• Theorem:
Let <L, ≤> be a lattice. Then for every a, b, and c in L, 

if b≤c, then  a*b≤a*c  and a+b≤a+c

• Theorem:
Let < L, ≤> be a lattice. Then for every a, b, and c in L,  

a+(b*c)≤(a+b)*(a+c)   and (a*b)+(a*c)≤a*(b+c)
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• Theorem:
Let <A, *, +> be an algebra with two binary operations * 

and +.  If the following property holds that for any a, b, and c
in A,

1. a*a=a,  a+a=a                                       (idempotent)
2. a*b=b*a,  a+b=b+a (commutative)
3. (a*b)*c= a*(b*c),  (a+b)+c= a+(b+c) (associative)
4. a*(a+b)=a,  a+(a*b)=a                          (absorption),

then there exists a lattice <A, ≤> such that * is a glb, + is a 
lub, and ≤ is defined as  x≤y iff x*y=x  (x+y=y).
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• Definition:
A lattice is an algebraic system <L, *, +> with two 

binary operations * and + on L which are both 
commutative and associative and satisfy the absorption
law.

• Definition:
Let <L, *, +> be a lattice and let S⊆L be a subset of L. 

The algebra <S, *, +> is a sublattice of <L, *, +> if S is 
closed under both operations * and +. 
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• Definition:
Let <L, *, +> and <S, ∩, ∪> be two lattices. 
A mapping g:L→S is called a lattice homomorphism from 
the lattice <L, *, +> to <S, ∩, ∪> if  for any a and b in L, 
g(a*b)=g(a)∩g(b) and g(a+b)=g(a)∪g(b).

• Definition:
Let <P, ≤> and <Q, ≤'> be two partially ordered sets, 
A mapping f:P→ Q is said to be order-preserving relative to
the ordering ≤ in P and ≤' in Q if  for every a and b in P,
a≤ b implies f(a) ≤' f(b) in Q.
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• Definition:
Two partially ordered sets <P, ≤> and <Q, ≤'> are called order-
isomorphic if there exists a bijection f:P → Q  and if both f and f -1
are order-preserving.

• Definition:
A lattice is called complete if each of its nonempty subsets has a 
lub and a glb.
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• Definition:
The least and the greatest elements of a lattice, if they exist, are called  

the bounds of the lattice, and are denoted by 0 and 1 respectively.

• Definition:
In a bounded lattice <L, *, +, 0, 1>, an element b in L is called a 

complement of an element a in L if  a*b=0  and a+b=1.

• Theorem: 
In a bounded lattice <L, *, +, 0, 1>,  1(0) is the only complement of 

0(1).
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• Definition:
A lattice <L, *, +, 0, 1> is said to be a complemented lattice if 

every element in L has at least one complement.

• Definition:
A lattice <L, *, +> is called a distributive lattice if for every a, 

b, and c in L, 
a*(b+c)=(a*b)+(a*c) and a+(b*c)=(a+b)*(a+c)

• Theorem:
Every chain is a distributive lattice.
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Exercise
1. Let the algebra, A = < I, + >, where I is a set of integers and + is a

binary addition operation. For each of the following binary
relations defined on I, prove or disprove that the relation is a 
congruence relation on A.
(a) < x, y > Î R1 if and only if |x - y|<10
(b) < x, y > Î R2 if and only if x ³ y
(c) < x, y > Î R3 if and only if (x <0 Ù y <0) ∨ (x ³ 0 Ù y ³ 0) 

2. Let A = <S, +> and B=<T, ×> be two algebras with binary 
operations + and × , and let the function, h:S®T, be a 
homomorphism from A to B. Show that the relation R on S 
defined to be < x, y>ÎR iff h(x)=h(y) is a congruence relation on 
A.  
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3. Let <R,+,0> and <R,·,1> be two algebra where R is a set of 
reals, + is a binary addition, and · is a binary multiplication.
When the function, f:R→R, is defined to be f(x) = 2x,  answer 
the following with justification:
Is f homomorphism from <R,+,0> to <R,·,1>?



6-3. Boolean Functions
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Boolean Lattice & Boolean Algebra
• Definition:
1. A Boolean lattice is a complemented and distributive lattice.
2. A Boolean algebra is an algebra with signature <B, +, *, ', 0, 

1>, where + and * are binary operations and '  is a unary 
operation called complementation, and the following axioms 
hold:

• x*x=x,  x+x=x (idempotent)
• (x*y)*z=x* (y*z),  (x+y)+z=x+ (y+z)  (associative)
• x*y=y*x,  x+y=y+x (commutative)
• x* (x+y)=x,  x+ (x*y)=x (absorption)
• x* (y+z)= (x*y)+ (x*z),  x+ (y*z)= (x+y)* (x+z)   

(distributive)
• Every element x has a (unique) complement x' such 

that x*x'=0 and x+x'=1 (complemented).



• Theorem:
Let <B, *, +, ', 0, 1> be a Boolean algebra. Then 

<B, ≤> is a Boolean lattice when the relation ≤ is defined to be 
x≤y if and only if  x*y=x (x+y=y)  for x, y in B.

Proof:
1. Show that ≤ is a partial ordering.
2. Show that (x*y) and (x+y) represent the glb and the lub

of x and y, respectively.
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• Theorem (Stone’s Representation Theorem):
For every Boolean algebra <B, *, +, ', 0, 1>, there exists a 
power set algebra <    (A), ∩,∪, ￣, Æ, A> which is 
isomorphic to <B, *, +, ', 0, 1>.

Proof:
Given a Boolean algebra <B, *, +, ' , 0, 1>,  
1. define an atom to be the element in B that covers 0 (for x

and y in B, x covers y iff  y≤x  and there is no z in B such 
that y≤z and z≤x), 

Ã
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Lemma 1:
For every x≠0 in B,∃aÎA, 
such that a≤x

Lemma 2:
For every x≠0 in B and a in A, 
one and only one of the following
holds.

1. a ≤ x
2. a*x=0 (a≤x')

Lemma 3: (homomorphism)

Lemma 4: (homomorphism)
1. f(x*y)=f(x) ∩ f(y)
2. f(x+y)=f(x)∪ f(y)

Lemma 5: (one-to-one)
x=y  if f(x)=f(y)

Lemma 6: (onto)
For any {a1, a2,…, ak} ⊆A, 

∃ (a1+a2+…+ ak )ÎB such that  
f(a1+a2+…+ ak)={a1, a2,…, ak}.

2. define f : B→ (A), where A is a set of atoms, such that for any x in B,
f(x) = { a | (a∈A) and (a≤x) }, and 

3. show that f is isomorphism from <B, *, +, ' , 0, 1 >  to
<    (A), ∩, ∪, ￣ , Æ, A >.

f(x)f(x') =

Ã

Ã
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Boolean Expression

• Definition :
A Boolean expression in n variables, x1, x2,…, xn, is a

finite string of symbols formed by the following: 
1. 0 and 1 are Boolean expressions.
2. x1, x2,…, xn are Boolean expressions.
3. If p and q are Boolean expressions the (p*q) and (p+q)  are 

Boolean expressions.
4. If p is a Boolean expression, then p′ is a Boolean expression.
5. No string of symbols except those formed by steps 1, 2, 3, 

and 4 is a Boolean expression.
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Equivalence

• Definition:
Two Boolean expressions, α (x1, x2,…, xn) and β (x1, x2,…, xn),
are equivalent if one can be obtained from the other by a finite 
number of applications of identities of a Boolean algebra.

• Definition:
Let  α (x1, x2,…, xn) be a Boolean expression in n variables and 
<B, *, +, ', 0,1> be any Boolean algebra whose elements are 
denoted by a1, a2,…, an. Let <a1, a2,…, an> be an n-tuple of Bn. 
Then the value of the Boolean expression α (x1, x2,…, xn) for the 
n-tuple <a1, a2,…, an> Î Bn is given by α (a1, a2,…, an) which is 
obtained by replacing x1 by a1, x2 by a2 ,…, and xn by an in the
α (x1, x2,…, xn).
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Boolean Function

• Definition:
Let f:Bn→B be a function. If a Boolean expression g(x1, x2,…, xn) 
matches to a function f, then we say g is associated with function f.

• Definition:
Let <B, *, +, ', 0, 1> be a Boolean algebra. A function f:Bn→B 
which is associated with a Boolean expression in n variables is 
called a Boolean function. A Boolean function defined on a 
switching algebra is called a switching function.
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Example
• Which of f1, f2, and f3 are Boolean functions ? (fi: B2→ B, i=1,2,3)

1

α β

0

<B, *, +, ', 0, 1> 

where B = { 0, 1, α, β }

f1 = x1'x2 + x1x2'

x1, x2 f1 f2 f3

0, 0 0 1 0

0, α α β β

0, β β α β

0, 1 1 0 α

α, 0 α β 0

α, α 0 β 1

α, β 1 0 α

α, 1 β 0 0

β, 0 β β α

β, α 1 0 0

β, β 0 α β

β, 1 α β α

1, 0 1 0 β

1, α β α α

1, β α β β

1, 1 0 0 1
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Exercise
1. Let <B, £1> be a Boolean lattice where B={1,2,3,5,6,10,15,30} and

£1 is defined to be  “x £1 y if and only if x divides y”. 
By Stone Representation Theorem, there exists a power set 
Boolean lattice, <    (A), £2>, which is isomorphic to <B, £1>. 
Answer each of the following:

(a) Define set A.
(b) Show that f:B® (A) is a homomorphism from 

<B, £1> to <    (A), £2>.

2. Let <B, +, *, ′, 0, 1> be a Boolean algebra. Show that the 
complement x′ of each element x in B is unique .

Ã

Ã

Ã
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3. Let the Boolean algebra < B, *, +, ', 0, 1> have the following 
Hasse diagram. For each of three functions f1, f2, and f3 given 
in the table, indicate whether or not it is a Boolean function.
If it is, give the corresponding Boolean expression in two 
variables, x1 and x2. 
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7-1. Algorithms
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Algorithms

• The foundation of computer programming.
• Most generally, an algorithm just means a definite 

procedure for performing some sort of task.
• A computer program is simply a description of an 

algorithm in a language precise enough for a computer to 
understand, requiring only operations the computer already 
knows how to do.

• We say that a program implements its algorithm.
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Programming Languages

• Some common programming languages:
− Newer: Java, C, C++, Visual Basic, JavaScript, Perl, Tcl, 

Pascal
− Older: Fortran, Cobol, Lisp, Basic
− Assembly languages, for low-level coding.

• In this class we will use an informal, Pascal-like “pseudo-
code” language.
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Example of Algorithm

• Task: Given a sequence {ai}=a1,…,an, aiÎN, say what its 
largest element is.

• Set the value of a temporary variable v (largest element 
seen so far) to a1’s value.

• Look at the next element ai in the sequence.
• If ai>v, then re-assign v to the number ai.
• Repeat previous 2 steps until there are no more elements in 

the sequence, & return v.
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Executing an Algorithm

• When you start up a piece of software, we say the program 
or its algorithm are being run or executed by the computer.

• Given a description of an algorithm, you can also execute 
it by hand, by working through all of its steps on paper.
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Executing the MAX algorithm

1. Let {ai}=7,12,3,15,8.   Find its maximum…
2. Set v = a1 = 7.
3. Look at next element: a2 = 12.
4. Is a2>v?  Yes, so change v to 12.
5. Look at next element: a2 = 3.
6. Is 3>12?  No, leave v alone….
7. Is 15>12?  Yes, v=15…
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Examples:

Algorithm (Procedure)  MAX(a1, a2, …, an)
begin

max := a1
for i := 2 to n

if max < ai then max := ai
{ max is the largest element }

end
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Algorithm Linear Search (x, a1, a2, …, an )
begin

i := 1
while (i ≤ n and x ¹ ai)

i := i+1
if i ≤ n then location := i
else location := 0
{ location is the subscript of the term that equals x, or is 0 
if x is not found }

end
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Algorithm BinarySearch (x, a1, a2, …, an )
begin

i := 1 { i is left endpoint of search interval }
j := n { j is right endpoint of search interval }
while i < j
begin

m := ë(i + j) /2û
if x > am then i := m+1
else j := m

end
if x = ai then location := i
else location := 0
{ location is the subscript of the term equal to x, or 0 if x is not found }

end



Algorithm BubbleSort (a1, … , an)
begin 

for i := 1 to n-1
for j := 1 to n-i

if aj > aj+1 then interchange aj and aj+1

{ a1, … , an is in increasing order }
end
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Algorithm Characteristics

Some important features of algorithms:
• Input.  Information or data that comes in.
• Output. Information or data that goes out.
• Definiteness.  Precisely defined.
• Correctness. Outputs correctly relate to inputs.
• Finiteness.  Won’t take forever to describe or run.
• Effectiveness.  Individual steps are all do-able.
• Generality.  Works for many possible inputs.
• Efficiency. Takes little time & memory to run.
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Informal statement

• Sometimes we may write a statement as an informal 
English imperative, if the meaning is still clear and precise: 
“swap x and y” 

• Keep in mind that real programming languages never 
allow this.

• When we ask for an algorithm to do so-and-so, writing 
“Do so-and-so” isn’t enough!

− Break down algorithm into detailed steps.
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begin  statements end

• Groups a sequence of 
statements together:

begin
statement 1
statement 2
…
statement n

end

• Allows sequence to be 
used like a single 
statement.

• Might be used:
1. After a procedure

declaration.
2. In an if statement after 

then or else.
3. In the body of a for or 

while loop.
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{comment}

• Not executed (does nothing).
• Natural-language text explaining some aspect of the 

procedure to human readers.
• Also called a remark in some real programming 

languages.
• Example:

− {Note that v is the largest integer seen so far.}
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if  condition then  statement

• Evaluate the propositional expression condition.
• If the resulting truth value is true, then execute the 

statement statement; otherwise, just skip on ahead to the 
next statement.

• Variant:  if cond then stmt1 else stmt2
Like before, but if truth value of cond is false, then 
executes stmt2.
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while condition statement

• Evaluate the propositional expression condition.
• If the resulting value is true, then execute statement.
• Continue repeating the above two actions over and over 

until finally the condition evaluates to false; then go on to 
the next statement.
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for  var := initial to  final statement

• Initial is an integer expression.
• Final is another integer expression.
• Repeatedly execute statement, first with variable var := 

initial, then with var := initial+1, then with var := initial+2, 
etc., then finally with var := final.

• What happens if statement changes the value that initial or 
final evaluates to?
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for  var := initial to  final statement

• For can be exactly defined in terms of while, like so:

begin
var := initial
while var £ final

begin
statement
var := var + 1

end
end
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Procedure (argument)

• A procedure call statement invokes the named 
procedure, giving it as its input the value of the 
argument expression.

• Various real programming languages refer to 
procedures as functions (since the procedure call 
notation works similarly to function application f(x)), 
or as subroutines, subprograms, or methods.
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Greedy Algorithms

• Many algorithms are designed to solve optimization 
problems, and one of the simplest approaches often leads 
to a solution of an optimization problem

• Algorithms that make what seems to be the best choice 
at each step are called “Greedy Algorithms” instead of 
considering all sequences of steps.

• But, “Greedy Algorithms” don’t works well for all 
optimization problems
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Exercise

1. Describe an algorithm to find the longest word in 
an English sentence (where a word is a string of 
letters and a sentence is a list of words, separated 
by blanks).

2. Describe an algorithm that locates the first 
occurrence of the largest element in a finite list of 
integers, where the integers in the list are not 
necessarily distinct.



7-2. Complexity of Algorithms



Algorithmic Complexity
• The algorithmic complexity of a computation is 

some measure of how difficult it is to perform the 
computation.

• Measures some aspect of cost of computation (in a 
general sense of cost).

• Common complexity measures:
1. “Time” complexity: # of ops or steps required
2. “Space” complexity: # of memory bits required



Complexity Depends on Input
• Most algorithms have different complexities for 

inputs of different sizes.  (E.g. searching a long list 
takes more time than searching a short one.)

• Therefore, complexity is usually expressed as a 
function of input length.

• This function usually gives the complexity for the 
worst-case input of any given length.



Orders of Growth

• For functions over numbers, we often need to know a 
rough measure of how fast a function grows.

• If f(x) is faster growing than g(x), then f(x) always 
eventually becomes larger than g(x) in the limit (for large 
enough values of x).

• Useful in engineering for showing that one design scales 
better or worse than another.



Orders of Growth - Motivation

• Suppose you are designing a web site to process user data 
(e.g., financial records).

• Suppose database program A takes fA(n)=30n+8 
microseconds to process any n records, while program B
takes fB(n)=n2+1 microseconds to process the n records.

• Which program do you choose, knowing you’ll want to 
support millions of users? A.



Visualizing Orders of Growth

• On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger... 

fA(n)=30n+8

Increasing n ®

fB(n)=n2+1
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e 
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Concept of Order of Growth

• We say fA(n)=30n+8 is order n, or O(n).  
It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2).  It is roughly proportional 
to n2.

• Any O(n2) function is faster-growing than any O(n) 
function.

• For large numbers of user records, the O(n2) function will 
always take more time.



O(g), at most order g

• Definition:
Let there be a function g:R®R, The “at most order g”, written
O(g), is defined to be 
O(g) = {f:R®R | ($c,k)("x>k)(|f(x)| £ |c·g(x)|)}. 
“Beyond some point k, function f is at most a constant c times g
(i.e., proportional to g).”

Note “f is at most order g”, or “f is O(g)”, or “f=O(g)”, all 
just mean that fÎO(g).



Examples of “Big-O” Proof

1. Show that 30n+8 is O(n).
− Show ($c,k)("n>k)(30n+8 £ cn).

• Let c=31, k=8.  Assume n>k=8.  Then,
cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

2. Show that n2+1 is O(n2).
− Show ($c,k)("n>k)(n2+1 £ cn2).

• Let c=2, k=1.  Assume n>1.  Then,
cn2 = 2n2 = n2+n2 > n2+1, or n2+1< cn2.



• Note 30n+8 isn’t
less than n
anywhere (n>0).

• It isn’t even
less than 31n
everywhere.

• But it is less than
31n everywhere to
the right of n=8. n>k=8 ®

Big-O example, graphically

Increasing n ®
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cn =
31n

30n+8
ÎO(n)



Useful Facts about Big-O

1. Big-O, as a relation, is transitive: 
fÎO(g) Ù gÎO(h) ® fÎO(h)

2. O with constant multiples, roots, and logs...
" f (in W(1)) & constants a,bÎR, with b³0,
af, f 1-b, and (logb f)a are all O(f).

3. Sums of functions:
If gÎO(f) and hÎO(f), then g+hÎO(f).



4.  "c>0, O(cf)=O(f+c)=O(f-c)=O(f)
5.   f1ÎO(g1) Ù f2ÎO(g2) ®

− f1· f2 ÎO(g1g2)
− f1+f2 ÎO(g1+g2) 

= O(max(g1, g2))
= O(g1)  if  g2ÎO(g1)



Order of Growth Expressions

• “O(f)” when used as a term in an arithmetic expression 
means: “some function f such that fÎO(f)”.

• E.g.:  “x2+O(x)” means “x2 plus some function that is O(x)”.
• Formally, you can think of any such expression as 

denoting a set of functions:
“x2+O(x)” = {g | ($fÎO(x))(g(x)= x2+f(x))}



Order of Growth Equations

• Suppose E1 and E2 are order-of-growth expressions 
corresponding to the sets of functions S and T, respectively. 

• Then the “equation” E1=E2 really means
("fÎS)($gÎT)(f=g)

or simply SÍT.
• Example:  x2 + O(x) = O(x2) means

("fÎO(x))($gÎO(x2))(x2+f(x)=g(x))



Useful Facts about Big-O

• " f,g & constants a,bÎR, with b³0,
1. af = O(f);              (e.g. 3x2 = O(x2))
2. f+O(f) = O(f);      (e.g. x2+x = O(x2))

• Also, if f=W(1) (at least order 1), then:
1. |f|1-b = O(f);           (e.g. x-1 = O(x))
2. (logb |f|)a = O(f).   (e.g. log x = O(x))
3. g=O(fg) (e.g. x = O(x log x))
4. fg ¹ O(g) (e.g. x log x ¹ O(x))
5. a=O(f)                  (e.g. 3 = O(x))



W(g), at least order g

• Definition:
Let there be a function g: R®R. The “at least order g”, written 
W(g), is defined to be: 
W(g) = {f:R®R |( $c,k)("x>k)(|f(x)| ³ |cg(x)|)}. 
“Beyond some point k, function f is at least a constant c times g
(i.e., proportional to g).”

Note “f is at least order g”, or “f is W(g)”, or “f = W(g)”, all 
just mean that fÎW(g).



Q(g), exactly order g

• Definition:
Let there be a function g: R®R. The “exactly order g”, written 
Q(g), is defined to be: 
Q(g) = {f:R®R | ($c1c2k)("x>k)(|c1g(x)|£|f(x)|£|c2g(x)|) }. 
“Everywhere beyond some point k, f(x) lies in between two 
multiples of g(x).”

Note “g and f are of the same order”, or “f is Q(g)”, or “f is 
(exactly) order g”, all just mean that fÎQ(g).



Rules for Q

• Mostly like rules for O( ), except:
• " f,g>0 & constants a,bÎR, with b>0,

af Î Q(f), but             ¬ Same as with O.
f Ï Q(fg) unless g=Q(1)  ¬ Unlike O.
|f| 1-b Ï Q(f), and          ¬ Unlike with O.
(logb |f|)c Ï Q(f).           ¬ Unlike with O.

• The functions in the latter two cases we say are 
strictly of lower order than Q(f).



Example of Q

• Determine whether:

• Quick solution:
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Complexity Analysis

Now, what is the simplest form of the exact (Q) order 
of growth of t(n)?
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Names for some orders of growth

• Q(1) Constant
• Q(logc n) Logarithmic (same order "c)
• Q(logc n) Polylogarithmic
• Q(n) Linear
• Q(nc) Polynomial
• Q(cn), c>1 Exponential
• Q(n!) Factorial

(With c a constant.)



Problem Complexity

• The complexity of a computational problem or task
is (the order of growth of) the complexity of the 
algorithm with the lowest order of growth of 
complexity for solving that problem or performing 
that task.

• E.g. the problem of searching an ordered list has at 
most logarithmic time complexity.  (Complexity is 
O(log n).)



Tractable vs. Intractable

• A problem or algorithm with at most polynomial 
time complexity is considered tractable (or feasible).  
P is the set of all tractable problems.

• A problem or algorithm that has more than 
polynomial complexity is considered intractable (or 
infeasible).

• Note that n1,000,000 is technically tractable, but really 
impossible.  nlog log log n is technically intractable, but 
easy.  Such cases are rare though.



Unsolvable problems

• Turing discovered in the 1930’s that there are 
problems unsolvable by any algorithm.

− Or equivalently, there are undecidable yes/no 
questions, and uncomputable functions.

• Example: the halting problem.
− Given an arbitrary algorithm and its input, will that 

algorithm eventually halt, or will it continue forever 
in an “infinite loop?”



P vs. NP

• NP is the set of problems for which there exists a tractable 
algorithm for checking solutions to see if they are correct.
ex : The satisfiability problem of a compound proposition

• We know PÍNP, but the most famous unproven 
conjecture in computer science is that this inclusion is 
proper (i.e., that PÌNP rather than P=NP).



Computer Time Examples
Assume time = 1 ns 
(10-9 second) per op, 
problem size = n bits, 
#ops a function of n
as shown.

#ops(n) n=10 n=106 

log2 n 3.3 ns 19.9 ns 

n 10 ns 1 ms 
n log2 n 33 ns 19.9 ms 
n2 100 ns 16 m 40 s 
2n 1.024 ms 10301,004.5 

Gyr 
n! 3.63 ms Ouch! 

 

 

(125 kB)(1.25 bytes)



Exercise
1. Prove the following:

(a) n · sin n is O(n).
(b) x · log x is O(x2) but that x2 is not O(x · log x).
(c) The function f(n)=2n2-n-1 is O(n2). 

2. Write the algorithm that puts the first four terms of 
a list of arbitrary length in increasing order, and 
show that this algorithm has time complexity O(1) 
in terms of the number of comparisons used.
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8-1. Probability
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Why Probability?

• In the real world, we often don’t know whether a 
given proposition is true or false.

• Probability theory gives us a way to reason about 
propositions whose truth is uncertain.

• Useful in weighing evidence, diagnosing problems, 
and analyzing situations whose exact details are 
unknown.



Definitions
• Sample point: 

A representation of a possible outcome of an 
experiment

• Sample space: 
The totality of all possible samples points, that is, 
the representation of all possible outcomes of an 
experiment

• Event:
A collection of outcomes or a set of sample points 
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Events

• Definition:
An event E is a set of possible outcomes:

E Í S
where S is the sample space.
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Probability

• Definition:
The probability, Pr[E] Î [0,1], of an event E is a 

real number representing our degree of certainty 
that E will occur.
1. If Pr[E] = 1, then E is absolutely certain to 

occur.
2. If Pr[E] = 0, then E is absolutely certain not 

to occur.
3. If Pr[E] = ½, then we are completely 

uncertain about whether E will occur.
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Probability Distribution

• Definition:
Let p be any function, p:S→[0,1], such that

1. 0 ≤ p(w) ≤ 1 for every outcome, wÎS.
2. = 1.

Such a p is called a probability distribution.
Then the probability of any event EÍS is 

Pr[E] = 

å
ÎSw

wp )(

å
ÎEw

wp )(
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Probability of Complementary Events

• Theorem:
Let E be an event in a sample space S. Then, the    
probability of the complementary event E is
Pr[E] = 1 − Pr[E]
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Probability of Unions of Events

• Theorem:
Let E1, E2 Í S. Then 
Pr[E1È E2] = Pr[E1] + Pr[E2] − Pr[E1ÇE2]

Proof:
By the inclusion-exclusion principle.
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Mutually Exclusive Events

• Definition:
Two events E1, E2 are called mutually         
exclusive if they are disjoint: E1ÇE2 = Æ

• Theorem:
For mutually exclusive events, E1 and E2,  
Pr[E1 È E2] = Pr[E1] + Pr[E2].
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Exhaustive Sets of Events

• Definition:
1. A set E = {E1, E2, …} of events in the sample 

space S is exhaustive if                   
2. An exhaustive set of events that are all mutually 

exclusive with each other has the property that

SEi =U

1]Pr[ =å iE
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Independent Events

• Definition:
Two events E,F are independent  if
Pr[EÇF] = Pr[E]·Pr[F].

• Example: Flip a coin, and roll a die. Then,
Pr[quarter is head ∧ die is 1 ] =
Pr[quarter is head] × Pr[die is 1].
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Conditional Probability

• Definition:
Let E, F be events such that Pr[F]>0. Then, the 
conditional probability of E given F, written Pr[E|F], 
is defined to be  Pr[E|F] = Pr[EÇF]/Pr[F].

• Theorem:
If E and F are independent, Pr[E|F] = Pr[E].
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Bayes’s Theorem

• Theorem:
The probability that a hypothesis H is correct,
given data D, is

Proof:
From the definition of conditional probability.

]Pr[
]Pr[]|Pr[]|Pr[

D
HHDDH ×

=



8-2. Random Variables



Random Variables
Let X be a single-valued real function, X:S→ T, where S is a 
sample space and  T is a set of real numbers. 
Consider the range of X, denoted by RX , to be a new sample 
space, SX. The probability of  the event A in the new sample space
is then given by  Pr[A⊆SX]     Pr[X-1(A)⊆S]      Pr[X=A]. 

Whenever a function X defined on a sample space S is
such that the probability of the inverse image X-1(A) is
defined for each event A in the range sample space SX, 
Then the function X is said to be a measurable function on S and
is called a random variable.
(Note a random variable is in fact a function and not a variable.)

º º
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Random Variables

1. If  the range is a continuum, it is called a 
continuous random variable.

2. If the range consists only of isolated points, it is 
called a discrete random variable.

3. If the range is a combination of both continuum 
parts and isolated points, it is called a mixed 
random variable. 
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Experiments

• Definition:
1. A (stochastic) experiment is a process by which a 

given random variable gets a specific value.
2. The sample space S of the experiment is the domain 

of the random variable.
3. The outcome of the experiment is the specific value 

of the random variable that is selected.
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Expected Values

• Definition:
The mean, or the expectation, or expected value of 
the discrete random variable X is given by    

E[X] =             xk·Pr[X=xk].

• Theorem:
Let X1, X2 be any two random variables derived from 
the same sample space.  Then,

1. E[X1+X2] = E[X1] + E[X2]
2. E[aX1 + b] = aE[X1] + b

å
Î )( Xrangexk
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Independent Random Variables

• Definition:
Two random variables X and Y are independent if 
Pr(X=r1 and Y=r2) = Pr(X=r1)ㆍPr(Y=r2) for every real 
numbers, r1 and r2

• Theorem:
If X and Y are independent random variables, then 
E(XY) = E(X)ㆍE(Y)
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Variance

• Definition:

1. The variance Var[X] = σ2(X) of a random 
variable X is the expected value of the square of 
the difference between the value of X and its 
expected value E[X]:

2.  The standard deviation of X, σ(X) = Var[X]1/2.

]])[[(][ 2XEXEXVar -=



Probability Distribution of a Random Variable

• Definition:
1. The distribution of a discrete random variable, X, is 

a set of pairs,  (r, Pr[X=r]), for each r in range(X).

2. The distribution of a continuous random variable, 
X, is given by a density function, fX(x), where

duufbaX
b

a X )(]],(Pr[ ò=Î
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Binomial Distribution

• The probability, P(k), of exactly k successes in n
independent Bernoulli trials, with probability of  
success p and probability of failure q=1-p, is

• If a random variable X follows a Binomial 
distribution, then  Pr[X=k] = P(k)   where 
range(X) = {0, 1, 2,…, n}.

knk qp
knk

n -

- )!(!
!



AI & CV Lab, SNU 382

• Theorem:
Let X be a random variable with a binomial distribution.
Then

E[X]=np  and Var[X]=np(1-p)



Gaussian (Normal) Distribution

• A Gaussian distribution is a bell-shaped 
distribution defined by the probability density 
function

• If a random variable X follows a Gaussian 
distribution, then   

E(X) =         and  Var(X) = 
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Central Limit Theorem
Let X1,…, Xn be n independent random variables 
obeying the same unknown probability distribution 
with mean       and finite variance . Then the 
probability  distribution of the sample mean,    

approaches a Gaussian distribution as   
where the mean of        approaches        and the 
standard variance approaches           .
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Exercise
1. Let A, B and C be events in a sample space and 

suppose Pr(A∩B) ≠ 0. Prove that Pr(A∩B∩C) = 
Pr(A) · Pr(B|A) · Pr(C| A∩B)

2. Let A and B be events with nonzero probability in a 
sample space.
(a) Suppose Pr(A|B) > Pr(A). Must it be the case that 

Pr(B|A) > Pr(B) ?
(b) Suppose Pr(A|B) < Pr(A). Must it be the case that 

Pr(B|A) < Pr(B) ?
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3.  Let X and Y be two independent random variables. 
(a) Give the definition of variance, Var(X), of X and 

show that Var(X)= E(X2)-E(X)2.
(b) Show that Var(X+Y)=Var(X)+Var(Y).


