
Discrete Mathematics

Contents
1. Logic

1.1 Propositional Logic
1.2 Predicate Logic
1.3 Proofs and Inference Rules

2. Sets
3. Relations
4. Functions
5. Graphs and Trees

5.1 Graphs
5.2 Trees

6. Algebras, Lattices, and Boolean Functions
6.1 Algebras
6.2 Lattices
6.3 Boolean Functions

7. Algorithms and Complexity
7.1 Algorithms
7.2 Complexity of Algorithms

8. Probability and Random Variables
8.1 Probability
8.2 Random Variables

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
1. Logic

AI & CV Lab, SNU 4

Logic
A formal system for describing knowledge and
implementing reasoning on knowledge.

Logic consists of
1. A language describing knowledge (states of affairs)

where its syntax describes how to make sentences
and its semantics states how to interpret sentences

2. A set of rules for deducing the entailments of a set
of sentences.

1-1. Propositional Logic

AI & CV Lab, SNU 6

Propositional Logic

• Propositional logic treats simple sentences as
atomic entities and constructs more complex
sentences from simpler sentences using Boolean
connectives.

AI & CV Lab, SNU 7

Propositions and Proposition Variables

• Definition:
1. A proposition is simply a declarative sentence with

a definite meaning, having a truth value that’s either
true (T) or false (F) (never both, neither, or
somewhere in between).

2. A proposition (statement) may be denoted by a
variable like P, Q, R,…, called a proposition
(statement) variable.

• Note the difference between a proposition and a
proposition variable.

AI & CV Lab, SNU 8

Examples:

• “It is raining.” (In a given situation.)
• “Seoul is the capital of South Korea.”
• “1 + 2 = 3”

But, the following are NOT propositions:
• “Who’s there?” (interrogative, question)
• “La la la la la.” (meaningless interjection)
• “Just do it!” (imperative, command)
• “Yeah, I sorta dunno, whatever...” (vague)
• “1 + 2” (expression with a non-true/false value)

AI & CV Lab, SNU 9

1. Operator or connective combines one or more operand
expressions into a larger expression (e.g., “+” in numeric
expressions).

2. Unary operators take 1 operand (e.g., −3).
3. binary operators take 2 operands (e.g., 3 ´ 4).
4. Propositional or Boolean operators operate on

propositions or truth values instead of on numbers.

Operators / Connectives

AI & CV Lab, SNU 10

Some Popular Boolean Operators

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary Ù

Disjunction operator OR Binary Ú

Exclusive-OR operator XOR Binary Å

Implication operator IMPLIES Binary ®

Biconditional operator IFF Binary ↔

AI & CV Lab, SNU 11

Negation Operator

The unary negation operator “¬” (NOT) transforms a
prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

Truth table for NOT: p Øp
T F
F T

Operand
column

Result
column

AI & CV Lab, SNU 12

Conjunction Operator

The binary conjunction operator “Ù” (AND) combines
two propositions to form their logical conjunction.

Example:
If p = “I will have salad for lunch.” and q = “I will

have steak for dinner.”, then pÙq = “I will have
salad for lunch and I will have steak for dinner.”

AI & CV Lab, SNU 13

• Note that a
conjunction
p1 Ù p2 Ù … Ù pn
of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and Ù operations together are sufficient to
express any Boolean truth table!

Conjunction Truth Table

p q pÙq
F F F
F T F
T F F
T T T

AI & CV Lab, SNU 14

Disjunction Operator

The binary disjunction operator “Ú” (OR) combines
two propositions to form their logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
pÚq=“Either my car has a bad engine, or

my car has a bad carburetor.”

AI & CV Lab, SNU 15

• Note that pÚq means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,
because it includes the
possibility that both p and q are true.

• “¬” and “Ú” together are also universal.

Disjunction Truth Table

p q pÚq
F F F
F T T
T F T
T T T

AI & CV Lab, SNU 16

Nested Propositional Expressions

• Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s grown or I’ve
shrunk.” = f Ù (g Ú s)

− (f Ù g) Ú s would mean something different
− f Ù g Ú s would be ambiguous

• By convention, “¬” takes precedence over both “Ù” and
“Ú”.

− ¬s Ù f means (¬s) Ù f , not ¬ (s Ù f)

AI & CV Lab, SNU 17

Example

Let p=“It rained last night”,
q=“The sprinklers came on last night,”
r=“The lawn was wet this morning.”

Translate each of the following into English:
¬p = “It didn’t rain last night.”
r Ù ¬p = “The lawn was wet this morning,

and it didn’t rain last night.”
¬r Ú p Ú q = “Either the lawn wasn’t wet this

morning, or it rained last night, or
the sprinklers came on last night.”

AI & CV Lab, SNU 18

Exclusive-Or Operator

The binary exclusive-or operator “Å” (XOR) combines
two propositions to form their logical “exclusive or”.

p = “I will earn an A in this course,”
q = “I will drop this course,”
p Å q = “I will either earn an A for this course,

or I will drop it (but not both!)”

AI & CV Lab, SNU 19

• Note that pÅq means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

Exclusive-Or Truth Table

p q pÅq
F F F
F T T
T F T
T T F

AI & CV Lab, SNU 20

Implication Operator

The implication p ® q states that p implies q.
I.e., If p is true, then q is true; but if p is not true, then

q could be either true or false.
Example:

Let p = “You study hard.”
q = “You will get a good grade.”
p ® q = “If you study hard, then you will get

a good grade.” (else, it could go either way)

antecedent consequent

AI & CV Lab, SNU 21

Implication Truth Table

• p ® q is false only when
p is true but q is not true.

• p ® q does not say
that p causes q!

• p ® q does not require
that p or q are ever true!

• Example: “(1=0) ® pigs can fly” is TRUE!

p q p®q
F F T
F T T
T F F
T T T

AI & CV Lab, SNU 22

Examples

• “If this lecture ends, then the sun will rise tomorrow.”
True or False?

• “If Tuesday is a day of the week, then I am a penguin.”
True or False?

• “If 1+1=6, then Bush is president.”
True or False?

• “If the moon is made of green cheese, then I am richer than
Bill Gates.” True or False?

AI & CV Lab, SNU 23

English Phrases Meaning p ® q

• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for q”
• “q is necessary for p”
• “q follows from p”
• “q is implied by p”

AI & CV Lab, SNU 24

Converse, Inverse, Contrapositive

Some terminology, for an implication p ® q:
• Its converse is: q ® p.
• Its inverse is: ¬p ® ¬q.
• Its contrapositive: ¬q ® ¬ p.
• One of these three has the same meaning (same truth

table) as p ® q. Can you figure out which?

AI & CV Lab, SNU 25

How do we know for sure?

Proving the equivalence of p ® q and its
contrapositive using truth tables:

p q Øq Øp p®q Øq ®Øp
F F T T T T
F T F T T T
T F T F F F
T T F F T T

AI & CV Lab, SNU 26

Biconditional operator

The biconditional p « q states that p is true if and only
if (iff) q is true.

p = “You can take the flight.”
q = “You buy a ticket”
p « q = “You can take the flight if and only if you buy a ticket.”

AI & CV Lab, SNU 27

Biconditional Truth Table

• p « q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of Å’s!

− p « q means ¬(p Å q)
• p « q does not imply

p and q are true, or cause each other.

p q p « q
F F T
F T F
T F F
T T T

AI & CV Lab, SNU 28

Boolean Operations Summary

• We have seen 1 unary operator (out of the 4 possible) and
5 binary operators (out of the 16 possible). Their truth
tables are below.

p q Øp pÙq pÚq pÅq p®q p«q
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T

AI & CV Lab, SNU 29

Well-formed Formula (wff)
for Propositional Logic

• Definition:
1. Any statement variable is a wff.
2. For any wff p, ¬p is a wff.
3. If p and q are wffs, then (p Ù q), (p Ú q),

(p ® q) and (p « q) are wffs.
4. A finite string of symbols is a wff only when it is

constructed by steps 1, 2, and 3.

AI & CV Lab, SNU 30

Examples

• By definition of a wff,

− wff: ¬(PÙQ), (P ®(P Ú Q)), (¬P Ù Q),
((P®Q) Ù(Q®R))«(P® R)),

− not wff: (P ®Q) ®(ÙQ), (P ® Q,

AI & CV Lab, SNU 31

Tautology

• Definition:
A well-formed formula (wff) is a tautology if for every truth
value assignment to the variables appearing in the formula, the
formula has the value of true.

• Example: (p Ú Øp)

AI & CV Lab, SNU 32

Substitution Instance

• Definition:
A wff A is a substitution instance of another formula B if
A is formed from B by substituting formulas for variables
in B under condition that the same formula is substituted
for the same variable each time that variable is occurred.

• Theorem:
A substitution instance of a tautology is a tautology

AI & CV Lab, SNU 33

Contradiction

• Definition:
A wff is a contradiction if for every truth value
assignment to the variables in the formula, the formula
has the value of false.

• Example: (p Ù Øp)

AI & CV Lab, SNU 34

Valid Consequence
• Definition:

A (well-formed) formula B is a valid consequence of a formula
A, denoted by Aㅑ B, if for all truth assignments to variables
appearing in A and B, the formula B has the value of true
whenever the formula A has the value of true.

• Definition:
A formula B is a valid consequence of a formula A1,…, An
(A1,…, Anㅑ B) if for all truth value assignments to the
variables appearing in A1,…, An and B, the formula B has
the value of true whenever the formula A1,…, An have
the value of true.

AI & CV Lab, SNU 35

• Theorem:
Aㅑ B if and only if ㅑ (A ®B)

• Theorem:
A1,…, Anㅑ B if and only if (A1 Ù…Ù An)ㅑB

• Theorem:
A1,…, An ㅑ B if and only if

(A1 Ù…Ù An-1) ㅑ (An ® B)

AI & CV Lab, SNU 36

Logical Equivalence

• Definition:
Two wffs, A and B, are logically equivalent
if and only if A and B have the same truth values for
every truth value assignment to all variables
contained in A and B.

AI & CV Lab, SNU 37

• Theorem:
If a formula A is equivalent to a formula B then ㅑA«B.

• Theorem:
If a formula D is obtained from a formula A by replacing
a part of A, say C, which is itself a formula, by another
formula B such that CÛB, then AÛD

AI & CV Lab, SNU 38

• Example: Prove that pÚq Û Ø(Øp Ù Øq).

p q ppÚÚqq ØØpp ØØqq ØØpp ÙÙ ØØqq ØØ((ØØpp ÙÙ ØØqq))
F F
F T
T F
T T

Proving Equivalence via Truth Tables

F
T

T
T

T

T

T

T
T
T

F
F

F

F

F
F
F

F

T
T

AI & CV Lab, SNU 39

Equivalence Theorems

• Identity: pÙT Û p pÚF Û p
• Domination: pÚT Û T pÙF Û F
• Idempotent: pÚp Û p pÙp Û p
• Double negation: ØØp Û p
• Commutative: pÚq Û qÚp pÙq Û qÙp
• Associative: (pÚq)Úr Û pÚ(qÚr)

(pÙq)Ùr Û pÙ(qÙr)

AI & CV Lab, SNU 40

• Distributive: pÚ(qÙr) Û (pÚq)Ù(pÚr)
pÙ(qÚr) Û (pÙq)Ú(pÙr)

• De Morgan’s:
Ø(pÙq) Û Øp Ú Øq
Ø(pÚq) Û Øp Ù Øq

• Trivial tautology/contradiction:
p Ú Øp Û T p Ù Øp Û F

AI & CV Lab, SNU 41

Defining Operators via Equivalences

Using equivalences, we can define operators in terms
of other operators.

• Exclusive or: pÅq Û (pÚq)ÙØ(pÙq)
pÅq Û (pÙØq)Ú(qÙØp)

• Implies: p®q Û Øp Ú q
• Biconditional: p«q Û (p®q) Ù (q®p)

p«q Û Ø(pÅq)

AI & CV Lab, SNU 42

Examples
Let p and q be the proposition variables denoting

p: It is below freezing.
q: It is snowing.

Write the following propositions using variables, p and q, and
logical connectives.

a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) It is either below freezing or it is snowing, but it is not snowing if it is

below freezing.
g) That it is below freezing is necessary and sufficient for it to be snowing

p Ù q
p Ù Ø q

Ø p Ù Ø q
p Ú q

p ® q

(p Ú q) Ù (p ® Ø q)

p « q

1-2. Predicate Logic

AI & CV Lab, SNU 44

(First-order) Predicate Logic

• Predicate logic represents a sentence in terms of objects
and predicates on objects (i.e., properties of objects or
relations between objects), as well as Boolean connectives
and quantifiers.

• In propositional logic every expression is a sentence,
which represents a fact. First-order predicate logic has
sentences, but it also has terms, which represent objects.
Constant symbols, variables, and function symbols are
used to build terms, and quantifiers and predicate symbols
are used to build sentences.

AI & CV Lab, SNU 45

Syntax and Semantics
• Constant symbols: A, B, John,…
• Variables: x, y, z, …
• Predicate symbols: ROUND, BROTHER,… where a predicate

symbol refers to a particular relation in the model. For
example, the BROTHER symbol referring to the relation of
brotherhood is a binary predicate symbol having two objects.

• Function symbols: father, color,… where a function symbol
maps its objects into some object.

where predicate and function symbols are often given by
mnemonic strings.

AI & CV Lab, SNU 46

Terms
• A term is a logical expression that refers to an object, which is

defined as follows:
• Definition:

1. Constant symbols and variables are terms.
2. If x is a term and h is a function symbol, h(x) is a term.
3. A finite string is a term only when it is constructed by
steps 1 and 2.

• Examples:
x, John, color(x), father(John), mother(father(John))

Functions and Predicates

• Arguments of functions and predicates are given by
terms.

• Examples:
father(John), mother(Sue), father(mother(Sue)),
MARRIED(John, Sue), FEMALE(x), MEMBER(Sue,y)
PARENT(mother(Sue), Tom)

AI & CV Lab, SNU 48

Universe of Discourse (U.D.)

• Definition:
The collection of values that a variable x can take is
called x’s universe of discourse.

AI & CV Lab, SNU 49

Quantifiers

• Definition:
1. Quantifiers provide a notation that allows us to quantify

(count) how many objects in the universe of discourse
satisfy a given predicate.

2. “"” is the FOR ALL or universal quantifier.
"x P(x) means for all x in the u.d., P holds.

3. “$” is the EXISTS or existential quantifier.
$x P(x) means there exists an x in the u.d. (that is, 1 or
more) such that P(x) is true.

AI & CV Lab, SNU 50

Universal Quantifier "

• Example:
Let the u.d. of x be parking spaces at SNU.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), "x P(x),
is the proposition:
1. “All parking spaces at SNU are full.”
2. “Every parking space at SNU is full.”
3. “For each parking space at SNU, that space is full.”

AI & CV Lab, SNU 51

Existential Quantifier $

• Example:
Let the u.d. of x be parking spaces at SNU.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), $x P(x),
is the proposition:
1. “Some parking space at SNU is full.”
2. “There is a parking space at SNU that is full.”
3. “At least one parking space at SNU is full.”

AI & CV Lab, SNU 52

Free and Bound Variables

• Definition:
1. An expression like P(x) is said to have a free

variable x (meaning, x is undefined).
2. A quantifier (either " or $) operates on an

expression having one or more free variables, and
binds one or more of those variables, to produce an
expression having one or more bound variables.

AI & CV Lab, SNU 53

Examples

1. P(x,y) has 2 free variables, x and y.
2. "x P(x,y) has 1 free variable y, and one bound

variable x.
3. "x "y P(x,y) has zero free variables, which

represents a proposition.

AI & CV Lab, SNU 54

Nesting of Quantifiers

Example:
Let the u.d. of x and y be people.
Let L(x,y)=“x likes y”

(A predicate with 2 free variables).
Then $y L(x,y) = “There is someone whom x likes.”

(A predicate with 1 free variable, x)
Then "x $y L(x,y) = “Every one has someone whom they

like.”
(A predicate with 0 free variables)

AI & CV Lab, SNU 55

Well-formed Formula (wff)
for Predicate Logic

• Definition:
A wff for (the first-order) predicate logic
1. Every predicate formula is a wff.
2. If P is a wff, ¬P is a wff.
3. Two wffs parenthesized and connected by Ù, Ú, « , ®

form a wff.
4. If P is a wff and x is a variable then ("x)P and ($x)P

are wffs.
5. A finite string of symbols is a wff only when it is

constructed by steps 1-4.

AI & CV Lab, SNU 56

Examples

Let R(x,y)=“x relies upon y”. Express the following in
unambiguous English:
1. "x $y R(x,y) = Everyone has someone to rely on.
2. $y "x R(x,y) = There’s a poor overburdened soul whom

everyone relies upon (including himself)!
3. $x "y R(x,y) = There’s some needy person who relies

upon everybody (including himself).
4. "y $x R(x,y) = Everyone has someone who relies upon

them.
5. "x "y R(x,y) = Everyone relies upon everybody. (including

themselves)!

AI & CV Lab, SNU 57

Natural language is ambiguous!

• “Everybody likes somebody.”
− For everybody, there is somebody they like,

• "x $y Likes(x,y)
− or, there is somebody (a popular person) whom

everyone likes.
• $y "x Likes(x,y)

• “Somebody likes everybody.”
− Same problem: Depends on context, emphasis.

[Probably more likely.]

AI & CV Lab, SNU 58

More to Know About Binding

• "x $x P(x) - x is not a free variable in
$x P(x), therefore the "x binding isn’t used.

• ("x P(x)) Ù Q(x) - The variable x is outside of the
scope of the "x quantifier, and is therefore free.
Not a proposition!

• ("x P(x)) Ù ($x Q(x)) – This is legal, because there
are 2 different x’s!

AI & CV Lab, SNU 59

Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,…
"x P(x) Û P(a) Ù P(b) Ù P(c) Ù …
$x P(x) Û P(a) Ú P(b) Ú P(c) Ú …

• From those, we can prove the laws:
"x P(x) Û Ø($x ØP(x))
$x P(x) Û Ø("x ØP(x))

AI & CV Lab, SNU 60

More Equivalence Laws

• "x "y P(x,y) Û "y "x P(x,y)
$x $y P(x,y) Û $y $x P(x,y)

• "x (P(x) Ù Q(x)) Û ("x P(x)) Ù ("x Q(x))
$x (P(x) Ú Q(x)) Û ($x P(x)) Ú ($x Q(x))

AI & CV Lab, SNU 61

Defining New Quantifiers

• Definition:
$!x P(x) is defined to mean “P(x) is true of exactly one x in
the universe of discourse.”

• Note that $!x P(x) Û $x (P(x) Ù Ø$y (P(y) Ù (y¹ x)))
“There is an x such that P(x), where there is no y such that P(y) and y
is other than x.”

AI & CV Lab, SNU 62

Higher-order Logic
• First-order logic gets its name from the fact that one can

quantify over objects (the first-order entities that actually exist
in the world) but not over relations or functions on those
objects. Higher-order logic allows us to quantify over relations
and functions as well as over objects. For example, in higher-
order logic we can say that two objects are equal if and only if
all properties applied to them are equivalent. Or we could say
that two functions are equal if and only if they have the same
value for all arguments:
1. ("x)("y) (x=y) ↔ ("P)(P(x)↔P(y))
2. ("f)("g) (f=g) ↔ ("x)(f(x)=g(x))

Logic for Monotonic Reasoning
and Nonmonotonic Reasoning

• A logic is monotonic if, when some new sentences
are added to the knowledge base, all the sentences
entailed by the original knowledge base are still
entailed by the new larger knowledge base.
Otherwise, it is nonmonotonic.

AI & CV Lab, SNU 64

Examples
Let F(x, y) be the statement “x loves y,” where the universe of
discourse for both x and y consists of all people in the world. Use
quantifiers to express each of these statements.

a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
f) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself
j) There is someone who loves no one besides himself or herself.

("x) F(x, Jerry)
("x)($y) F(x,y)
($y) ("x) F(x,y)
Ø ($ x)("y) F(x,y)
($x) Ø F(Lydia,x)
($x)("y) ØF(x,y)

($!x)("y)F(y,x)

($x) ($y) ((x≠y) Ù F(Lynn,x) Ù F(Lynn,y) Ù ("z) (F(Lynn,z) ® (z=x) Ú (z=y)))
("x) F(x,x)

($x) ("y) F(x,y) « x=y)

AI & CV Lab, SNU 65

1. Let p, q, and r be the proposition variables such that
p : You have the flu.
q : You miss the final examination
r : You pass the course

Express each of the following formulas as an English sentence.
(a) (p®Ør)Ú(q®Ør)
(b) (pÙq) Ú (ØqÙr)

Exercise

AI & CV Lab, SNU 66

2. Let p, q, and r be the proposition variables such that
p : You get an A on the final exam.
q : You do every exercise in this book
r : You get an A in this class

Write the following propositions using p, q, r, and logical connectives.

(a) You get an A on the final, but you don’t do every exercise in this
book; nevertheless, you get an A in this class.

(b) Getting an A on the final and doing every exercise in this book is
sufficient for getting an A in this class.

AI & CV Lab, SNU 67

3. Assume the domain of all people.
Let J(x) stand for “x is a junior”, S(x) stand for “x is a senior”, and L(x, y)
stand for “x likes y”. Translate the following into well-formed formulas:

(a) All people like some juniors.
(b) Some people like all juniors.
(c) Only seniors like juniors.

AI & CV Lab, SNU 68

4. Let B(x) stand for “x is a boy”, G(x) stand for “x is a girl”, and T(x,y)
stand for “x is taller than y”. Complete the well-formed formula
representing the given statement by filling out ? part.

(a) Only girls are taller than than boys: (?)(∀y)((? ∧ T(x,y)) → ?)
(b) Some girls are taller than boys: (∃x)(?)(G(x) ∧ (? → ?))
(c) Girls are taller than boys only: (?)(∀y)((G(x) ∧ ?) → ?)
(d) Some girls are not taller than any boy: (∃x)(?)(G(x) ∧ (? → ?))
(e) No girl is taller than any boy: (?)(∀y)((B(y) ∧ ?) → ?)

1-3. Proofs and Inference Rules

AI & CV Lab, SNU 70

Proof Terminology

• Theorem
A statement that has been proven to be true.

• Axioms, postulates, hypotheses, premises
Assumptions (often unproven) defining the structures
about which we are reasoning.

• Lemma
A minor theorem used as a stepping-stone to proving a

major theorem.

• Corollary
A minor theorem proved as an easy consequence
of a major theorem.

• Theory
The set of all theorems that can be proven from a
given set of axioms.

• Rules of inference
Patterns of deriving conclusions from hypotheses:

Sound and Complete.

AI & CV Lab, SNU 72

Depending on Inference Rules

• Deduction: A→B, A ⇒ B
• Induction:

x→B, y→B, x,y∈A ⇒ ∀z ∈A, z→B
• Abduction: A→B, B ⇒ A

AI & CV Lab, SNU 73

Graphical Visualization

…

Various Theorems
The Axioms

of the Theory

A Particular Theory

A proof

AI & CV Lab, SNU 74

Inference Rules: General Form

• Inference Rule:
Pattern establishing that if we know that a set of
antecedent statements of certain forms are all true,
then a certain related consequent statement is true
(valid arguments).

• antecedent 1
antecedent 2 …
\ consequent “\” means “therefore”

AI & CV Lab, SNU 75

Inference Rules: Implications

• Each logical inference rule corresponds to an
implication that is a tautology.

• antecedent 1 Inference rule
antecedent 2 …
\ consequent

• Corresponding tautology:
((ante. 1) Ù (ante. 2) Ù …) ⇒ consequent

AI & CV Lab, SNU 76

Implication Tautologies

I1 P Ù Q⇒ P
I2 P Ù Q⇒ Q
I3 P⇒P Ú Q
I4 Q⇒P Ú Q
I5 ØP⇒P →Q
I6 Q⇒P →Q
I7 Ø(P →Q) ⇒ P
I8 Ø(P →Q) ⇒ ØQ
I9 P, Q⇒P Ù Q
I10 ØP, P Ú Q⇒Q

I11 P, P →Q⇒Q
I12 ØQ, P →Q⇒ ØP
I13 P → Q, Q → R⇒ P → R
I14 P Ú Q, P → R, Q → R ⇒ R
I15 ("x)A(x) Ú ("x)B(x)

⇒ ("x)(A(x) Ú B(x))
I16 ($x)(A(x) Ù B(x))

⇒($x)A(x) Ù ($x)B(x)

AI & CV Lab, SNU 77

Biconditional Tautologies: Equivalences
E1 Ø Ø P ⇔ P
E2 P Ù Q ⇔ Q Ù P
E3 P Ú Q ⇔ Q Ú P
E4 (P Ù Q) Ù R ⇔ P Ù (Q Ù R)
E5 (P Ú Q) Ú R ⇔ P Ú (Q Ú R)
E6 P Ù (Q Ú R) ⇔ (P Ù Q) Ú (P Ù R)
E7 P Ú (Q Ù R) ⇔ (P Ú Q) Ù (P Ú R)
E8 Ø(P Ù Q) ⇔ ØP Ú ØQ
E9 Ø(P Ú Q) ⇔ ØP Ù Ø Q
E10 P Ú P ⇔ P
E11 P Ù P ⇔ P
E12 R Ú (P Ù ØP) ⇔ R
E13 R Ù (P Ú ØP) ⇔ R
E14 R Ú (P Ú ØP) ⇔ T
E15 R Ù (P Ù ØP) ⇔ F
E16 P→ Q ⇔ ØP Ú Q
E17 Ø(P→ Q) ⇔ P Ù ØQ

E18 P → Q ⇔ ØQ → ØP
E19 P→(Q→R) ⇔ (P Ù Q) → R
E20 Ø(P↔Q) ⇔ (P↔ØQ)
E21 (P↔Q) ⇔ (P→Q) Ù (Q → P)
E22 (P↔Q) ⇔ (P Ù Q) Ú (ØP Ù ØQ)
E23 ($x)(A(x) Ú B(x)) ⇔ ($x)A(x) Ú ($x)B(x)
E24 ("x)(A(x) Ù B(x)) ⇔ ("x)A(x) Ù ("x)B(x)
E25 Ø($x)A(x) ⇔ ("x)ØA(x)
E26 Ø("x)A(x) ⇔ ($x)ØA(x)
E27 ("x)(A Ú B(x)) ⇔ A Ú ("x)B(x)
E28 ($x)(A Ù B(x)) ⇔ A Ù ($x)B(x)
E29 ("x)A(x)→B ⇔ ($x)(A(x)→B)
E30 ($x)A(x)→B ⇔ ("x)(A(x)→B)
E31 A→("x)B(x) ⇔ ("x)(A→B(x))
E32 A→($x)B(x) ⇔ ($x)(A→B(x))
E33 ($x)(A(x)→B(x)) ⇔ ("x)A(x)→$xB(x))

AI & CV Lab, SNU 78

Formal Proofs

• Definition:
1. A formal proof of a conclusion C, given premises p1,

p2,…,pn consists of a sequence of steps, each of which
applies some inference rule to premises or to previously-
proven statements (as antecedents) to yield a new true
statement (the consequent).

2. Inference Rules
• Rule P : premise
• Rule T : tautology
• Rule CP : conditional premise

• Note that a proof demonstrates that if the premises are true,
then the conclusion is true.

AI & CV Lab, SNU 79

Examples:

1. Suppose we have the following premises:
(1) It is not sunny and it is cold.
(2) We will swim only if it is sunny.
(3) If we do not swim, then we will canoe.
(4) If we canoe, then we will be home early.

Given these premises, prove using inference rules
the theorem, “We will be home early”.

AI & CV Lab, SNU 80

Proof:
Let us adopt the following abbreviations:
sunny = “It is sunny”; cold = “It is cold”;
swim = “We will swim”; canoe = “We will canoe”;
early = “We will be home early”.
Then, the premises can be represented by the following
formulas:
Øsunny Ù cold, swim ® sunny, Øswim ® canoe,
canoe ® early.
Based on these formulas, the proof would be

AI & CV Lab, SNU 81

Step Inference Rule
(1) Øsunny Ù cold P
(2) Øsunny T, (1) and I1

(3) swim®sunny P
(4) Øswim T, (2), (3) and I12
(5) Øswim®canoe P
(6) canoe T, (4), (5) and I11

(7) canoe®early P
(8) early T, (6), (7), and I11

AI & CV Lab, SNU 82

2. Show that (R®S) can be derived from (P ®(Q ®S)),
(ØR Ú P), and Q. (Instead of deriving R ®S directly, we
shall include R as an additional premise and show S can be
derive from there premises.)

Proof:
Step Inference Rule
(1) ØR Ú P P
(2) R P (assumed premise)
(3) P T, (1), (2) and I10
(4) P®(Q ®S) P
(5) Q ®S T, (3), (4) and I11
(6) Q P
(7) S T, (5), (6) and I11
(8) R ® S CP, (2), (7)

AI & CV Lab, SNU 83

3. Show that S Ú R can be derived from (P Ú Q), (P ® R) and
(Q ® S).

Proof:
Step Inference Rule
(1) P Ú Q P
(2) ØP ® Q T, (1) , E1 and E16
(3) Q ® S P
(4) ØP ® S T, (2), (3), and I13
(5) ØS® P T, (4) , E18 and E1
(6) P ® R P
(7) ØS ® R T, (5), (6), and I13
(8) S Ú R T, (7), E16 and E1

AI & CV Lab, SNU 84

Inference Rules for Quantifiers

• "x P(x) Universal Specification (US)
\P(o) (substitute any object o)

• P(g) (for general element g of u.d.)
\"x P(x) Universal Generalization (UG)

• $x P(x) Existential Specification (ES)
\P(c) (substitute some object c)

• P(o) (for some extant object o)
\$x P(x) Existential Generalization (EG)

AI & CV Lab, SNU 85

Examples:
1. Show that
("x) (P(x) ® Q(x)) Ù ("x) (Q(x) ® R(x))⇒ ("x) (P(x) ® R(x))

Proof:
Step Inference Rule
(1) ("x) (P(x) ® Q(x)) P
(2) P(y) ® Q(y) US, (1)
(3) ("x) (Q(x) ® R(x)) P
(4) Q(y) ® R(y) US, (3)
(5) P(y) ® R(y) T, (2), (4) and I13

(6) ("x) (P(x) ® R(x)) UG, (5)

AI & CV Lab, SNU 86

2. Show that from ($x) (F(x) Ù S(x)) ® ("y) (M(y) ® W(y)) and
($y) (M(y) Ù ØW(y)), the conclusion ("x) (F(x) ® Ø S(x)) logically
follows.

Proof:
Step Inference Rule
(1) ($y) (M(y) Ù ØW(y)) P
(2) M(z) Ù ØW(z) ES, (1)
(3) Ø (M(z) ® W(z)) T, (2) and E17
(4) ($y) Ø (M(y) ® W(y)) EG, (3)
(5) Ø("y)(M(y) ® W(y)) T, (4) and E26
(6) ($x) (F(x) Ù S(x)) ® ("y) (M(y) ® W(y)) P
(7) Ø($x) (F(x) Ù S(x)) T, (5), (6) and I12
(8) ("x) Ø(F(x) Ù S(x)) T, (7) and E25
(9) Ø(F(x) Ù S(x)) US, (8)
(10) F(x) ® Ø S(x) T, (9), E8 and E16
(11) ("x) (F(x) ® Ø S(x)) UG, (10)

AI & CV Lab, SNU 87

Restriction

• UG applicable variable should not be free in any of the given
premises

• UG should not be applied to the free variables after ES making
some other variable free in a prior step.

("x)($z) A(z,x)
⇒ ($z)A(z,x) by US
⇒ A(z,x) by ES
⇒ ("x)A(z,x) by UG (not allowed!)
⇒ ($z) ("x)A(z,x) by EG contradiction!

AI & CV Lab, SNU 88

Proof Methods for Implications

For proving implications p®q, we have:
• Direct proof: Assume p is true, and prove q.
• Indirect proof: Assume Øq, and prove Øp.
• Vacuous proof: Prove Øp by itself.
• Trivial proof: Prove q by itself.
• Proof by cases:

Show p®(a Ú b), and (a®q) and (b®q).

AI & CV Lab, SNU 89

Example of Direct Proof

• Definition:
An integer n is called odd iff n=2k+1 for some integer k; n
is even iff n=2k for some k.

• Axiom:
Every integer is either odd or even.

• Theorem:
(For all numbers n) If n is an odd integer, then n2 is an odd
integer.

Proof:
If n is odd, then n = 2k+1 for some integer k. Thus, n2 =
(2k+1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Therefore n2 is
of the form 2j + 1 (with j the integer 2k2 + 2k), thus n2 is
odd. □

AI & CV Lab, SNU 90

Example of Indirect Proof

• Theorem: (For all integers n)
If 3n+2 is odd, then n is odd.

Proof:
Suppose that the conclusion is false, i.e., that n is even.
Then n=2k for some integer k. Then 3n+2 = 3(2k)+2 =
6k+2 = 2(3k+1). Thus 3n+2 is even, because it equals 2j
for integer j = 3k+1. So 3n+2 is not odd. We have shown
that ¬(n is odd)→¬(3n+2 is odd), thus its contra-positive
(3n+2 is odd) → (n is odd) is also true. □

AI & CV Lab, SNU 91

Example of Vacuous Proof

• Theorem: If n is both odd and even, then n2 = n + n.
Proof:

The statement “n is both odd and even” is necessarily false,
since no number can be both odd and even. So, the
theorem is vacuously true. □

AI & CV Lab, SNU 92

Example of Trivial Proof

• Theorem: (For integers n) If n is the sum of two prime
numbers, then either n is odd or n is even.
Proof:

Any integer n is either odd or even. So the conclusion of
the implication is true regardless of the truth of the
antecedent.
Thus the implication is true trivially. □

AI & CV Lab, SNU 93

Proof by Contradiction

1. A method for proving p.
2. Assume Øp, and prove both q and Øq for some

proposition q.
3. Thus Øp® (q Ù Øq)
4. (q Ù Øq) is a trivial contradiction, equal to F
5. Thus Øp®F, which is only true if Øp=F
6. Thus p is true.

AI & CV Lab, SNU 94

Proving Existentials

1. A proof of a statement of the form $x P(x) is called
an existence proof.

2. If the proof demonstrates how to actually find or
construct a specific element a such that P(a) is true,
then it is a constructive proof.

3. Otherwise, it is nonconstructive.

AI & CV Lab, SNU 95

Constructive Existence Proof

• Theorem:
There exists a positive integer n that is the sum of
two perfect cubes in two different ways:

• equal to j3 + k3 and l3 + m3 where j, k, l, m are
positive integers, and {j,k} ≠ {l,m}

Proof:
Consider n = 1729, j = 9, k = 10,
l = 1, m = 12. Now just check that the equalities
hold.

AI & CV Lab, SNU 96

Nonconstructive Existence Proof
• Theorem:

There are infinitely many prime numbers.

Proof:
Any finite set of numbers must contain a maximal element, so we
can prove the theorem if we can just show that there is no largest
prime number.
I.e., show that for any prime number, there is a larger number
that is also prime.
More generally: For any number, $ a larger prime.
Formally: Show "n $p ((p>n) ® (p is prime)).

AI & CV Lab, SNU 97

Given n>0, prove there is a prime p>n.
Consider x = n!+1. Since x>1, we know

(x is prime)Ú(x is composite).

Case 1: x is prime.
Obviously x>n, so let p=x and we’re done.

Case 2: x has a prime factor p.
But if p£n, then x mod p = 1.
So p>n, and we’re done.

AI & CV Lab, SNU 98

Uniqueness Proof

• Some theorems assert the existence of a unique
element with a particular property.

• To prove a statements of this type, we show
following two parts.
1. Existence: element x with a desired property exists
2. Uniqueness: if y ≠ x, then y does not have the

desired property

AI & CV Lab, SNU 99

Example of Uniqueness Proof

• Theorem:
“Every integer has a unique additive inverse.”
Proof:

If p is an integer, we find that p+q=0 where p=-q and
q is also an integer. Consequently, there exists an
integer q such that p+q=0. (Existence)
if r is an integer with r≠q such that p+r=0. then
p+q=p+r. So We can show q=r, which contradicts
our assumption r≠q. Consequently, there is a unique
integer q such that p+q=0. □

AI & CV Lab, SNU 100

Exercise
1. Prove that the square of an even number is an even

number using
(a) A direct proof
(b) An indirect proof
(c) A proof by contradiction

2. Prove formally using inference rules that
R∧(P∨Q) logically follows from (P∨Q), (Q→R),
(P→M), and ¬M.

3. Prove that if n is a positive integer, then n is a even
if and only if 7n+4 is even.

4. Let P, Q, R and S be statement variables.
Prove formally the following.
(a) ØPÙQ, Ø QÚR, R→S ⇒ P→S
(b) ØPÙ (PÚQ) ⇒ Q

5. Show the following implication.
(a) ("x)(P(x)ÚQ(x)), ("x)ØP(x) ⇒($x)Q(x)
(b) Ø(($x)P(x) ÙQ(a))⇒($x)P(x)→ØQ(a)

AI & CV Lab, SNU 101

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
2. Sets

AI & CV Lab, SNU 103

Introduction to Set Theory

• A set is a new type of structure, representing an
unordered collection of zero or more distinct
(different) objects.

• Set theory deals with operations between, relations
among, and statements about sets.

AI & CV Lab, SNU 104

Naive Set Theory
• A set is any collection of objects (elements) that we

can describe. (Basic premise)

• The naive set theory, however, leads to logical inconsistencies, known
as paradoxes:
Russell’s paradox:

1. A set being a member of itself: Possible from the case that the set of
concepts is itself a concept, and hence this set is apparently a member
of itself. The assertions (x x) and (x x) are therefore predicates
which can be used to define sets:

2. Define S to be S={x| x x }.
3. Is S a member of itself?

• Set theory is formulated to avoid Russell’s paradox: Restrictions on
the ways in which sets can be related, which imply that no set is
permitted to be a member of itself. (Other paradoxes exist?)

Ï Î

Ï

AI & CV Lab, SNU 105

Basic notations for Sets

• For sets, we’ll use variables S, T, U, …

• We can denote a set S in writing by listing all of its
elements in curly braces:

− {a, b, c} is the set of 3 objects denoted by a, b, and c.

• Set builder notation: For any predicate symbol P,
{x| P(x)} is the set of all x such that P(x). (or the set
of all x holding the property P.)

AI & CV Lab, SNU 106

Basic properties of Sets

• Sets are inherently unordered:
− No matter what objects a, b, and c denote,

{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);
multiple listings make no difference!

− If a=b, then {a, b, c} = {a, c} = {b, c} =
{a, a, b, a, b, c, c, c, c}.

− This set contains at most 2 elements!

AI & CV Lab, SNU 107

Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without
end, unending).

• Symbols for some special infinite sets:
N = {1, 2, …} The Natural numbers.
Z = {…, -2, -1, 0, 1, 2, …} The Zntegers.
R = The “Real” numbers, such as
374.1828471929498181917281943125…

• Infinite sets come in different sizes!

AI & CV Lab, SNU 108

Empty Set

• Definition:
A set which does not contain any elements is an
empty set, denoted by Æ or {} or {x| False}

• Example:
xÏÆ for any x

AI & CV Lab, SNU 109

Subset and Superset
• Definition:

Let S and T be any two sets. S is a subset of T (T
is a superset of S), denoted by SÍT, if and only if
every element of S is an element of T, i.e.,
("x)((xÎS) ® (xÎT)).

• Example:
ÆÍS, SÍS.

AI & CV Lab, SNU 110

Set Equality
• Definition:

Let A and B be any two sets. A and B are said to be equal
if and only if they contain exactly the same elements, i.e.,
A=B if and only if (AÍ B) Ù (BÍ A).

• Note that it does not matter how the set is defined or
denoted.

• Example:
{1, 2, 3, 4} =
{x | x is an integer where x>0 and x < 5 } =
{x | x is a positive integer whose square is > 0 and
< 25}

AI & CV Lab, SNU 111

Proper Subset and Superset

• Definition:
Let S and T be any two sets. S is a proper subset of
T (T is a proper superset of S), denoted by S Ì T,
if and only if S Í T and S ≠ T.

S
T

Venn Diagram equivalent of S Ì T

Example:
{1,2} Ì {1,2,3}

AI & CV Lab, SNU 112

Sets are objects, too!

• The objects that are elements of a set may themselves
be sets.

• Example:
Let S={x | x Í {1,2,3}}.
Then S={Æ,

{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}

• Note that 1 ¹ {1} ¹ {{1}}.

AI & CV Lab, SNU 113

Element of (Member of)

• Definition:
1. xÎS (“x is in S”) is the proposition that object x is

an element or member of set S.
• Example:

3ÎN, “a”Î{x| x is a letter of the alphabet}

2. xÏS = Ø(xÎS) “x is not in S”

AI & CV Lab, SNU 114

Cardinality and Finiteness

• The cardinality of S, denoted by |S|, is a measure of
how many different elements S has.

• Example:
|Æ|=0, |{1,2,3}| = 3, |{a,b}| = 2, |{{1,2,3},{5}}| = 2.

• If |S|ÎN, then S is said to be finite.
Otherwise, S is said to be infinite.

AI & CV Lab, SNU 115

Power Set

• Definition:
Let S be a set. The power set (S) of S is the set
of all subsets of S, i.e., (S) = {x | xÍS}.

• Example: ({a,b}) = {Æ, {a}, {b}, {a,b}}.
• Sometimes (S) is written 2S.
• Note that for finite S, | (S)| = 2|S|.
• It turns out that | (N)| > |N|.

There are different sizes of infinite sets where N is a
set of all natural numbers.

Ã
Ã

Ã
Ã

Ã
Ã

AI & CV Lab, SNU 116

Ordered n-tuples

• Definition:
For nÎN, an ordered n-tuple or a sequence of length
n is defined to be (a1, a2, …, an). The first element is
a1, etc.

• These are like sets, except that duplicates matter and the
order makes a difference.

• Note (1, 2) ¹ (2, 1) ¹ (2, 1, 1).
• Empty sequence, singlets, pairs, triples, quadruples,

quintuples, …, n-tuples.

AI & CV Lab, SNU 117

Cartesian Products of Sets

• Definition:
Let A and B be any two sets.
The Cartesian product A´B is defined to be
A´B = {(a, b) | aÎA Ù bÎB }.

• Example:
{a, b}´{1,2} = {(a,1), (a, 2), (b,1), (b, 2)}

• Note that for two finite sets, A and B,
1. |A´B| = |A||B|.
2. A´B ≠ B´A.

AI & CV Lab, SNU 118

Union Operator

• Definition:
Let A and B be any two sets. The union AÈB of
A and B is the set containing all elements that are
either in A, or in B (or, of course, in both), i.e.,
AÈB = {x | xÎA Ú xÎB}.

• Note that AÈB contains all the elements of A and it
contains all the elements of B:

(AÈB Ê A) Ù (AÈB Ê B)

AI & CV Lab, SNU 119

• {a,b,c}È{2,3} = {a,b,c,2,3}
• {2,3,5}È{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}

Example of Union

AI & CV Lab, SNU 120

Intersection Operator

• Definition:
Let A and B be any two sets. The intersection
AÇB of A and B is the set containing all
elements that are simultaneously in A and in B,
i.e.,
AÇB={x | xÎA Ù xÎB}.

• Note that AÇB is a subset of A and it is a subset of B:
(AÇB Í A) Ù (AÇB Í B)

AI & CV Lab, SNU 121

• {a,b,c}Ç{2,3} = Æ
• {2,4,6}Ç{3,4,5} = {4}

Example of Intersection

AI & CV Lab, SNU 122

Disjointedness

• Definition:
Let A and B be any two sets. A and B are called
disjoint if and only if their intersection is empty
(AÇB=Æ).

• Example:
The set of even integers is disjoint with the set of
odd integers.

AI & CV Lab, SNU 123

Inclusion-Exclusion Principle

• How many elements are in AÈB?
|AÈB| = |A| + |B| - |AÇB|.

• Example:
How many students are on our class email list?
Consider a set E = I È M where
I = {s | s turned in an information sheet} and
M = {s | s sent the TAs their email address}.
Since some students did both,
|E| = |IÈM| = |I| + |M| - |IÇM|

AI & CV Lab, SNU 124

Set Difference

• Definition:
Let A and B be any two sets.

1. The set difference, A-B, of A and B is the set of
all elements that are in A but not in B.

2. A-B is also called the complement of B with
respect to A.

AI & CV Lab, SNU 125

Example

1. {1,2,3,4,5,6} - {2,3,5,7,9,11} = {1,4,6}
2. Z - N = {… , -1, 0, 1, 2, … } - {1, … }

= {x | x is an integer but not a nat. number}
= {x | x is a negative integer or x=0}
= {… , -3, -2, -1, 0}

AI & CV Lab, SNU 126

Universal Set & Complement of a Set
• Definition (Universal Set):

A set is a universal set or a universe of discourse,
denoted by U, if it includes every set under discussion.

• Definition (Complement of a Set):
Let A be a set. The complement of A in U, denoted
by , is the set of all elements of U which are not
elements of A, i.e.,

= U - A.
Example:

If U=N,

A

,...},,,,{},{ 7642153 =

A

AI & CV Lab, SNU 127

• An equivalent definition, when U is clear:

}|{ AxxA Ï=

A
U

A

AI & CV Lab, SNU 128

Set Identity Theorems

For any sets, A, B, and C, the following holds:
1. Identity: AÈÆ=A, AÇU=A
2. Domination: AÈU=U, AÇÆ=Æ
3. Idempotent: AÈA = A = AÇA
4. Double complement:
5. Commutative: AÈB=BÈA, AÇB=BÇA
6. Associative: AÈ(BÈC)=(AÈB)ÈC

AÇ(BÇC)=(AÇB)ÇC

AA =)(

AI & CV Lab, SNU 129

DeMorgan’s Theorem for Sets

• Theorem:

Let A and B be sets. Then the following holds:

BABA

BABA

È=Ç

Ç=È

AI & CV Lab, SNU 130

Example:
Let A, B, and C be sets. Show that A∩(B∪C) = (A∩B)∪(A∩C).

Proof:
1. Show A∩(B∪C) Í (A∩B)∪(A∩C):

Let xÎA∩(B∪C). Then by definition of ∩, xÎA and x Î (B∪C).
By definition of ∪, xÎB or xÎC.

Case 1: Let xÎB. Then by definition of ∩, xÎA∩B.
By definition of by ∪, xÎ(A∩B)∪(A∩C).

Case 2: Let xÎC. Then by definition of ∩, xÎA∩C.
By definition of by ∪, xÎ(A∩B)∪(A∩C).

From case 1 and 2, xÎ(A∩B)∪(A∩C).
By definition of Í , A∩(B∪C)Í(A∩B)∪(A∩C).

2. Show (A∩B)∪(A∩C) Í A∩(B∪C): Similarly done.
From 1 and 2, A∩(B∪C) = (A∩B)∪(A∩C) by definition of set equality.

AI & CV Lab, SNU 131

• Theorem:
If A and B are two sets, the following statements

are equivalent.

(1) A⊆B
(2) A ∩ B = A
(3) A ∪ B = B

AI & CV Lab, SNU 132

Generalized Unions & Intersections

• Since union & intersection are commutative and
associative, we can extend them from operating on
ordered pairs of sets (A, B) to operating on
sequences of sets (A1,…, An), or even unordered sets
of sets.

AI & CV Lab, SNU 133

Generalized Union

1. Binary union operator: A ∪ B
2. n-ary union:

A1 ∪ A2 ∪ … ∪ An = ((…((A1 ∪ A2) ∪ …) ∪ An)
(grouping & order is irrelevant)

3. “Big ∪” notation:

4. For infinite sets of sets:

U
n

i
iA

1=

U
XA

A
Î

AI & CV Lab, SNU 134

Generalized Intersection

1. Binary intersection operator: A ∩ B
2. n-ary intersection:

A1 ∩ A2 ∩ … ∩ Anº((…((A1 ∩ A2) ∩ …) ∩ An)
(grouping & order is irrelevant)

3. “Big ∩” notation:

4. For infinite sets of sets:

I
n

1i
iA

=

I
XA

A
Î

AI & CV Lab, SNU 135

Exercise
1. Let A and B be sets. Show that

(a) (A ∩ B) Í A
(b) A ∪(B-A) = A ∪ B
(c) A ∩ B = A if and only if A ∪ B = B
(d) A- (A∩ B) = A-B
(e) ¬(A∪B) = ¬A ∩ ¬B

2. Let A, B and C be sets. Show that
(A-B)-C = (A-C)-(B-C).

3. Let A and B be two sets. Prove or disprove each of
the followings:

(a) ⊆ where is the
power set of the set A.

(b)

AI & CV Lab, SNU 136

)(BAÈÃ)()(BA ÃÈÃ)(AÃ

)()()(BABA ÃÈÃÍÈÃ

AI & CV Lab, SNU 137

4. Which of the following are true for all sets, A, B, and C ?
Give a counter example if the answer is false (No proof is
necessary if the answer is true).

(a) If A∩B = Ø and B∩C = Ø, then A∩C = Ø.
(b) If A∈B and ¬(B⊆C), then ¬(A∈C).
(c) If A∈B and B∈C, then ¬(A∈C).
(d) (A∩B)∪C = A∩(B∪C) if and only if C⊆A.
(e) Ø∈A.
(f) If A⊆B and B∈C, then A ⊆ C
(g) If A ∈B, then {A} ⊆ B

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
3. Relations

AI & CV Lab, SNU 139

Binary Relations

• Definition:
Let A and B be any two sets. A binary relation R
from A to B is a subset of A×B.

• The notation aRb means (a,b)ÎR.
− Example:

a≤b means (a,b)Î≤
where ≤ denotes the relation of partial ordering.

AI & CV Lab, SNU 140

Complementary Relations

• Definition:
Let R⊆A×B be any binary relation. Then, , the
complement of R, is the binary relation defined
by

= {(a,b) | (a,b)ÏR} = (A×B) − R

• Note that the complement of is R.

R

R

R

AI & CV Lab, SNU 141

Inverse Relations

• Definition:
An inverse relation of a binary relation R⊆A×B,

denoted by R-1, is defined to be
R-1 = {(b, a) | (a, b)ÎR}.

• Theorem:
1. (R1∪R2)-1=R1

-1∪R2
-1

2. (R1 ∩ R2)-1=R1
-1 ∩ R2

-1

AI & CV Lab, SNU 142

Relations on a Set

• Definition:
1. A (binary) relation from a set A to itself is

called a relation on the set A.
2. The identity relation IA on a set A is the set,
IA = {(a,a)|aÎA}.

AI & CV Lab, SNU 143

Properties of Relations
• Definition:
1. A relation R on A is reflexive if for every a in A, (a, a) ÎR.
2. A relation R on A is irreflexive if for every a in A, (a, a) ÏR.
3. A relation R on A is symmetric if for every a and b in A, if (a,b)ÎR,

then (b,a)ÎR.
4. A relation R on A is antisymmetric if for every a and b in A, if

(a,b)ÎR and (b,a)ÎR, then (a=b).
5. A relation R on A is asymmetric if for every a and b in A, if

(a,b)ÎR, then (b,a)ÏR.
6. A relation R on A is transitive if for every a, b, and c in A, if

(a,b)ÎR and (b,c)ÎR, then (a,c)ÎR.

• Note “irreflexive” ≠ “not reflexive”!

AI & CV Lab, SNU 144

Composite Relations

• Definition:
Let R⊆A×B , and S⊆B×C. Then the composite of R and
S, denoted by R o S, is defined to be
R o S = {(a,c) | (a,b)ÎR Ù (b,c)ÎS for some b in B}

• Definition:
The nth power Rn of a relation R on a set A can be defined
recursively by Rn+1 = RnoR for all n≥0 where R0 = IA.

AI & CV Lab, SNU 145

• Theorem:
Let R1, R2, and R3 be relations on a set A. Then
1. R1o (R2 ∩ R3) ⊆(R1 o R2) ∩ (R1 o R3)
2. R1 o (R2∪R3) = (R1 o R2) ∪ (R1 o R3)

• Theorem:
Let R be a relation on a set A, i.e. R ⊆ A×A, and IA
be a identity relation on a set A, (IA={<x,x>|x∈A}).
Then the following holds:
1. R is reflexive iff IA ⊆ R
2. R is irreflexive iff IA ∩ R = Æ
3. R is symmetric iff R = R−1

4. R is asymmetric iff R ∩ R−1 = Æ
5. R is antisymmetric iff R ∩ R−1⊆ IA
6. R is transitive iff R o R ⊆ R

AI & CV Lab, SNU 146

Walk, path, cycle, loop, sling
• Definition:

Given a directed graph G=<N, V> where N is a set of nodes
and V is a set of edges,
1. A walk is a sequence x0, x1, …, xn of the vertices of a

directed graph such that xixi+1, 0≤i≤n-1, is an edge.
2. The length of a walk is the number of edges in the walk.
3. If a walk holds xi≠xj (i≠j) i, j =0, …, n, (i.e., no edge is

repeated), the walk is called a path.
4. If a walk holds xi≠xj (i≠j) i, j =0, …, n, except x0=xn, the

walk is called a cycle.
5. A loop is a cycle of length one.
6. A sling is a cycle of length two.

AI & CV Lab, SNU 147

• Theorem:
Given a directed graph G=<N, R> where N is a set of nodes
and R is a set of edges,
1. R is reflexive iff G has a loop at every node.
2. R is irreflexive iff G has no loop at any node.
3. R is symmetric iff if G has a walk of length one between

two distinct nodes, then it has a sling between them.
4. R is asymmetric iff if G has a walk of length one between

two distinct nodes, then it has no sling between them and
no loop at any node.

5. R is antisymmetric iff if G has a walk of length one
between two distinct nodes, then it has no sling between
them.

6. R is transitive iff if G has a walk of length two between
two nodes, then it has a walk of length one between them.

AI & CV Lab, SNU 148

Digraph Reflexive, Symmetric
It is extremely easy to recognize the reflexive/irreflexive/

symmetric/antisymmetric properties by graph inspection.

P
P

P
P
P

P

Reflexive:
Every node
has a loop

Irreflexive:
No node

has a loop

Symmetric:
Every link is
bidirectional

P P
Antisymmetric:

No link is
bidirectional

P P

P

AI & CV Lab, SNU 149

Closures of Relations

• Definition:
For any property X, the “X closure” of a set R is defined as

the “smallest” superset of R that has the given property.

• Theorem:
1. The reflexive closure of a relation R on A is obtained by

adding (a,a) to R for each aÎA, i.e., r(R) = R È IA.
2. The symmetric closure of R is obtained by adding (b,a) to R

for each (a,b) in R, i.e., s(R) = R È R−1.
3. The transitive closure or connectivity relation of R is obtained

by repeatedly adding (a,c) to R for each (a,b),(b,c) in R, i.e.,
U

+Î

=
Zn

nRRt)(

AI & CV Lab, SNU 150

Equivalence Relations

• Definition:
A relation R on a set A is called an equivalence
relation if it is reflexive, symmetric, and transitive.

AI & CV Lab, SNU 151

Equivalence Classes

• Definition:
Let R be any equivalence relation on a set A. For each
a in A, the equivalence class of a with respect to R,
denoted by [a]R, is

[a]R = { b | <a,b> Î R}

AI & CV Lab, SNU 152

• Examples:
1. “Strings a and b are the same length.”

• [a] = the set of all strings of the same length as a.
2. “Integers a and b have the same absolute value.”

• [a] = the set {a, −a}
3. “Real numbers a and b have the same fractional part

(i.e., a − b Î Z).”
• [a] = the set {…, a−2, a−1, a, a+1, a+2, …}

4. “Integers a and b have the same residue modulo m.”
(for a given m>1)
• [a] = the set {…, a−2m, a−m, a, a+m, a+2m, …}

AI & CV Lab, SNU 153

• Theorem:
Let R be an equivalence relation on a set A.
1. For every x in A, x Î [x]R.
2. If <x, y> Î R, then [x]R=[y]R .

• Theorem:
Let R be an equivalence relation on a set A.
If <x, y> ÏR, then [x]R∩ [y]R = Æ.

AI & CV Lab, SNU 154

Partition and Covering of a Set

• Definition:
Let S be a give set and A= {A1, A2, …, Am } where

each Ai , i=1, … m, is a non-empty subset of S and
= S.

1. Then the set A is called a covering of S, and
the sets A1, A2, …, Am are said to cover S.

2. If the elements of A, which are subsets of S, are
mutually disjoint, then A is called a partition of S,
and the sets A1, A2, …, Am are called the blocks of
the partition.

U
m

1i
iA

=

AI & CV Lab, SNU 155

Refinement and a Quotient Set

• Definition:
Let R be an equivalence relation on a set A, then
A/R= {[x]R|x Î A} is called a quotient set of A
modulo R.

• Theorem:
Let R be an equivalence relation on a set A, then the
quotient set of A modulo R is a partition of A.

AI & CV Lab, SNU 156

Relation induced by the Partition

• Definition:
Let A be a set. Let π = {A1, A2, …, An } be a partition of A.
Rπ is a relation induced by the partition π and defined as
follows.
Rπ={<x, y>|(x ÎAi)∧(y ÎAi) for some i}

• Theorem:
Let A be a set. Let π = {A1, A2, …, An } be a partition A and
Rπ be the relation induced by the partition π. Then, Rπ is
an equivalence relation on A.

AI & CV Lab, SNU 157

Refinement
• Definition:

Let π1 and π2 be two partitions of a set A. π2 is a refinement
of π1, (π2 refines π1), if for every block Bi in π2, there
exists some block Aj in π1 such that Bi⊆Aj.

• Theorem:
Let π and π' be two partitions of a nonempty set A and let
Rπ and Rπ' be the equivalence relations induced by π and
π' respectively. Then π' refines π if and only if Rπ'⊆Rπ.

AI & CV Lab, SNU 158

Partial Orderings

• Definition:

1. A relation R on a set S is called a partial ordering or
partial order iff it is reflexive, antisymmetric, and
transitive.

2. A set S together with a partial ordering R is called a
partially ordered set, or poset, denoted by (S, R).

AI & CV Lab, SNU 159

• Example:
Consider the “greater than or equal to” relation ≥

(defined by {(a, b) | a ≥ b}). Is ≥ a partial ordering on
the set of integers?

Proof:
1. ≥ is reflexive, because a ≥ a for every integer a.
2. ≥ is antisymmetric, because if a ≥ b ∧ b ≥ a, then a=b.
3. ≥ is transitive, because if a ≥ b and b ≥ c, then a ≥ c.

Consequently, (Z, ≥) is a partially ordered set.

AI & CV Lab, SNU 160

• Example:
Is the “inclusion relation” Í on the power set of a set S

a partial ordering ?

Proof:

1. Í is reflexive, because A Í A for every set A.

2. Í is antisymmetric, because if A Í B Ù B Í A, then A =B.

3. Í is transitive, because if A Í B and B Í C, then

A Í C.

Consequently, ((S), Í) is a partially ordered setÃ

AI & CV Lab, SNU 161

Partially Ordered Sets

• In a poset the notation a £ b denotes that (a, b)Î £ .

Note that the symbol £ is used to denote the relation in any poset,
not just the “less than or equal” relation. The notation a < b denotes
that a £ b, but a ¹ b. If a < b we say “a is less than b” or “b is
greater than a”.

• For two elements a and b of a poset (S, £), it is possible that
neither a £ b nor b £ a. For instance, in ((Z), Í), {1, 2} is not
related to {1, 3}, and vice versa, since neither is contained within
the other.

Ã

AI & CV Lab, SNU 162

• Definition:

1. The elements a and b of a poset (S, £) are called
comparable if either a £ b or b £ a.

2. The elements a and b of a poset (S, £) are called
incomparable if neither a £ b nor b £ a.

AI & CV Lab, SNU 163

• Definition :
If (S, £) is a poset and every two elements of S are
comparable, (S, £) is called a totally ordered or linearly
ordered set, and £ is called a total order or linear order.
A totally ordered set is also called a chain.

AI & CV Lab, SNU 164

• Example 1: Is (Z, £) a totally ordered poset?

Yes, because a £ b or b £ a for all integers a and b.

• Example 2: Is (Z+, |) a totally ordered poset?

No, because it contains incomparable elements

such as 5 and 7.

AI & CV Lab, SNU 165

Hasse Diagram

• Definition :
Let G be a digraph representing a poset, (A, ≤).
The Hasse diagram of (A, ≤) is constructed from G
by
1. All loops are omitted.
2. An arc is not present in a Hasse diagram if it is

implied by the transitivity of the relation.
3. All arcs point upward and arrow heads are not used.

AI & CV Lab, SNU 166

Example of Hasse Diagram

• { <a, b> | a≤b } on {1, 2, 3, 4}

AI & CV Lab, SNU 167

Greatest Elements and Least Elements

• Definition:
Let (A, ≤) be a poset and B be a subset of A.
1. An element a Î B is a greatest element of B iff

for every element a' Î B, a'≤a.
2. An element a Î B is a least element of B iff for

every element a' Î B, a ≤ a'.

• Theorem:
Let (A, ≤) be a poset and B ⊆ A. if a and b are
greatest (least) elements of B, then a=b

AI & CV Lab, SNU 168

Least Upper Bound (lub)

• Definition:
Let (A, ≤) be a poset and B be a subset of A.

1. An element a Î A is an upper bound for B iff for
every element a' Î B, a' ≤a.

2. An element a Î A is a least upper bound (lub) for B
iff a is an upper bound for B and for every upper
bound a' for B, a ≤a'.

AI & CV Lab, SNU 169

Greatest Lower Bound (glb)

• Definition:
Let (A, ≤) be a poset and B be a subset of A.

1. An element a ÎA is a lower bound for B iff for
every element a'Î B, a ≤ a'.

2. An element a Î A is a greatest lower bound (glb)
for B iff a is a lower bound for B and for every
lower bound a' for B, a'≤ a.

AI & CV Lab, SNU 170

lub and glb

• Theorem:
Let (A, ≤) be a poset and B⊆A.
1. If b is a greatest element of B, then b is a lub of B.
2. If b is an upper bound of B and b Î B, then b is a greatest

element of B.

• Theorem:
Let (A, ≤) be a poset and B⊆A.
If a least upper bound (or a greatest lower bound) for B
exists, then it is unique.

AI & CV Lab, SNU 171

Lattices

• Definition:
A poset is a lattice if every pair of elements has a lub and
a glb.

• Theorem:
Let <L, ≤> be a lattice. If x*y (x+y) denotes the glb (lub) for
{x, y}, then the following holds: for any a, b, and c in L,

(i) a*a=a (i') a+a=a (idempotent)
(ii) a*b=b*a (ii') a+b=b+a (commutative)
(iii) (a*b)*c= a*(b*c) (iii') (a+b)+c= a+(b+c) (associative)

(iv) a*(a+b)=a (iv') a+(a*b)=a (absorption)

AI & CV Lab, SNU 172

Exercise
1. For each of the following relation R on set A, state whether or not R is

reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and
transitive.

(a) A = {1, 2, …., 9}
R = {<x,y> | x+y=10}

(b) A = a set of real numbers
R = {<x,y> | |x|≤|y| }

(c) A = a set of natural numbers
R = {<x,y> | x-y=2k, k Î A }

2. Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of theses statements

(a) R∪S is reflexive
(b) R∩S is reflexive

AI & CV Lab, SNU 173

3. Show that the relation R on a set A is symmetric if and
only if R=R-1, where R-1 is the inverse relation.

4. Let R1 and R2 be arbitrary relations on a set A.
Prove or disprove the following assertions.
(a) If R1 and R2 are reflexive, then R1°R2 is reflexive.
(b) If R1 and R2 are transitive, then R1°R2 is transitive.
(c) If R1 and R2 are symmetric, then R1°R2 is symmetric.

AI & CV Lab, SNU 174

5. Show that the relation R on a set A is symmetric if and
only if R=R-1, where R-1 is the inverse relation.

6. Let A be a set of ordered pairs of positive integers and R
be a relation on A such that <(x,y),(u,v)> Î R if and only
if x+v = y+u. Determine whether or not R is an
equivalence relation.

7. Let R1 and R2 be two equivalence relations on a nonempty set A.
Prove or disprove the following :

(a) R1ÈR2 an equivalence relation.
(b) R1ÇR2 an equivalence relation.

AI & CV Lab, SNU 175

8. If R is a partial ordering relation on a set X and A Í X, show
that RÇ(A´A) is a partial ordering on A.

9. Let S be a set of all partitions defined on a nonempty set A. The
relation R on a set S is defined to be <π1, π2> ∈ R if and only
if π1 refines π2 (π1 is the refinement of π2).
(a) Show that R is a partial ordering.
(b) Is a p.o. set <S, R> a lattice? If yes, prove it. Otherwise,

explain why.

AI & CV Lab, SNU 176

10. Let <A, ≤ > be a lattice. Prove that for every x, y, and z in A,
(a) x*(y*z) = (x*y)*z
(b) x+(x*y) = x
where x*y is glb(x,y) and x+y is lub(x,y).

11. Let <E(A), ⊆> be a p.o.set where E(A) is a set of all
equivalence relations defined on a set A.
(a) For every x and y in E(A), is xÇy the glb of {x,y} ?
(b) For every x and y in E(A), is xÈy the lub of {x,y} ?

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
4. Functions

AI & CV Lab, SNU 178

Functions

• Definition:
Let A and B be two sets. A relation f from A to B
is called a function if for every x in A, there is a
unique y in B such that <x, y> ∈ f

• A function f ⊆ A × B may be written by f : A→ B
and <x, y> ∈ f written by f(x)=y.

AI & CV Lab, SNU 179

Graphical Representations

• Functions can be represented graphically in several
ways:

• •

A B

a b

f

f

•
•
•
•

•
•

•
•

•
x

y

PlotBipartite GraphLike Venn diagrams

A B

AI & CV Lab, SNU 180

Some Function Terminology

• Definition:
Let f:A®B and f(a)=b (where a in A and b in B).
Then,

1. A is the domain of f.
2. B is the codomain of f.
3. b is the image of a under f.
4. a is a pre-image of b under f.
5. The range RÍB of f is R = {b | (a, b) Î f for some

a}.

AI & CV Lab, SNU 181

Images of Sets under Functions

• Definition:
Given f:A®B, and S Í A, the image of S under f
is defined to be the set of all images (under f) of
the elements of S: f(S) = { f(w) | wÎS}

• Note the range of f can be defined as simply the
image (under f) of f’s domain!

AI & CV Lab, SNU 182

Range versus Codomain

• The range of a function might not be its whole
codomain.

• The codomain is the set that the function is declared
to map all domain values into.

• The range is the particular set of values in the
codomain that the function actually maps elements
of the domain to.

AI & CV Lab, SNU 183

Range vs. Codomain - Example

• Suppose I declare to you that: “f is a function mapping
students in this class to the set of grades {A,B,C,D,E}.”

• At this point, you know f’s codomain is: {A,B,C,D,E}, and
its range is unknown!

• Suppose the grades turn out all As and Bs.
• Then the range of f is {A,B}, but its codomain is still

{A,B,C,D,E}!

AI & CV Lab, SNU 184

Restriction and Extension

• Definition:
If f: X → Y and A⊆X, then f ∩ (A×Y) is a
function from A to Y called the restriction of f to
A and is sometimes written as f/A, If g is a
restriction of f, then f is called the extension of g.

AI & CV Lab, SNU 185

Operators

• Definition:
An n-ary operator On over the set S is a function from
the set of ordered n-tuples of elements of S to S itself.

On : Sn → S
• Example:

1. If S={T,F}, Ø can be seen as a unary operator, and
Ù,Ú are binary operators on S.

2. È and Ç are binary operators on the set of all sets.

AI & CV Lab, SNU 186

Function Operators

• If · (“dot”) is any operator over B, then we can extend
· to also denote an operator over functions f:A®B.

• Definition:
Given any binary operator ·:B´B®B and two
functions, f:A®B and g:A®B,
the function, (f · g):A®B, is defined to be such that
"aÎA, (f · g)(a) = f(a)·g(a).

AI & CV Lab, SNU 187

Example

• Let + and × be addition and multiplication (binary)
operators over R, respectively. Then, two functions,
f:R®R and g:R®R, can be also added and
multiplied:
1. (f + g):R®R, where (f + g)(x) = f(x) + g(x)
2. (f × g):R®R, where (f × g)(x) = f(x) × g(x)

AI & CV Lab, SNU 188

Function Composition

• Definition:
Let g:A®B and f:B®C be two functions. Then
the function composition, f◦g, from A to C is
f◦g = { <x,y> | (∃z)((<x,z>Îg) Ù (<z,y>Îf))}

• Note that ◦ (like Cartesian ´, but unlike +,Ù,È) is
not commutative. (Generally, f◦g ¹ g◦f.)

AI & CV Lab, SNU 189

• Theorem:
Let g:A®B and f:B®C be functions. Then the
function composition f◦g is a function from A to
C and (f◦g)(a) = f(g(a)) for all a in A

• Theorem:
Composition of functions is associative: If f, g,
and h are functions, then (f◦g)◦h= f◦(g◦h)

AI & CV Lab, SNU 190

Partial Function

• Definition:
Let X and Y be sets. A partial function f with
domain X and codomain Y is any function from
X´ to Y, where X´⊆X.

AI & CV Lab, SNU 191

One-to-One (Injective) Functions

• Definition:
A function f : A®B is one-to-one, or injective, or
an injection, if every element of its range has only
1 pre-image : (for every x and y in A, if f(x)=f(y),
then x=y)

AI & CV Lab, SNU 192

Illustration of One-to-One
• Bipartite (2-part) graph representations of functions that

are (or not) one-to-one:

•
•
•
•

•
•

•
•

•

One-to-one

•
•
•
•

•
•

•
•

•

Not one-to-one

•
•
•
•

•
•

•
•

•
Not even a
function!

AI & CV Lab, SNU 193

Onto (Surjective) Functions

• Definition:
A function f : A®B is onto or surjective or a surjection
if for every b in B, there exists a in A such that f(a)=b.

AI & CV Lab, SNU 194

Illustration of Onto

• Some functions that are (or not) onto their
codomains:

Onto
(but not 1-1)

•
•
•
•

•

•

•
•

•
Not Onto
(not 1-1)

•
•
•
•

•

•

•
•

•

Both 1-1
and onto

•
•
•
•

•
•
•

•
1-1 but
not onto

•
•
•
•

•
•
•

•

•

AI & CV Lab, SNU 195

Bijective Functions

• Definition:
A function f : A®B is one-to-one and onto, or a
one-to-one correspondence, or bijective, or a
bijection if it is both one-to-one and onto.

AI & CV Lab, SNU 196

• Theorem:
Let f◦g: A®C be a composite function where
g: A®B and f: B®C.

1. If f and g are surjective, then f◦g is surjective.
2. If f and g are injective, then f◦g is injective.
3. If f and g are bijective, then f◦g is bijective.
4. If f◦g is surjective, then f is surjective.
5. If f◦g is injective, then g is injective.
6. If f◦g is bijective, then f is surjective and g is

injective.

AI & CV Lab, SNU 197

Constant Function

• Definition:
Let a function f: X→Y is a constant function if
there exist some y in Y such that f(x)=y for every
x in X

AI & CV Lab, SNU 198

Identity Function

• Definition:
For any domain A, the identity function I: A®A
(variously written, IA, 1, 1A) is the unique
function such that for every a in A, I(a)=a.

• Note that the identity function is one-to-one and
onto (bijective).

• Note that if f: X→Y, then f = f◦I = I◦f

AI & CV Lab, SNU 199

• The identity function:

Identity Function Illustration

•
•

•
•

•
•

•
•

•

Domain and range x

y

AI & CV Lab, SNU 200

Inverse Function

• Definition:
Let f:X®Y be a bijection from X to Y. The
inverse function of f, denoted by f -1 , is the
converse relation of f.

• Theorem:
1. Let f be a bijective function f:X®Y. Then f -1 is

a bijective function, f -1: Y ® X .
2. If f is bijective, then (f -1) -1 = f .

AI & CV Lab, SNU 201

• Definition:
Let h:A®B and g:B®A. If g ◦ h = IA, then g is a left

inverse of h and h is a right inverse of g.

• Theorem:
Let f:A®B with A≠ Ø. Then

1. f has a left inverse if and only if f is injective.
2. f has a right inverse if and only if f is surjective.
3. f has a left and a right inverse if and only if f is

bijective.
4. If f is bijective, then the left and the right inverse of

f are equal.

AI & CV Lab, SNU 202

A Couple of Key Functions

• In discrete math, we will frequently use the
following functions over real numbers:
1. ëxû (“floor of x”) is the largest (most positive)

integer £ x.
2. éxù (“ceiling of x”) is the smallest (most

negative) integer ³ x.

AI & CV Lab, SNU 203

Finite Set and Cardinality
• Definition:

A set A is finite if there is some natural number n∈N
such that there is a bijection from the set {1, 2, …, n}
of the first n natural numbers to the set A.
The integer n is called the cardinality of A, and we
say “A has n elements,” or “ n is the cardinal number
of A.” The cardinality of A is denoted by |A|. A set is
infinite if it is not finite.

• Theorem:
Let A and B be finite sets, and suppose there is a
bijection from A to B. Then |A|=|B|

AI & CV Lab, SNU 204

Countability

• Definition:
A set A is of cardinality אo denoted |A|= אo if
there is a bijection from N to A where N is a set
of all natural numbers.

• Definition:
A set A is countably infinite if |A|= אo . The set A
is countable or denumerable if it is either finite
or countably infinite. The set A is uncountable or
uncountably infinite if it is not countable.

AI & CV Lab, SNU 205

Cardinality

• Definition:
For any two (possibly infinite) sets A and B, we
say that A and B have the same cardinality
(written |A|=|B|) if there exists a bijection from A
to B.

AI & CV Lab, SNU 206

Countable versus Uncountable

• Countable: All elements of S can be enumerated in
such a way that any individual element of S will
eventually be counted in the enumeration. Examples:
N, Z.

• Uncountable: No series of elements of S (even an
infinite series) can include all of S’s elements.
Examples: R, R2, (N) Ã

AI & CV Lab, SNU 207

Examples of Countable Sets

• Theorem:
The set of integers is countable.

• Theorem:
The set of all ordered pairs of natural numbers
(n,m) is countable.

AI & CV Lab, SNU 208

Example of Uncountable Sets

• Theorem:
The open interval
[0,1) = {rÎR| 0 £ r < 1} is uncountable.

Proof :
By diagonalization: (Cantor, 1891)

1. Assume there is a series {ri} = r1, r2, ... containing
all elements rÎ[0,1).

2. Consider listing the elements of {ri} in decimal
notation (although any base will do) in order of
increasing index: ... (continued on next slide)

AI & CV Lab, SNU 209

A postulated enumeration of the reals:
r1 = 0.d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8…
r2 = 0.d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8…
r3 = 0.d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8…
r4 = 0.d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8…
.
.
Now, consider a real number generated by taking
all digits di,i that lie along the diagonal in this figure
and replacing them with different digits.

That real doesn’t appear in the list!

AI & CV Lab, SNU 210

Transfinite Numbers

• The cardinalities of infinite sets are not natural numbers,
but are special objects called transfinite cardinal numbers.

• The cardinality of the natural numbers, À0:º|N|, is the first
transfinite cardinal number. (There are none smaller.)

• The continuum hypothesis claims that |R|=À1, the second
transfinite cardinal.

• Proven impossible to prove or disprove!

AI & CV Lab, SNU 211

Exercise
1. For each of the following functions, determine

(1) whether the function is injective, surjective, or
bijective

(2) the image of function
(3) an express for f-1 if the inverse function is

defined

(a) f : R ® R+, f (x) = 2x

(b) f : [0,∞] ® R, f (x) = 1/(1+ x)
(c) f : N ® N´N, f (n) = < n , n +1>

AI & CV Lab, SNU 212

2. Suppose f and f ◦g are one-to-one. Does it
follow that g is one to one?

3. Suppose that f is a bijective function from Y to
Z and g is a bijective function from X to Y.
Show that the inverse (f ◦g)-1 of the composition f ◦ g
given by (f ◦g)-1 = g-1 ◦ f-1 .

AI & CV Lab, SNU 213

4. Let f : A ® B and g : B ® C . Prove that
(a) if f ◦g is injective, then f is injective.
(b) if f ◦g is surjective, then g is surjective.

5. Find the cardinal number of each set
(a) A = {a, b, c,, …. ,y, z}.
(b) B = {10, 20, 30, 40, …}.

6. Show that two sets, (-∞,+∞) and (0,1) have
the same cardinality.

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
5. Graphs & Trees

AI & CV Lab, SNU 215

5-1. Graphs

AI & CV Lab, SNU 216

What are Graphs?

• General meaning in everyday math:
A plot or chart of numerical data using a coordinate
system.

• Technical meaning in discrete mathematics:
A particular class of discrete structures (to be
defined) that is useful for representing relations and
has a convenient webby-looking graphical
representation.

Not

AI & CV Lab, SNU 217

Simple Graphs

• Definition:
A simple graph G=(V,E)
consists of:

• a set V of vertices or nodes (V corresponds to the
universe of the relation R), and

• a set E of edges / arcs / links: unordered pairs of
[distinct?] elements u,v Î V, such that uRv.

Visual Representation
of a Simple Graph

AI & CV Lab, SNU 218

• Let V be the set of states in the far-southeastern U.S.:
V={FL, GA, AL, MS, LA, SC, TN, NC}

• Let E={{u,v}|u adjoins v}
={{FL,GA},{FL,AL},{FL,MS},
{FL,LA},{GA,AL},{AL,MS},
{MS,LA},{GA,SC},{GA,TN},
{SC,NC},{NC,TN},{MS,TN},
{MS,AL}}

Example of a Simple Graph

TN

ALMS

LA

SC

GA
FL

NC

AI & CV Lab, SNU 219

Multigraphs

• Like simple graphs, but there may be more than one edge
connecting two given nodes.

• Definition:
A multigraph G=(V, E, f) consists of a set V of vertices, a
set E of edges (as primitive objects), and a function
f:E®{{u,v}|u,vÎV Ù u¹v}.

• Example:
Nodes are cities, edges
are segments of major highways.

Parallel
edges

AI & CV Lab, SNU 220

Pseudographs

• Like a multigraph, but edges connecting a node to itself are
allowed.

• Definition:
A pseudograph G=(V, E, f) where
f:E®{{u,v}|u,vÎV}. Edge eÎE is a loop if
f(e)={u,u}={u}.

• Example:
Nodes are campsites in
a state park, edges are
hiking trails through the woods.

loop

AI & CV Lab, SNU 221

Directed Graphs

• Correspond to arbitrary binary relations R, which
need not be symmetric.

• Definition:
A directed graph (V, E) consists of a set of
vertices V and a binary relation E on V.

• Example:
V = people, E={(x,y) | x loves y}

AI & CV Lab, SNU 222

Walk, Path, Cycle, Loop, and Sling

• Definition:
1. A walk is a sequence x0, x1, …, xn of the nodes of a

digraph such that xixi+1, 0≤i≤n-1, is an edge.
2. The length of a walk is the number of edges in the

walk.
3. A walk x0, x1, …, xn is called a path if it holds xi≠xj

for i≠j, i,j=0, …, n.
4. A path x0, x1, …, xn is called a cycle if it holds

x0=xn..
5. A cycle of length one is called a loop.
6. A cycle of length two is called a sling.

AI & CV Lab, SNU 223

Directed Multigraphs

• Like directed graphs, but there may be more than one edge
from a node to another.

• Definition:
A directed multigraph G=(V, E, f) consists of a set V of
vertices, a set E of edges, and a function f:E®V´V.

• Example:
The WWW is a directed multigraph.

• V = web pages, E = hyperlinks.

AI & CV Lab, SNU 224

Types of Graphs: Summary

• Keep in mind this terminology is not fully standardized...

Term
Edge
type

Multiple
edges ok?

Self-
loops ok?

Simple graph Undir. No No
Multigraph Undir. Yes No
Pseudograph Undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph Directed Yes Yes

AI & CV Lab, SNU 225

Graph Terminology

• Adjacent, connects, endpoints, degree, initial,
terminal, in-degree, out-degree, complete, cycles,
wheels, n-cubes, bipartite, subgraph, and union.

AI & CV Lab, SNU 226

Adjacency

Let G be an undirected graph with edge set E.
Let eÎE be (or map to) the pair {u,v}.
Then we say:
• u, v are adjacent / neighbors / connected.
• Edge e is incident with vertices u and v.
• Edge e connects u and v.
• Vertices u and v are endpoints of edge e.

AI & CV Lab, SNU 227

Degree of a Vertex

• Let G be an undirected graph, vÎV a vertex.
• The degree of v, deg(v), is its number of incident

edges. (Except that any self-loops are counted
twice.)

• A vertex with degree 0 is isolated.
• A vertex of degree 1 is pendant.

AI & CV Lab, SNU 228

Handshaking Theorem

• Theorem:
Let G be an undirected (simple, multi-, or
pseudo-) graph with vertex set V and edge set E.
Then

• Corollary:
Any undirected graph has an even number of
vertices of odd degree.

Ev
Vv

2)deg(=å
Î

AI & CV Lab, SNU 229

Directed Adjacency

• Let G be a directed (possibly multi-) graph, and let e
be an edge of G that is (or maps to) (u, v). Then we
say:
− u is adjacent to v, v is adjacent from u
− e comes from u, e goes to v.
− e connects u to v, e goes from u to v
− the initial vertex of e is u
− the terminal vertex of e is v

AI & CV Lab, SNU 230

Directed Degree

• Definition:
Let G be a directed graph, v a vertex of G.

1. The indegree of v, deg-(v), is the number of
edges going to v.

2. The outdegree of v, deg+(v), is the number of
edges coming from v.

3. The degree of v, deg(v)=deg-(v)+deg+(v), is the
sum of v’s in-degree and out-degree.

AI & CV Lab, SNU 231

Directed Handshaking Theorem

• Theorem:
Let G be a directed (possibly multi-) graph with
vertex set V and edge set E. Then:

• Note that the degree of a node is unchanged by
whether we consider its edges to be directed or
undirected.

Evvv
VvVvVv

=== ååå
ÎÎ

+

Î

-)deg(
2
1)(deg)(deg

AI & CV Lab, SNU 232

Special Graph Structures

Special cases of undirected graph structures:
• Complete Graphs Kn

• Cycles Cn

• Wheels Wn

• n-Cubes Qn

• Bipartite Graphs
• Complete Bipartite Graphs Km,n

AI & CV Lab, SNU 233

Complete Graphs
• Definition:

For any nÎN, a complete graph on n vertices, Kn,
is a simple graph with n nodes in which every
node is adjacent to every other node: "u,vÎV:
u¹v«{u,v}ÎE.

K1 K2 K3 K4 K5 K6

Note that Kn has edges.2
)1(1

1

-
=å

-

=

nni
n

i

AI & CV Lab, SNU 234

Cycles
• Definition:

For any n³3, a cycle on n vertices, Cn, is a
simple graph where V={v1,v2,… ,vn} and
E={{v1,v2},{v2,v3},…,{vn-1,vn},{vn,v1}}.

C3 C4 C5 C6 C7 C8

How many edges are there in Cn?

AI & CV Lab, SNU 235

Wheels

• Definition:
For any n³3, a wheel Wn, is a simple graph obtained by
taking the cycle Cn and adding one extra vertex vhub and
n extra edges {{vhub,v1}, {vhub,v2},…,{vhub,vn}}.

W3 W4 W5 W6 W7 W8

How many edges are there in Wn?

AI & CV Lab, SNU 236

n-Cubes (hypercubes)

• Definition:
For any nÎN, the hypercube Qn is a simple
graph consisting of two copies of Qn-1 connected
together at corresponding nodes. Q0 has 1 node.

Q0 Q1 Q2 Q3 Q4

Number of vertices: 2n. Number of edges:Exercise to try!

AI & CV Lab, SNU 237

• Definition:
For any nÎN, the hypercube Qn can be defined
recursively as follows:
1. Q0={{v0},Æ} (one node and no edges)
2. For any nÎN, if Qn=(V,E), where

V={v1,…,va} and E={e1,…,eb}, then
Qn+1=(VÈ{v1´,…,va´},
EÈ{e1´,…,eb´}È{{v1,v1´},{v2,v2´},…,
{va,va´}}) where v1´,…,va´ are new vertices,
and where if ei={vj,vk} then ei´={vj´,vk´}.

AI & CV Lab, SNU 238

Bipartite Graphs
• Definition:

A simple graph G is called bipartite if its vertex
set V can be partitioned into two disjoint sets V1
and V2 such that every edge in the graph
connects a vertex in V1 and a vertex in V2 (so
that no edge in G connects either two vertices in
V1 or two vertices in V2)

V1 V2
a bipartite

AI & CV Lab, SNU 239

Complete Bipartite Graphs
• Definition:

Let m, n be positive integers. The complete
bipartite graph Km,n is the graph whose vertices
can be partitioned V = V1 ∪ V2 such that
1. |V1| = m
2. |V2| = n
3. For all x ∈ V1 and for all y ∈ V2, there is an

edge between x and y
4. No edge has both its endpoints in V1 or both

its endpoints in V2

AI & CV Lab, SNU 240

Example:

V1 V2
K2,3

K3,4

V1

V2

AI & CV Lab, SNU 241

Subgraphs

• Definition:
A subgraph of a graph G=(V,E) is a graph
H=(W,F) where WÍV and FÍE.

G H

AI & CV Lab, SNU 242

Graph Unions

• Definition:
The union G1ÈG2 of two simple graphs
G1=(V1, E1) and G2=(V2,E2) is the simple graph
(V1ÈV2, E1ÈE2).

AI & CV Lab, SNU 243

Graph Representations & Isomorphism

• Graph representations:
− Adjacency lists.
− Adjacency matrices.
− Incidence matrices.

• Graph isomorphism:
Two graphs are isomorphic if and only if they
are identical except for their node names.

AI & CV Lab, SNU 244

Adjacency Lists

• A table with 1 row per vertex, listing its adjacent
vertices.

a b

dc
f

e

Vertex Adjacent Vertices
a
b

b, c
a, c, e, f

c a, b, f
d
e b
f c, b

AI & CV Lab, SNU 245

Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each
edge incident from that node.

AI & CV Lab, SNU 246

Adjacency Matrices

• Matrix A=[aij], where aij is 1 if {vi, vj} is an edge of
G, 0 otherwise.

AI & CV Lab, SNU 247

Graph Isomorphism

• Definition:
Simple graphs G1=(V1, E1) and G2=(V2, E2) are
isomorphic if there exists a bijection f:V1®V2 such that
for every a and b inV1, a and b are adjacent in G1 if and
only if f(a) and f(b) are adjacent in G2.

• f is the “renaming” function that makes the two graphs
identical.

• Definition can easily be extended to other types of graphs.

AI & CV Lab, SNU 248

Graph Invariants under Isomorphism

Necessary but not sufficient conditions for
G1=(V1, E1) to be isomorphic to G2=(V2, E2):

1. |V1|=|V2| and |E1|=|E2|.
2. The number of vertices with degree n is the

same in both graphs.
3. For every proper subgraph g of one graph, there

is a proper subgraph of the other graph that is
isomorphic to g.

AI & CV Lab, SNU 249

Isomorphism Example

• If isomorphic, label the 2nd graph to show the
isomorphism, else identify difference.

a
b

cd

e
f

b

d

a

e
fc

AI & CV Lab, SNU 250

Are these Isomorphic?

• If isomorphic, label the 2nd graph to show the
isomorphism, else identify difference.

a
b

c

d

e

* Same # of vertices

* Same # of edges

* Different # of verts of
degree 2! (1 vs. 3)

AI & CV Lab, SNU 251

Connectedness

• Definition:
An undirected graph is connected if and only if there is
a walk between every pair of distinct vertices in the
graph.

• Theorem:
There is a path between any pair of vertices in a
connected undirected graph.

AI & CV Lab, SNU 252

Directed Connectedness

• Definition:
1. A directed graph is strongly connected if there

is a directed path from a to b for any two
vertices a and b.

2. It is weakly connected if the underlying
undirected graph (i.e., with edge directions
removed) is connected.

• Note that strongly implies weakly but not vice-
versa.

AI & CV Lab, SNU 253

Euler Circuits and Paths
• Definition:
1. An Euler circuit in a graph G is a circuit containing every

edge of G.
2. An Euler path in G is a walk containing every edge of G.

• Example:
a b

e

cd

a, e, c, d, e, b, a

Euler circuit

a, c, d, e, b, d, a, b

Euler path

a b

c d e

AI & CV Lab, SNU 254

Hamilton Circuits and Paths
• Definition:
1. A Hamilton circuit is a circuit that traverses each vertex in G

exactly once.
2. A Hamilton path is a walk that traverses each vertex in G

exactly once.
• Example:

ce

a, b, c, d, e, a

Hamilton circuit

a, b, c, d

Hamilton path

d c

a b

d

a b

5-2. Trees

AI & CV Lab, SNU 256

Trees

• Definition:

A tree is an acyclic directed graph such that (1) there
is exactly one node, called the root of the tree,
which has indegree 0, (2) every node other than the
root has indegree l, and (3) for every node a of the
tree, there is a directed path from the root to a.

• Definition:
In a tree, any node which has outdegree 0 is called a
terminal node or a leaf; all other nodes are called
branch/ interior/ internal nodes. The level of any
node is the length of its path from the root where the
level of the root is 0. The height of the tree is the
maximum of the levels of nodes.

AI & CV Lab, SNU 258

• Definition:

1. If v is a node in a tree other than the root, the parent of v is
the unique node u such that there is a directed edge from u to
v.

2. When u is the parent of v, v is called the child of u.
3. Nodes with the same parent are called siblings.
4. The ancestors of a node other than the root are those nodes

in the path from the root to this node, excluding the node
itself but including the root.

5. The descendants of a node v are those nodes that have v as
an ancestor.

AI & CV Lab, SNU 259

• Definition:

If a is a node in a tree, then the subtree with a as its
root is the subgraph of the tree consisting of a and its
descendants.

AI & CV Lab, SNU 260

Examples

Example 1: Family tree

Bob

James

Christine

Frank Joyce Petra

AI & CV Lab, SNU 261

Example 2: File system

temp

/

usr

bin spool ls

bin

AI & CV Lab, SNU 262

Example 3: Arithmetic expressions

×

+ -

y z x y
•This tree represents the expression (y + z)×(x - y).

AI & CV Lab, SNU 263

• Definition:

1. A tree is called an m-ary tree if every internal vertex has
no more than m children.

2. A tree is called a full m-ary tree if every internal vertex
has exactly m children.

3. An m-ary tree with m = 2 is called a binary tree.

AI & CV Lab, SNU 264

• Theorem:

1. A tree with n vertices has (n – 1) edges.

2. A full m-ary tree with i internal vertices contains n = m·i
+ 1 vertices.

AI & CV Lab, SNU 265

Tree Traversal

• Procedures for systematically visiting every vertex
of an ordered tree are called traversal algorithms.

AI & CV Lab, SNU 266

Preorder Traversal

T1 T2 Tn...

r

Step 2
Visit T1 in
preorder

Step 1
Visit r

Step 3
Visit T2 in
preorder

Step n+1
Visit Tn in
preorder

• Definition:
Let T be an ordered tree with
root r.
If T consists only of r, then r is
the preorder traversal of T.
Otherwise, suppose that T1, T2,
…, Tn are the subtrees at r from
left to right in T. The preorder
traversal begins by visiting r. It
continues by traversing T1 in
preorder, then T2 in preorder, and
so on, until Tn is traversed in
preorder.

AI & CV Lab, SNU 267

Inorder Traversal

T1 T2 Tn...

r

Step 1
Visit T1 in
inorder

Step 2
Visit r

Step 3
Visit T2 in
inorder

Step n+1
Visit Tn in
inorder

• Definition:
Let T be an ordered tree with root
r.
If T consists only of r, then r is
the inorder traversal of T.
Otherwise, suppose that T1, T2, …,
Tn are the subtrees at r from left
to right. The inorder traversal
begins by traversing visiting T1 in
inorder, then visiting r. It
continues by traversing T2 in
inorder, then T3 in inorder, …,
and finally Tn in inorder

AI & CV Lab, SNU 268

Postorder Traversal

• Definition:
Let T be an ordered tree with root
r. If T consists only of r, then r is
the postorder traversal of T.
Otherwise, suppose that T1, T2, …,
Tn are the subtrees at r from left to
right. The postorder traversal
begins by traversing T1 in
postorder, then T2 in postorder, …,
then Tn in postorder, and ends by
visiting r.

T1 T2 Tn...

r

Step 1
Visit T1 in
postorder

Step n+1
Visit r

Step 2
Visit T2 in
postorder

Step n
Visit Tn in
postorder

AI & CV Lab, SNU 269

Example of Traversal

• Preorder : a, b, e, j, k, n, o,
p, f, c, d, g, l, m, h, i

• Inorder : j, e, n, k, o, p, b, f,
a, c, l, g, m, d, h, i

• Postorder : j, n, o, p, k, e, f,
b, c, l, m, g, h, i, d, a

a

b c d

e
f

g

h i

j
k l m

n o p

AI & CV Lab, SNU 270

Exercise

1. Let G be a graph. Prove that there must be an even
number of vertices of odd degree.

2. Prove that in any graph with two or more vertices,
there must be two vertices of the same degree.

AI & CV Lab, SNU 271

3. List the order of the nodes of the following
binary tree visited by each of preorder, inorder,
and postorder traversal algorithm.

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
6. Algebras, Lattices & Boolean Functions

6-1. Algebras

AI & CV Lab, SNU 274

Algebra

• Definition:
An algebra is characterized by specifying the following
three components:

• A set called the carrier of the algebra,
• Operators defined on the carrier, and
• Distinguished elements of the carrier, called the

constants of the algebra.

AI & CV Lab, SNU 275

Closed with respect to operation

• Definition:
Let ◦ and ᅀ be binary and unary operations on a
set T and let T' be a subset of T. Then T' is closed
with respect to ◦, if a, b Î T' implies a◦b Î T'. The
subset T' is closed with respect to ᅀ, if a Î T'
implies ᅀa Î T'.

AI & CV Lab, SNU 276

Subalgebra

• Definition:
Let A=<S, ◦,ᅀ, k> and A'=<S', ◦',ᅀ', k'> be
algebras. Then A' is a subalgebra of A if

• S'⊆S
• a◦'b=a◦b for all a, bÎS'
• ᅀ′a= ᅀa for all aÎ S'
• k'=k.

AI & CV Lab, SNU 277

Identity and Zero Element

• Definition:
Let ◦ be a binary operation of S.
− An element 1ÎS is an identity (or unit) for the

operation ◦ if every x Î S,
1◦x=x◦1=x

− An element 0 Î S is a zero for the operation ◦ if for
every x Î S

0◦x=x◦0=0

AI & CV Lab, SNU 278

• Definition:
Let ◦ be a binary operation on S.
1. An element 1l (1r) is a left (right) identity for the

operation ◦ if for every x Î S,
1l◦x=x (x◦1r=x)

2. An element 0l (0r) is a left (right) zero for the
operation ◦. If for every x Î S,

0l◦x=0 (x◦0r=0)

AI & CV Lab, SNU 279

Inverse Element

• Definition:
Let ◦ be a binary operation on S and 1 an identity for
the operation ◦.

1. If x◦ y=1, then x is a left inverse of y and y is a right
inverse of x with respect to the operation ◦.

2. If both x◦ y=1 and y◦x=1 then x is an inverse of y
with respect to the operation ◦.

AI & CV Lab, SNU 280

Semigroup

• Definition:
A semigroup is an algebra with signature <S, ◦> where
◦ is a binary associative operation: for every a, b, and c
in S, a◦ (b◦ c)= (a◦ b)◦ c

• Theorem:
If <S, ◦> is a semigroup and <T, ◦> is a subalgebra of
<S, ◦>, the <T, ◦> is a semigroup.

AI & CV Lab, SNU 281

Monoid

• Definition:
A monoid is an algebra with signature <S, ◦, 1> where ◦
is a binary associative operation on S and 1 is an identity
for the operation ◦. i.e. the following axioms hold for all
elements a, b, and c in S:

• a◦(b◦c) = (a◦b)◦c
• a◦1 = a
• 1◦a = a

AI & CV Lab, SNU 282

Group

• Definition:
A group is an algebra with signature <S, ◦, ¯, 1> where ◦ is an
associative binary operation on S, the constant 1 is an identity for
the operation on ◦ and ¯ is a unary operation defined over S such
that for all xÎ S, is an inverse for x with respect to ◦.

• Theorem:
Let <S, ◦, ¯, 1> be a group. Every element of S has a unique inverse
in S.

x

AI & CV Lab, SNU 283

Homomorphism

• Definition:
Let A=<S, ◦,ᅀ, k> and A'=<S', ◦',ᅀ', k'> be
two algebras with the same signature and let the
function h:S→S' be such that

• h(x◦y)=h(x)◦'h(y),
• h(ᅀx)=ᅀ'h(x)
• h(k)=k'.

Then h is called homomorphism for A to A'.

AI & CV Lab, SNU 284

Epimorphism, Monomorphism, and
Isomorphism

• Definition:
1. h is epimorphism if h is onto and

homomorphism.
2. h is monomorphism if h is one-to-one and

homomorphism.
3. h is isomorphism if h is bijection and

homomorphism.

AI & CV Lab, SNU 285

Congruence Relation

• Definition:
Given an algebra A=<S, ◦,ᅀ> with a binary operation ◦ and a
unary operation ᅀ, an equivalence relation E on S is a right (left)
congruence relation on A if and only if for every x, y, and z in S,

1. if <x, y>Î E, then <x◦ z, y◦ z>Î E (<z◦ x, z◦ y>Î E)
2. if <x, y>Î E, then <ᅀx,ᅀy>Î E.

AI & CV Lab, SNU 286

• Definition:
Given an algebra A=<S, ◦,ᅀ>, an equivalence relation E
on S is a congruence relation on A if and only if it is a left
and right congruence relation on A.

• Theorem:
Let A=<S, ◦> be an algebra with a binary operation ◦ and
let E be an equivalence relation on S. Then E is a
congruence relation on A if and only if for every x1, x2, y1,
and y2 in S,
(<x1, x2>Î E ∧ <y1,y2>Î E)⇒ <x1◦ y1, x2◦ y2>Î E

6-2. Lattices

AI & CV Lab, SNU 288

Lattices

• Definition:
A poset <L,≤> is a lattice if every two

elements in L has a lub and a glb.

• Theorem:
Let <L, ≤> be a lattice. Then for every a, b, and c in L,

1. a*a=a, a+a=a (idempotent)
2. a*b=b*a, a+b=b+a (commutative)
3. (a*b)*c= a*(b*c), (a+b)+c= a+(b+c) (associative)
4. a*(a+b)=a, a+(a*b)=a (absorption)
where * and + represent the glb and the lub, respectively.

AI & CV Lab, SNU 290

• Theorem:
Let <L, ≤> be a lattice. Then for every a and b in L,

a≤ b if and only if a*b=a ⇔ a+b=b

• Theorem:
Let <L, ≤> be a lattice. Then for every a, b, and c in L,

if b≤c, then a*b≤a*c and a+b≤a+c

• Theorem:
Let < L, ≤> be a lattice. Then for every a, b, and c in L,

a+(b*c)≤(a+b)*(a+c) and (a*b)+(a*c)≤a*(b+c)

AI & CV Lab, SNU 291

• Theorem:
Let <A, *, +> be an algebra with two binary operations *

and +. If the following property holds that for any a, b, and c
in A,

1. a*a=a, a+a=a (idempotent)
2. a*b=b*a, a+b=b+a (commutative)
3. (a*b)*c= a*(b*c), (a+b)+c= a+(b+c) (associative)
4. a*(a+b)=a, a+(a*b)=a (absorption),

then there exists a lattice <A, ≤> such that * is a glb, + is a
lub, and ≤ is defined as x≤y iff x*y=x (x+y=y).

AI & CV Lab, SNU 292

• Definition:
A lattice is an algebraic system <L, *, +> with two

binary operations * and + on L which are both
commutative and associative and satisfy the absorption
law.

• Definition:
Let <L, *, +> be a lattice and let S⊆L be a subset of L.

The algebra <S, *, +> is a sublattice of <L, *, +> if S is
closed under both operations * and +.

AI & CV Lab, SNU 293

• Definition:
Let <L, *, +> and <S, ∩, ∪> be two lattices.
A mapping g:L→S is called a lattice homomorphism from
the lattice <L, *, +> to <S, ∩, ∪> if for any a and b in L,
g(a*b)=g(a)∩g(b) and g(a+b)=g(a)∪g(b).

• Definition:
Let <P, ≤> and <Q, ≤'> be two partially ordered sets,
A mapping f:P→ Q is said to be order-preserving relative to
the ordering ≤ in P and ≤' in Q if for every a and b in P,
a≤ b implies f(a) ≤' f(b) in Q.

AI & CV Lab, SNU 294

• Definition:
Two partially ordered sets <P, ≤> and <Q, ≤'> are called order-
isomorphic if there exists a bijection f:P → Q and if both f and f -1
are order-preserving.

• Definition:
A lattice is called complete if each of its nonempty subsets has a
lub and a glb.

AI & CV Lab, SNU 295

• Definition:
The least and the greatest elements of a lattice, if they exist, are called

the bounds of the lattice, and are denoted by 0 and 1 respectively.

• Definition:
In a bounded lattice <L, *, +, 0, 1>, an element b in L is called a

complement of an element a in L if a*b=0 and a+b=1.

• Theorem:
In a bounded lattice <L, *, +, 0, 1>, 1(0) is the only complement of

0(1).

AI & CV Lab, SNU 296

• Definition:
A lattice <L, *, +, 0, 1> is said to be a complemented lattice if

every element in L has at least one complement.

• Definition:
A lattice <L, *, +> is called a distributive lattice if for every a,

b, and c in L,
a*(b+c)=(a*b)+(a*c) and a+(b*c)=(a+b)*(a+c)

• Theorem:
Every chain is a distributive lattice.

AI & CV Lab, SNU 297

Exercise
1. Let the algebra, A = < I, + >, where I is a set of integers and + is a

binary addition operation. For each of the following binary
relations defined on I, prove or disprove that the relation is a
congruence relation on A.
(a) < x, y > Î R1 if and only if |x - y|<10
(b) < x, y > Î R2 if and only if x ³ y
(c) < x, y > Î R3 if and only if (x <0 Ù y <0) ∨ (x ³ 0 Ù y ³ 0)

2. Let A = <S, +> and B=<T, ×> be two algebras with binary
operations + and × , and let the function, h:S®T, be a
homomorphism from A to B. Show that the relation R on S
defined to be < x, y>ÎR iff h(x)=h(y) is a congruence relation on
A.

AI & CV Lab, SNU 298

3. Let <R,+,0> and <R,·,1> be two algebra where R is a set of
reals, + is a binary addition, and · is a binary multiplication.
When the function, f:R→R, is defined to be f(x) = 2x, answer
the following with justification:
Is f homomorphism from <R,+,0> to <R,·,1>?

6-3. Boolean Functions

AI & CV Lab, SNU 300

Boolean Lattice & Boolean Algebra
• Definition:
1. A Boolean lattice is a complemented and distributive lattice.
2. A Boolean algebra is an algebra with signature <B, +, *, ', 0,

1>, where + and * are binary operations and ' is a unary
operation called complementation, and the following axioms
hold:

• x*x=x, x+x=x (idempotent)
• (x*y)*z=x* (y*z), (x+y)+z=x+ (y+z) (associative)
• x*y=y*x, x+y=y+x (commutative)
• x* (x+y)=x, x+ (x*y)=x (absorption)
• x* (y+z)= (x*y)+ (x*z), x+ (y*z)= (x+y)* (x+z)

(distributive)
• Every element x has a (unique) complement x' such

that x*x'=0 and x+x'=1 (complemented).

• Theorem:
Let <B, *, +, ', 0, 1> be a Boolean algebra. Then

<B, ≤> is a Boolean lattice when the relation ≤ is defined to be
x≤y if and only if x*y=x (x+y=y) for x, y in B.

Proof:
1. Show that ≤ is a partial ordering.
2. Show that (x*y) and (x+y) represent the glb and the lub

of x and y, respectively.

AI & CV Lab, SNU 302

• Theorem (Stone’s Representation Theorem):
For every Boolean algebra <B, *, +, ', 0, 1>, there exists a
power set algebra < (A), ∩,∪, ￣, Æ, A> which is
isomorphic to <B, *, +, ', 0, 1>.

Proof:
Given a Boolean algebra <B, *, +, ' , 0, 1>,
1. define an atom to be the element in B that covers 0 (for x

and y in B, x covers y iff y≤x and there is no z in B such
that y≤z and z≤x),

Ã

AI & CV Lab, SNU 303

Lemma 1:
For every x≠0 in B,∃aÎA,
such that a≤x

Lemma 2:
For every x≠0 in B and a in A,
one and only one of the following
holds.

1. a ≤ x
2. a*x=0 (a≤x')

Lemma 3: (homomorphism)

Lemma 4: (homomorphism)
1. f(x*y)=f(x) ∩ f(y)
2. f(x+y)=f(x)∪ f(y)

Lemma 5: (one-to-one)
x=y if f(x)=f(y)

Lemma 6: (onto)
For any {a1, a2,…, ak} ⊆A,

∃ (a1+a2+…+ ak)ÎB such that
f(a1+a2+…+ ak)={a1, a2,…, ak}.

2. define f : B→ (A), where A is a set of atoms, such that for any x in B,
f(x) = { a | (a∈A) and (a≤x) }, and

3. show that f is isomorphism from <B, *, +, ' , 0, 1 > to
< (A), ∩, ∪, ￣ , Æ, A >.

f(x)f(x') =

Ã

Ã

AI & CV Lab, SNU 304

Boolean Expression

• Definition :
A Boolean expression in n variables, x1, x2,…, xn, is a

finite string of symbols formed by the following:
1. 0 and 1 are Boolean expressions.
2. x1, x2,…, xn are Boolean expressions.
3. If p and q are Boolean expressions the (p*q) and (p+q) are

Boolean expressions.
4. If p is a Boolean expression, then p′ is a Boolean expression.
5. No string of symbols except those formed by steps 1, 2, 3,

and 4 is a Boolean expression.

AI & CV Lab, SNU 305

Equivalence

• Definition:
Two Boolean expressions, α (x1, x2,…, xn) and β (x1, x2,…, xn),
are equivalent if one can be obtained from the other by a finite
number of applications of identities of a Boolean algebra.

• Definition:
Let α (x1, x2,…, xn) be a Boolean expression in n variables and
<B, *, +, ', 0,1> be any Boolean algebra whose elements are
denoted by a1, a2,…, an. Let <a1, a2,…, an> be an n-tuple of Bn.
Then the value of the Boolean expression α (x1, x2,…, xn) for the
n-tuple <a1, a2,…, an> Î Bn is given by α (a1, a2,…, an) which is
obtained by replacing x1 by a1, x2 by a2 ,…, and xn by an in the
α (x1, x2,…, xn).

AI & CV Lab, SNU 306

Boolean Function

• Definition:
Let f:Bn→B be a function. If a Boolean expression g(x1, x2,…, xn)
matches to a function f, then we say g is associated with function f.

• Definition:
Let <B, *, +, ', 0, 1> be a Boolean algebra. A function f:Bn→B
which is associated with a Boolean expression in n variables is
called a Boolean function. A Boolean function defined on a
switching algebra is called a switching function.

AI & CV Lab, SNU 307

Example
• Which of f1, f2, and f3 are Boolean functions ? (fi: B2→ B, i=1,2,3)

1

α β

0

<B, *, +, ', 0, 1>

where B = { 0, 1, α, β }

f1 = x1'x2 + x1x2'

x1, x2 f1 f2 f3

0, 0 0 1 0

0, α α β β

0, β β α β

0, 1 1 0 α

α, 0 α β 0

α, α 0 β 1

α, β 1 0 α

α, 1 β 0 0

β, 0 β β α

β, α 1 0 0

β, β 0 α β

β, 1 α β α

1, 0 1 0 β

1, α β α α

1, β α β β

1, 1 0 0 1

AI & CV Lab, SNU 308

Exercise
1. Let <B, £1> be a Boolean lattice where B={1,2,3,5,6,10,15,30} and

£1 is defined to be “x £1 y if and only if x divides y”.
By Stone Representation Theorem, there exists a power set
Boolean lattice, < (A), £2>, which is isomorphic to <B, £1>.
Answer each of the following:

(a) Define set A.
(b) Show that f:B® (A) is a homomorphism from

<B, £1> to < (A), £2>.

2. Let <B, +, *, ′, 0, 1> be a Boolean algebra. Show that the
complement x′ of each element x in B is unique .

Ã

Ã

Ã

AI & CV Lab, SNU 309

3. Let the Boolean algebra < B, *, +, ', 0, 1> have the following
Hasse diagram. For each of three functions f1, f2, and f3 given
in the table, indicate whether or not it is a Boolean function.
If it is, give the corresponding Boolean expression in two
variables, x1 and x2.

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
7. Algorithms and Complexity

2010-01-08 AI & CV Lab, SNU 311

7-1. Algorithms

2010-01-08 AI & CV Lab, SNU 312

Algorithms

• The foundation of computer programming.
• Most generally, an algorithm just means a definite

procedure for performing some sort of task.
• A computer program is simply a description of an

algorithm in a language precise enough for a computer to
understand, requiring only operations the computer already
knows how to do.

• We say that a program implements its algorithm.

2010-01-08 AI & CV Lab, SNU 313

Programming Languages

• Some common programming languages:
− Newer: Java, C, C++, Visual Basic, JavaScript, Perl, Tcl,

Pascal
− Older: Fortran, Cobol, Lisp, Basic
− Assembly languages, for low-level coding.

• In this class we will use an informal, Pascal-like “pseudo-
code” language.

2010-01-08 AI & CV Lab, SNU 314

Example of Algorithm

• Task: Given a sequence {ai}=a1,…,an, aiÎN, say what its
largest element is.

• Set the value of a temporary variable v (largest element
seen so far) to a1’s value.

• Look at the next element ai in the sequence.
• If ai>v, then re-assign v to the number ai.
• Repeat previous 2 steps until there are no more elements in

the sequence, & return v.

2010-01-08 AI & CV Lab, SNU 315

Executing an Algorithm

• When you start up a piece of software, we say the program
or its algorithm are being run or executed by the computer.

• Given a description of an algorithm, you can also execute
it by hand, by working through all of its steps on paper.

2010-01-08 AI & CV Lab, SNU 316

Executing the MAX algorithm

1. Let {ai}=7,12,3,15,8. Find its maximum…
2. Set v = a1 = 7.
3. Look at next element: a2 = 12.
4. Is a2>v? Yes, so change v to 12.
5. Look at next element: a2 = 3.
6. Is 3>12? No, leave v alone….
7. Is 15>12? Yes, v=15…

2010-01-08 AI & CV Lab, SNU 317

Examples:

Algorithm (Procedure) MAX(a1, a2, …, an)
begin

max := a1
for i := 2 to n

if max < ai then max := ai
{ max is the largest element }

end

2010-01-08 AI & CV Lab, SNU 318

Algorithm Linear Search (x, a1, a2, …, an)
begin

i := 1
while (i ≤ n and x ¹ ai)

i := i+1
if i ≤ n then location := i
else location := 0
{ location is the subscript of the term that equals x, or is 0
if x is not found }

end

2010-01-08 AI & CV Lab, SNU 319

Algorithm BinarySearch (x, a1, a2, …, an)
begin

i := 1 { i is left endpoint of search interval }
j := n { j is right endpoint of search interval }
while i < j
begin

m := ë(i + j) /2û
if x > am then i := m+1
else j := m

end
if x = ai then location := i
else location := 0
{ location is the subscript of the term equal to x, or 0 if x is not found }

end

Algorithm BubbleSort (a1, … , an)
begin

for i := 1 to n-1
for j := 1 to n-i

if aj > aj+1 then interchange aj and aj+1

{ a1, … , an is in increasing order }
end

2010-01-08 AI & CV Lab, SNU 321

Algorithm Characteristics

Some important features of algorithms:
• Input. Information or data that comes in.
• Output. Information or data that goes out.
• Definiteness. Precisely defined.
• Correctness. Outputs correctly relate to inputs.
• Finiteness. Won’t take forever to describe or run.
• Effectiveness. Individual steps are all do-able.
• Generality. Works for many possible inputs.
• Efficiency. Takes little time & memory to run.

2010-01-08 AI & CV Lab, SNU 322

Informal statement

• Sometimes we may write a statement as an informal
English imperative, if the meaning is still clear and precise:
“swap x and y”

• Keep in mind that real programming languages never
allow this.

• When we ask for an algorithm to do so-and-so, writing
“Do so-and-so” isn’t enough!

− Break down algorithm into detailed steps.

2010-01-08 AI & CV Lab, SNU 323

begin statements end

• Groups a sequence of
statements together:

begin
statement 1
statement 2
…
statement n

end

• Allows sequence to be
used like a single
statement.

• Might be used:
1. After a procedure

declaration.
2. In an if statement after

then or else.
3. In the body of a for or

while loop.

2010-01-08 AI & CV Lab, SNU 324

{comment}

• Not executed (does nothing).
• Natural-language text explaining some aspect of the

procedure to human readers.
• Also called a remark in some real programming

languages.
• Example:

− {Note that v is the largest integer seen so far.}

2010-01-08 AI & CV Lab, SNU 325

if condition then statement

• Evaluate the propositional expression condition.
• If the resulting truth value is true, then execute the

statement statement; otherwise, just skip on ahead to the
next statement.

• Variant: if cond then stmt1 else stmt2
Like before, but if truth value of cond is false, then
executes stmt2.

2010-01-08 AI & CV Lab, SNU 326

while condition statement

• Evaluate the propositional expression condition.
• If the resulting value is true, then execute statement.
• Continue repeating the above two actions over and over

until finally the condition evaluates to false; then go on to
the next statement.

2010-01-08 AI & CV Lab, SNU 327

for var := initial to final statement

• Initial is an integer expression.
• Final is another integer expression.
• Repeatedly execute statement, first with variable var :=

initial, then with var := initial+1, then with var := initial+2,
etc., then finally with var := final.

• What happens if statement changes the value that initial or
final evaluates to?

2010-01-08 AI & CV Lab, SNU 328

for var := initial to final statement

• For can be exactly defined in terms of while, like so:

begin
var := initial
while var £ final

begin
statement
var := var + 1

end
end

2010-01-08 AI & CV Lab, SNU 329

Procedure (argument)

• A procedure call statement invokes the named
procedure, giving it as its input the value of the
argument expression.

• Various real programming languages refer to
procedures as functions (since the procedure call
notation works similarly to function application f(x)),
or as subroutines, subprograms, or methods.

2010-01-08 AI & CV Lab, SNU 330

Greedy Algorithms

• Many algorithms are designed to solve optimization
problems, and one of the simplest approaches often leads
to a solution of an optimization problem

• Algorithms that make what seems to be the best choice
at each step are called “Greedy Algorithms” instead of
considering all sequences of steps.

• But, “Greedy Algorithms” don’t works well for all
optimization problems

2010-01-08 AI & CV Lab, SNU 331

Exercise

1. Describe an algorithm to find the longest word in
an English sentence (where a word is a string of
letters and a sentence is a list of words, separated
by blanks).

2. Describe an algorithm that locates the first
occurrence of the largest element in a finite list of
integers, where the integers in the list are not
necessarily distinct.

7-2. Complexity of Algorithms

Algorithmic Complexity
• The algorithmic complexity of a computation is

some measure of how difficult it is to perform the
computation.

• Measures some aspect of cost of computation (in a
general sense of cost).

• Common complexity measures:
1. “Time” complexity: # of ops or steps required
2. “Space” complexity: # of memory bits required

Complexity Depends on Input
• Most algorithms have different complexities for

inputs of different sizes. (E.g. searching a long list
takes more time than searching a short one.)

• Therefore, complexity is usually expressed as a
function of input length.

• This function usually gives the complexity for the
worst-case input of any given length.

Orders of Growth

• For functions over numbers, we often need to know a
rough measure of how fast a function grows.

• If f(x) is faster growing than g(x), then f(x) always
eventually becomes larger than g(x) in the limit (for large
enough values of x).

• Useful in engineering for showing that one design scales
better or worse than another.

Orders of Growth - Motivation

• Suppose you are designing a web site to process user data
(e.g., financial records).

• Suppose database program A takes fA(n)=30n+8
microseconds to process any n records, while program B
takes fB(n)=n2+1 microseconds to process the n records.

• Which program do you choose, knowing you’ll want to
support millions of users? A.

Visualizing Orders of Growth

• On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger...

fA(n)=30n+8

Increasing n ®

fB(n)=n2+1
Va

lu
e

of
 fu

nc
tio

n
®

Concept of Order of Growth

• We say fA(n)=30n+8 is order n, or O(n).
It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2). It is roughly proportional
to n2.

• Any O(n2) function is faster-growing than any O(n)
function.

• For large numbers of user records, the O(n2) function will
always take more time.

O(g), at most order g

• Definition:
Let there be a function g:R®R, The “at most order g”, written
O(g), is defined to be
O(g) = {f:R®R | ($c,k)("x>k)(|f(x)| £ |c·g(x)|)}.
“Beyond some point k, function f is at most a constant c times g
(i.e., proportional to g).”

Note “f is at most order g”, or “f is O(g)”, or “f=O(g)”, all
just mean that fÎO(g).

Examples of “Big-O” Proof

1. Show that 30n+8 is O(n).
− Show ($c,k)("n>k)(30n+8 £ cn).

• Let c=31, k=8. Assume n>k=8. Then,
cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

2. Show that n2+1 is O(n2).
− Show ($c,k)("n>k)(n2+1 £ cn2).

• Let c=2, k=1. Assume n>1. Then,
cn2 = 2n2 = n2+n2 > n2+1, or n2+1< cn2.

• Note 30n+8 isn’t
less than n
anywhere (n>0).

• It isn’t even
less than 31n
everywhere.

• But it is less than
31n everywhere to
the right of n=8. n>k=8 ®

Big-O example, graphically

Increasing n ®

Va
lu

e
of

 fu
nc

tio
n
®

n

30n+8
cn =
31n

30n+8
ÎO(n)

Useful Facts about Big-O

1. Big-O, as a relation, is transitive:
fÎO(g) Ù gÎO(h) ® fÎO(h)

2. O with constant multiples, roots, and logs...
" f (in W(1)) & constants a,bÎR, with b³0,
af, f 1-b, and (logb f)a are all O(f).

3. Sums of functions:
If gÎO(f) and hÎO(f), then g+hÎO(f).

4. "c>0, O(cf)=O(f+c)=O(f-c)=O(f)
5. f1ÎO(g1) Ù f2ÎO(g2) ®

− f1· f2 ÎO(g1g2)
− f1+f2 ÎO(g1+g2)

= O(max(g1, g2))
= O(g1) if g2ÎO(g1)

Order of Growth Expressions

• “O(f)” when used as a term in an arithmetic expression
means: “some function f such that fÎO(f)”.

• E.g.: “x2+O(x)” means “x2 plus some function that is O(x)”.
• Formally, you can think of any such expression as

denoting a set of functions:
“x2+O(x)” = {g | ($fÎO(x))(g(x)= x2+f(x))}

Order of Growth Equations

• Suppose E1 and E2 are order-of-growth expressions
corresponding to the sets of functions S and T, respectively.

• Then the “equation” E1=E2 really means
("fÎS)($gÎT)(f=g)

or simply SÍT.
• Example: x2 + O(x) = O(x2) means

("fÎO(x))($gÎO(x2))(x2+f(x)=g(x))

Useful Facts about Big-O

• " f,g & constants a,bÎR, with b³0,
1. af = O(f); (e.g. 3x2 = O(x2))
2. f+O(f) = O(f); (e.g. x2+x = O(x2))

• Also, if f=W(1) (at least order 1), then:
1. |f|1-b = O(f); (e.g. x-1 = O(x))
2. (logb |f|)a = O(f). (e.g. log x = O(x))
3. g=O(fg) (e.g. x = O(x log x))
4. fg ¹ O(g) (e.g. x log x ¹ O(x))
5. a=O(f) (e.g. 3 = O(x))

W(g), at least order g

• Definition:
Let there be a function g: R®R. The “at least order g”, written
W(g), is defined to be:
W(g) = {f:R®R |($c,k)("x>k)(|f(x)| ³ |cg(x)|)}.
“Beyond some point k, function f is at least a constant c times g
(i.e., proportional to g).”

Note “f is at least order g”, or “f is W(g)”, or “f = W(g)”, all
just mean that fÎW(g).

Q(g), exactly order g

• Definition:
Let there be a function g: R®R. The “exactly order g”, written
Q(g), is defined to be:
Q(g) = {f:R®R | ($c1c2k)("x>k)(|c1g(x)|£|f(x)|£|c2g(x)|) }.
“Everywhere beyond some point k, f(x) lies in between two
multiples of g(x).”

Note “g and f are of the same order”, or “f is Q(g)”, or “f is
(exactly) order g”, all just mean that fÎQ(g).

Rules for Q

• Mostly like rules for O(), except:
• " f,g>0 & constants a,bÎR, with b>0,

af Î Q(f), but ¬ Same as with O.
f Ï Q(fg) unless g=Q(1) ¬ Unlike O.
|f| 1-b Ï Q(f), and ¬ Unlike with O.
(logb |f|)c Ï Q(f). ¬ Unlike with O.

• The functions in the latter two cases we say are
strictly of lower order than Q(f).

Example of Q

• Determine whether:

• Quick solution:

)(2
?

1
ni

n

i
QÎ÷

ø

ö
ç
è

æå
=

)(
)(

2/)(

2/)1(

2

1

n
nn
nn

nni
n

i

Q=

Q×=
Q×=

-=÷
ø

ö
ç
è

æå
=

Complexity Analysis

Now, what is the simplest form of the exact (Q) order
of growth of t(n)?

)()()1()1()()1(

)1()1()1()1()1()1(

)()(

2

4
2

321

nnn

n

ttttnt

n

i

n

i

Q=Q+Q=QQ+Q=

Q-+Q=Q+÷
ø

ö
ç
è

æ
Q+Q=

+÷
ø

ö
ç
è

æ
++=

å

å

=

=

Names for some orders of growth

• Q(1) Constant
• Q(logc n) Logarithmic (same order "c)
• Q(logc n) Polylogarithmic
• Q(n) Linear
• Q(nc) Polynomial
• Q(cn), c>1 Exponential
• Q(n!) Factorial

(With c a constant.)

Problem Complexity

• The complexity of a computational problem or task
is (the order of growth of) the complexity of the
algorithm with the lowest order of growth of
complexity for solving that problem or performing
that task.

• E.g. the problem of searching an ordered list has at
most logarithmic time complexity. (Complexity is
O(log n).)

Tractable vs. Intractable

• A problem or algorithm with at most polynomial
time complexity is considered tractable (or feasible).
P is the set of all tractable problems.

• A problem or algorithm that has more than
polynomial complexity is considered intractable (or
infeasible).

• Note that n1,000,000 is technically tractable, but really
impossible. nlog log log n is technically intractable, but
easy. Such cases are rare though.

Unsolvable problems

• Turing discovered in the 1930’s that there are
problems unsolvable by any algorithm.

− Or equivalently, there are undecidable yes/no
questions, and uncomputable functions.

• Example: the halting problem.
− Given an arbitrary algorithm and its input, will that

algorithm eventually halt, or will it continue forever
in an “infinite loop?”

P vs. NP

• NP is the set of problems for which there exists a tractable
algorithm for checking solutions to see if they are correct.
ex : The satisfiability problem of a compound proposition

• We know PÍNP, but the most famous unproven
conjecture in computer science is that this inclusion is
proper (i.e., that PÌNP rather than P=NP).

Computer Time Examples
Assume time = 1 ns
(10-9 second) per op,
problem size = n bits,
#ops a function of n
as shown.

#ops(n) n=10 n=106

log2 n 3.3 ns 19.9 ns

n 10 ns 1 ms
n log2 n 33 ns 19.9 ms
n2 100 ns 16 m 40 s
2n 1.024 ms 10301,004.5

Gyr
n! 3.63 ms Ouch!

(125 kB)(1.25 bytes)

Exercise
1. Prove the following:

(a) n · sin n is O(n).
(b) x · log x is O(x2) but that x2 is not O(x · log x).
(c) The function f(n)=2n2-n-1 is O(n2).

2. Write the algorithm that puts the first four terms of
a list of arbitrary length in increasing order, and
show that this algorithm has time complexity O(1)
in terms of the number of comparisons used.

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering
Seoul National University

Discrete Mathematics
8. Probability & Random Variables

8-1. Probability

AI & CV Lab, SNU 361

Why Probability?

• In the real world, we often don’t know whether a
given proposition is true or false.

• Probability theory gives us a way to reason about
propositions whose truth is uncertain.

• Useful in weighing evidence, diagnosing problems,
and analyzing situations whose exact details are
unknown.

Definitions
• Sample point:

A representation of a possible outcome of an
experiment

• Sample space:
The totality of all possible samples points, that is,
the representation of all possible outcomes of an
experiment

• Event:
A collection of outcomes or a set of sample points

AI & CV Lab, SNU 363

Events

• Definition:
An event E is a set of possible outcomes:

E Í S
where S is the sample space.

AI & CV Lab, SNU 364

Probability

• Definition:
The probability, Pr[E] Î [0,1], of an event E is a

real number representing our degree of certainty
that E will occur.
1. If Pr[E] = 1, then E is absolutely certain to

occur.
2. If Pr[E] = 0, then E is absolutely certain not

to occur.
3. If Pr[E] = ½, then we are completely

uncertain about whether E will occur.

AI & CV Lab, SNU 365

Probability Distribution

• Definition:
Let p be any function, p:S→[0,1], such that

1. 0 ≤ p(w) ≤ 1 for every outcome, wÎS.
2. = 1.

Such a p is called a probability distribution.
Then the probability of any event EÍS is

Pr[E] =

å
ÎSw

wp)(

å
ÎEw

wp)(

AI & CV Lab, SNU 366

Probability of Complementary Events

• Theorem:
Let E be an event in a sample space S. Then, the
probability of the complementary event E is
Pr[E] = 1 − Pr[E]

AI & CV Lab, SNU 367

Probability of Unions of Events

• Theorem:
Let E1, E2 Í S. Then
Pr[E1È E2] = Pr[E1] + Pr[E2] − Pr[E1ÇE2]

Proof:
By the inclusion-exclusion principle.

AI & CV Lab, SNU 368

Mutually Exclusive Events

• Definition:
Two events E1, E2 are called mutually
exclusive if they are disjoint: E1ÇE2 = Æ

• Theorem:
For mutually exclusive events, E1 and E2,
Pr[E1 È E2] = Pr[E1] + Pr[E2].

AI & CV Lab, SNU 369

Exhaustive Sets of Events

• Definition:
1. A set E = {E1, E2, …} of events in the sample

space S is exhaustive if
2. An exhaustive set of events that are all mutually

exclusive with each other has the property that

SEi =U

1]Pr[=å iE

AI & CV Lab, SNU 370

Independent Events

• Definition:
Two events E,F are independent if
Pr[EÇF] = Pr[E]·Pr[F].

• Example: Flip a coin, and roll a die. Then,
Pr[quarter is head ∧ die is 1] =
Pr[quarter is head] × Pr[die is 1].

AI & CV Lab, SNU 371

Conditional Probability

• Definition:
Let E, F be events such that Pr[F]>0. Then, the
conditional probability of E given F, written Pr[E|F],
is defined to be Pr[E|F] = Pr[EÇF]/Pr[F].

• Theorem:
If E and F are independent, Pr[E|F] = Pr[E].

AI & CV Lab, SNU 372

Bayes’s Theorem

• Theorem:
The probability that a hypothesis H is correct,
given data D, is

Proof:
From the definition of conditional probability.

]Pr[
]Pr[]|Pr[]|Pr[

D
HHDDH ×

=

8-2. Random Variables

Random Variables
Let X be a single-valued real function, X:S→ T, where S is a
sample space and T is a set of real numbers.
Consider the range of X, denoted by RX , to be a new sample
space, SX. The probability of the event A in the new sample space
is then given by Pr[A⊆SX] Pr[X-1(A)⊆S] Pr[X=A].

Whenever a function X defined on a sample space S is
such that the probability of the inverse image X-1(A) is
defined for each event A in the range sample space SX,
Then the function X is said to be a measurable function on S and
is called a random variable.
(Note a random variable is in fact a function and not a variable.)

º º

AI & CV Lab, SNU 375

Random Variables

1. If the range is a continuum, it is called a
continuous random variable.

2. If the range consists only of isolated points, it is
called a discrete random variable.

3. If the range is a combination of both continuum
parts and isolated points, it is called a mixed
random variable.

AI & CV Lab, SNU 376

Experiments

• Definition:
1. A (stochastic) experiment is a process by which a

given random variable gets a specific value.
2. The sample space S of the experiment is the domain

of the random variable.
3. The outcome of the experiment is the specific value

of the random variable that is selected.

AI & CV Lab, SNU 377

Expected Values

• Definition:
The mean, or the expectation, or expected value of
the discrete random variable X is given by

E[X] = xk·Pr[X=xk].

• Theorem:
Let X1, X2 be any two random variables derived from
the same sample space. Then,

1. E[X1+X2] = E[X1] + E[X2]
2. E[aX1 + b] = aE[X1] + b

å
Î)(Xrangexk

AI & CV Lab, SNU 378

Independent Random Variables

• Definition:
Two random variables X and Y are independent if
Pr(X=r1 and Y=r2) = Pr(X=r1)ㆍPr(Y=r2) for every real
numbers, r1 and r2

• Theorem:
If X and Y are independent random variables, then
E(XY) = E(X)ㆍE(Y)

AI & CV Lab, SNU 379

Variance

• Definition:

1. The variance Var[X] = σ2(X) of a random
variable X is the expected value of the square of
the difference between the value of X and its
expected value E[X]:

2. The standard deviation of X, σ(X) = Var[X]1/2.

]])[[(][2XEXEXVar -=

Probability Distribution of a Random Variable

• Definition:
1. The distribution of a discrete random variable, X, is

a set of pairs, (r, Pr[X=r]), for each r in range(X).

2. The distribution of a continuous random variable,
X, is given by a density function, fX(x), where

duufbaX
b

a X)(]],(Pr[ò=Î

AI & CV Lab, SNU 381

Binomial Distribution

• The probability, P(k), of exactly k successes in n
independent Bernoulli trials, with probability of
success p and probability of failure q=1-p, is

• If a random variable X follows a Binomial
distribution, then Pr[X=k] = P(k) where
range(X) = {0, 1, 2,…, n}.

knk qp
knk

n -

-)!(!
!

AI & CV Lab, SNU 382

• Theorem:
Let X be a random variable with a binomial distribution.
Then

E[X]=np and Var[X]=np(1-p)

Gaussian (Normal) Distribution

• A Gaussian distribution is a bell-shaped
distribution defined by the probability density
function

• If a random variable X follows a Gaussian
distribution, then

E(X) = and Var(X) =

2)(
2
1

22
1)(s

m

ps

-
-

=
x

exp

m 2s

Central Limit Theorem
Let X1,…, Xn be n independent random variables
obeying the same unknown probability distribution
with mean and finite variance . Then the
probability distribution of the sample mean,

approaches a Gaussian distribution as
where the mean of approaches and the
standard variance approaches .

m 2s

å =
=

n

i in X
n

Y
1

1

,¥®n
nY m

n

2s

AI & CV Lab, SNU 385

Exercise
1. Let A, B and C be events in a sample space and

suppose Pr(A∩B) ≠ 0. Prove that Pr(A∩B∩C) =
Pr(A) · Pr(B|A) · Pr(C| A∩B)

2. Let A and B be events with nonzero probability in a
sample space.
(a) Suppose Pr(A|B) > Pr(A). Must it be the case that

Pr(B|A) > Pr(B) ?
(b) Suppose Pr(A|B) < Pr(A). Must it be the case that

Pr(B|A) < Pr(B) ?

AI & CV Lab, SNU 386

3. Let X and Y be two independent random variables.
(a) Give the definition of variance, Var(X), of X and

show that Var(X)= E(X2)-E(X)2.
(b) Show that Var(X+Y)=Var(X)+Var(Y).

