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Chapter 2 Kinematics 

→ nature of a flowing fluid without reference to the dynamics 

2.1 The Velocity Field 

velocity, acceleration ~ vector quantities 

q


        a


 

Cartesian coordinates 

 x y z  

 u v w  

 x y za a a  

2.1.1 Lagrangian approach 

~ coordinates of moving particles are represented as function of time 

~ follow a particular particle through the flow field  →  path line 

At   0t t     coordinates (position) of a particle   ( , , )a b c   

At   t t      position of a particle              ( , , )x y z  

1( , , , )x f a b c t  

2 ( , , , )y f a b c t  

3( , , , )z f a b c t  

x
u

t





           

2

2x

u x
a

t t

 
 

 
 

y
v

t





      

2

2y

v y
a

t t

 
 

 
 

z
w

t





           
2

2z

w z
a

t t

 
 

 
 

Independent variables 
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~ commonly used in the solid dynamics 

~ convenient to identify a discrete particle, e.g. center of mass of spring - mass system 

~ cumbersome when dealing with a fluid as a continuum of particles 

→ Due to deformation of fluid, we are not usually concerned with the detailed  

history of an individual particle, but rather with interrelation of flow properties 

at individual points in the flow field. 

 

2.1.2 Eulerian method 

~ observer fixes attention at discrete points 

~ notes flow characteristics in the vicinity of a fixed point as particles pass by 

~ focused on the fluid which passes through a control volume that is fixed in space 

~ familiar framework in which most fluid problems are solved 

~ instantaneous picture of the velocities and accelerations of every particle  

→ streamline 

~ velocities at various points are given as function of time 

q iu jv kw  
 

 

 

where  1( , , , )u f x y z t  

2 ( , , , )v f x y z t  

3( , , , )w f x y z t  

  , , ,x y z t   independent variables 

, ,i j k 
 

 unit vectors 

Independent variables

windoww 
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2.1.3 Total Derivative 

(1) Total change in velocity 

= sum of partial derivatives of the four independent variables, x, y, z, t 

 dir :
u u u u

x du dt dx dy dz
t x y z

   
    

   
 

 total derivative:  
du u u dx u dy u du

dt t x dt y dt z dt

   
   

   
 

                    
u u u u

u v w
t x y z

   
   

   
 

   

 dir :
du u v v v

y u v w
dt t x y z

   
    

   
 

 dir :
dw w w w w

z u v w
dt t x y z

   
    

   
 

(2) Total rate of density change of compressible fluid  

( , , , )x y z t   

 j
j

d
u v w u

dt t x y z t x

           
     

     
 

For incompressible fluid, 0
d

dt


  

For steady flow,         0
t





  

convective change 
due to translation 

local change 
due to unsteadiness 



Ch 2.  Kinematics 

2−4 

2.2 Steady versus Uniform motion 

 x j
j

du u u u u u u
a u v w u

dt t x y z t x

     
      

     
 

 y j
j

dv v v v v v v
a u v w u

dt t x y z t x

     
      

     
 

 z j
j

dw w w w w w w
a u v w u

dt t x y z t x

     
      

     
 

Vector notation 

 x y za ia ja ka  
 

 

 ( )
dq q

a q q
dt t


    



   
 

   

 

i) steady motion: no changes with time at fixed point   unsteady motion 

0
q

t







 → local acceleration = 0 

     

ii) uniform motion: no changes with space      non-uniform motion 

( ) 0q q  
 

  → convective acceleration = 0 

 

local acceleration convective acceleration 
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◈ Vector differential operators: → "del" or "nabla" 

i j k
x y z

  
  

  

 
 

Gradient:  
f f f

f grad f i j k
x y z

  
    

  

 
    

 Divergence:  
u v w

q div q
x y z

  
     

  
 

         

[Re] Vector product  

i) dot product  →  scalar 

 cosa b a b  
  

 

 = angle between the vectors 

 1 (cos0 1)i i j j k k      
    

 

 0 ( cos90 0)i j j k j i k j        
      

  

ii) cross product  →  vector 

sina b a b  
  

 

Direction = perpendicular to the plane of a and b

→ right-hand rule 
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 ( ) ( )q iu jv kw i j k
x y z

  
       

  

    
 

u v w
x y z

  
  

  
 

 ( ) ( )q q u v w iu jv kw
x y z

   
          

  
 

          
u u u

u v w i
x y z

   
      


 

v v v
u v w j

x y z

   
      


 

w w w
u v w k

x y z

   
      


 

 2 i j k i j k
x y z x y z

        
                     

    
 

             
2 2 2

2 2 2x y z

  
  
  

 

 
2 2 2

2
2 2 2

0 0
x y z

     
     

  
 →  Laplace Eq. 

( ) ( )grad u v u v u v         

( ) ( )div u v u v u v          
     

 

( ) ( )grad uv uv v u u v       

( ) ( )div uv uv u v u v       
   

 

2div grad u u u      
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2.3 Streamlines vs Path line  

2.3.1 Flow lines 

streamline, path line, streak line 

 

 

 

 

 

 

 

 

 

 

 

(1) streamline 

= imaginary line connecting a series of points in space at a given instant in such 

a manner that all particles falling on the line at that instant have velocities  

whose vectors are tangent to the line 

= instantaneous curves which are everywhere tangent to the velocity vector 

= a line that is (at a given instant) tangent to the velocity at every point on it 

  

* stream tube = small imaginary tube bounded by streamlines 

* stream filament = if cross section of stream tube is infinitesimally small 

 

pathline 
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(2) path line 

= trajectory of a particle of fixed identity as time passes 

 

(3) streak line 

= a line connecting all the particles that have passed successfully through  

a particular given point (injection point)  

= current location of all particles which have passed through a fixed point in space 

[Ex] dye stream in water, smoke filament in air 

* For steady flow, streamline = path line = streak line  

◈ How can we photo 3 lines? 

(1)  streamline:  spread bunch of reflectors on the flow field, then take a instant shot 

(2)  path line:  put only one particle on the flow field, then take long-time exposure 

(3)  streak line:  take a instant shot of dye injecting from one slot of the dye tanks 

 

2.3.2 Differential equations for flow lines 

(1) Streamline 

By virtue of definition of a streamline (velocity vector q


 is tangent to the streamline), it’s 

slope in the xy - plane, 
dy

dx
, must be equal to that of the velocity, 

v

u
.                q


 

dy v

dx u
   

By similarly treating the projections on the xz plane and on the yz plane 

dz w

dx u
 ;  

dz w

dy v
  
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 →      
dx dy dz

u v w
   

  

→ Integration of the differential equation for streamline yields equation of streamline. 

For 2-D Cartesian coordinates 

 0
dx dy dy v

v dx udy
u v dx u

       

 

◈ Vector form of equation of streamline 

 0q dr 
 

 

 q iu jv kw  
 

 

 dr i dx j dy k dz  
 

 

n ds 


 element of length along streamline 

 q dr ivdz jwdx kudy iwdy judz kvdx      
    

 

         ( ) ( ) ( ) 0i vdz wdy j wdx udz k udy vdx      
 

 

 

(2) Path line 

Since the particle is moving with the fluid at its local velocity 

dx
u

dt
 ; 

dy
v

dt
 ; 

dz
w

dt
  



Ch 2.  Kinematics 

2−11 

[App] Vector Products 

(1) dot product  →  scalar 

 1 1 2 2 3 3a b a b a b a b   


 

(2) cross product  →  vector 

     1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3

i j k

a b a a a a b a b i a b a b j a b a b k

b b b

       

 
  

 

i j k

curl V V
x y z

u v w

  
   

  

 

 

w v u w v u
i j k

y z z x x y

                           

  
 

[Ex] Vorticity: 
v u

x y
  
 
 

        3–D flow,  V   


 

For irrotational flow,   0 ; 0V    


 

• ( ) ( )curl uv uv u v u v       
   

 

• 0curl grad u u      

•   0divcurl u u    
 
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Homework Assignment 1 

Due: 1 week from today 

 

1. The velocity of an inviscid, incompressible fluid as it steadily approaches the 

stagnation point at the leading edge of a sphere of radius R is 

3

3
1s

R
u u

x

 
  

 
 

What is the fluid acceleration at (a) 3x R  , (b) 2x R  , and (c) x R  ? 

(d) When and su =2 m/s and R = 3 cm, what is the magnitude of the acceleration at 

2x R  ? 

 

2. The velocity field in a flow system is given by 

25 ( ) 3q i x y j xy k   
 

 

What is the fluid acceleration (a) at (1, 2, 3) and (b) at (-1, -2, -3)? 

 

3. A nozzle is shaped such that the axial-flow velocity increases linearly from 2 to 18 m/s in a 

distance of 1.20 m. What is the convective acceleration (a) at the inlet and (b) at the exit of 

the nozzle? 


