Ch 4. Continuity, Energy, and Momentum Equation

Chapter 4 Continuity, Energy, and Momentum Equations

4.1 Conservation of Matter in Homogeneous Fluids

* Conservation of matter in homogeneous (single species) fluid — continuity equation

Confine of Auid at
time f[+4df
L —

Control surface
confining fluid at
time ¢

dA - perpendicular
to the control

surface

gdAg 15 | positive

FIG. 4-1. Flow through a finite controf
volume of arbitrary shape,

q-dA, 15 posi| negative

4.1.1 Finite control volume method-arbitrary control volume
- Although control volume remains fixed, mass of fluid originally enclosed (regions A+B)
occupies the volume within the dashed line (regions B+C).

Since mass m is conserved:

(mA)t + (mB )t = (mB )t+dt + (mC )t+dt (4‘1)

(mA)t — (mc )t+dt

(Mg ) — (Mg), _ 42)
dt dt

*LHS of Eq. (4.2) = time rate of change of mass in the original control volume in the limit

~

(mB)t+dt B (mB)t ~ a(mB) _ g ( dV)
dt o oo’

(4.3)
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Ch 4. Continuity, Energy, and Momentum Equation

where dV = volume element

*RHS of Eq. (4.2)

= net flux of matter through the control surface

= flux in — flux out

= [ pa,dA - [ pa, dA,

where (,= component of velocity vector normal to the surface of CV = ‘q ‘ cos @
21, (pav) = [ PadA — | pa,dA, (4.4)
ot Jev cs’ cs’ '

* Flux (= mass/time) is due to velocity of the flow.

» Vector form

0 -
P Cv(,odV) =—q‘>C £G-dA (4.5)
where dA = vector differential area pointing in the outward direction over an enclosed

control surface

G-dA = |d| |dA| cos¢

positive for an outflow from cv, @ < 90°

negative for inflow into cv, 90" < ¢ < 180°

If fluid continues to occupy the entire control volume at subsequent times

— time independent
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Ch 4. Continuity, Energy, and Momentum Equation

0

LHS : —
at cv

0
(pdv) = jcva—’t)dv (4.52)

Eq. (4.4) becomes

op G dA —
J‘chdVJrq‘)cqu'dA_O (4.6)

— General form of continuity equation - integral form

[Re] Differential form

Use Gauss divergence theorem
oF
[, =—dv = [ FdA
v 8Xi A
Transform surface integral of Eq. (4.6) into volume integral

C.’.Dcqu.d'&:.[cvv.(pq)dv

Then, Eq. (4.6) becomes

jcv[aa—‘t’w-(pq)}dv =0

(4.6a)

Eq. (4.6a) holds for any volume only if the integrand vanishes at every point.

ot (4.6b)

— Differential form
@ Simplified form of continuity equation

(1) For a steady flow of a compressible fluid

j a—'Odv= 0
Cvat

Therefore, Eq. (4.6) becomes
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Ch 4. Continuity, Energy, and Momentum Equation

PG dA =0 (4.7)

(2) For incompressible fluid (for both steady and unsteady conditions)

p = const. — %O:O,dpzo

dt

Therefore, Eq. (4.6) becomes

gSCS G-dA = 0 4.8)

[Cf] Non-homogeneous fluid mixture
— conservation of mass equations for the individual species

— advection - diffusion equation

. : oc  0q
= conservation of mass equation —+ —=0

OX

+ mass flux equation due to advection and diffusion (q =uc - D @j

@Jri(uc—D@j:O

ot OX OX
oc  ouc 0 ( oc )
- — = — D -
ot OX OX OX
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4.1.2 Stream - tube control volume analysis for steady flow

CONSERVATION OF MATTER IN HOMOGENEQUS FLUIDS

Vies

FIG. 4-2. Steady flow stream tube control FIG. 4-3. Control volume coincident with boundaries
volume. of conduit.

There is no flow across the longitudinal boundary

. Eq. (4.7) becomes

$pd-dA = - pgdA + p,0,dA, =0 4.9)

pQdA = const.
If density = const.
qdA = q,dA, = dQ (4.10)

where dQ = volume rate of flow

(1) For flow in conduit with variable density

V =<=—— — average velocity
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Ch 4. Continuity, Energy, and Momentum Equation

. [pdQ
- Q

pIVIA = p VLA, (4.11)

— average density

o,

(2) For a branching conduit

$pd-da =0
_J‘A'quldA' * JAzpzqszz + IA3,03q3dA3 =0

,01'\/1A| = pgvaz + :03'V3A3
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Ch 4. Continuity, Energy, and Momentum Equation

[Appendix 4.1] Equation of Continuity

~ infinitesimal control volume method

1

2y

dpu) 4z
90" S 2

— P T EE— Py

af| - de

At centroid of the control volume: o, U, V, W

Rate of mass flux across the surface perpendicular to X is

flux in = {pu — Md_x}dydz
oxX 2

a(pu)d_x}dydz
ox 2

flux out = { pouU +
d(pu
net flux = flux in — flux out = — dedydz
OX
o(pv
net mass flux across the surface perpendiculartoy = — % dydxdz

o(pw
net mass flux across the surface perpendiculartoz = — % dzdxdy
z

Time rate of change of mass inside the cv
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Ch 4. Continuity, Energy, and Momentum Equation

0 ( pdxdydz)
ot

Time rate of change of mass inside = The sum of three net rates

0 pdxdydz) :{ d(pu)

p + o(pv) + 8(pw)} dxdydz

OX oy 0z

By taking limit dV = dxdydz

_a_p — 8(pu) + a(pV) + a(IOW) — V-,O\7 = div (p\7)
ot OX oy 0z
o(pu)  o(pv) . o(pw) 5~ div (o
+ + =V = div
> Yy ~ Jale (pa)
op "
-+ 4L V. =0 Al
ot + Prq (Al)

— general point (differential) form of Continuity Equation

By the way,

V-pq =q-Vp+pV-q

Thus, (A1) becomes

8—p+G-Vp+pV-q:O (A2)

ot

1) For incompressible fluid

d_p = 0 (p = const.)

dt
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Ch 4. Continuity, Energy, and Momentum Equation

Therefore Eq. (A2) becomes

poV-G=0 —>| V.G=0 (A3)

In scalar form,

ou ov ow
+ — + =

— — =0 (A4)
ox oy oz

— Continuity Eq. for 3D incompressible fluid

For 2D incompressible fluid,

a“+@:o

x oy

2) For steady flow,

% _
ot

Thus, (A1) becomes

V.-pq =0-Vp+pV-4=0
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4.2 The General Energy Equation

4.2.1 The 1st law of thermodynamics

The 1st law of thermodynamics :  Continuity + energy — energy equation
— property of a system: location, velocity, pressure, temperature, mass, volume
— state of a system: condition as identified through properties of the system

The difference between the heat added to a system of masses and the work done by the

system depends only on the initial and final states of the system(— change in energy).
— Conservation of energy

Q W

7

0Q — oW = dE (4.14)
where 0Q = heat added to the system from surroundings

OW = work done by the system on its surroundings
dE =increase in energy of the system

~ consider time rate of change

0Q oW dE
- = (4.15)
dt dt dt
(1) Work
Wpressure = work of normal stresses acting on the system boundary
W, ., =work of tangential stresses done at the system boundary
on adjacent external fluid in motion
W, .« = shaft work done on a rotating element in the system
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Ch 4. Continuity, Energy, and Momentum Equation

(2) Energy
. _ . _ |7
Consider € = energy per unit mass mass
€, = internal energy associated with fluid temperature = U
€, = potential energy per unit mass = gh

where h = local elevation of the fluid

2
€, = kinetic energy per unit mass = %

u+ P = enthalpy
Yo,

_ _ q°
e_eu+ep+eq_u+gh+7 (4.16)

* Internal energy
= activity of the molecules comprising the substance
= force existing between the molecules

~ depend on temperature and change in phase

4.2.2 General energy equation

5Q oW  dE
dt dt dt

(4.15)
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Ch 4. Continuity, Energy, and Momentum Equation

é\N é\Npressu re é\Nshaft é\N

— + + shear

dt dt dt dt (4.15a)

THE GENERAL ENERGY EQUATION

Wshary

oW

pressure

dt

= net rate at which work of pressure is done by the fluid on the surroundings

work fluxy, — work flux;,

P, P(-dA)

P = pressure acting on the surroundings = F / A=F /L
Positive for outflow into CV

Gg-dA =

Negative for inflow

G-dA=Q =L/t
o FU
p(d-dA)=Tz—=FL/t=E/t
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Thus, (4.15a) becomes

oW é\NShaft éVVshear

W: Cﬁcsp(q.dA)—i_ dt " dt

(4.15b)

dE

—— = total rate change of stored energy

dt

= net rate of energy flux through C.V.

(energy @t =t+ At — energy @t =t)

+ time rate of change inside C.V.

fai) + 2
B <ﬁcse'o(q'dA) + ot CV(EpdV) (4.15¢)

e=E/mass; p(g-dA)=mass/time

ep(qg-dA)=E/t

Substituting (4.15b) and (4.15¢) into Eq. (4.15) yields

6Q W, Wy ear I
dt dthft - dth _Hscsp(q'dA)}

= §_ep(g-dA) + —|_ (epdvol.)

Cs

5Q _ éV\/shaft _ é\Nshear
dt dt dt

- 0
- g'}cs(g + ejp (q-dA) + aJ'C\/(e,odv) (4.17)

4-13



Ch 4. Continuity, Energy, and Momentum Equation

Assume potential energy €, = gh (due to gravitational field of the earth)

2

Thene=u+gh+q7

Then, Eq. (4.17) becomes

5Q _ éV\/shan‘t _ é\N

shear
dt dt dt
_ p Q) o« 0 4.17)
= q‘)cs(; +Uu+gh+ T]p(q-dA) + gfcvepdV

@ Application: generalized apparatus
At boundaries normal to flow lines — no shear

—- W =0

shear

EQUATIONS FOR FINITE CONTROL VOLUMES

Q

Control surface

confining fuid )
8 ==1 Confine of fluid

at time ¢
cemeoboal at time {4di
W shatt FIG. 4-5. Control volume for energy
Datum balance in a generalized apparatus.

6Q MW p qQ° o o
dt dt ggcs(; + U+ gh+ > p(g-dA) + ajcv epdV  (4.19)
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Ch 4. Continuity, Energy, and Momentum Equation

For steady motion,

5Q é\Nshaft _ p q2 o
da  dt Cﬁcs[; +u+gh+ B p(q-dA) (4.20)

@ Effect of friction

~ This effect is accounted for implicitly.

~ This results in a degradation of mechanical energy into heat which may be transferred away
(Q, heat transfer), or may cause a temperature change

— modification of internal energy.

— Thus, Eq. (4.20) can be applied to both viscous fluids and non-viscous fluids (ideal

frictionless processes).

4.2.3 1D Steady flow equations
For flow through conduits, properties are uniform normal to the flow direction.
— one - dimensional flow

1 2

Ol::>v1 %::>V2

Integrated form of Eq. (4.20)= @ - D

oW 2 2
Q _ Shaﬁ:{u+£+gh+v—} pQ—{u+£+gh+V—} PQ
dt dt yo, 2 |, yo, 2
2
where 7 = average kinetic energy per unit mass

Section1: L,O ((T]d,&) = —pQ = mass flow rate into CV
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Ch 4. Continuity, Energy, and Momentum Equation

Section 2: Lp (ﬁd/&) = pQ = mass flow from CV

Divide by ©Q (mass/time)

W 2 ’
mass mass P 2 |, p 2 Jy

Divide by @
W, 2 i
heattransfer_ s-haft _ E+£+h+v— _ £+£+h+v_
weight weight |g 7 29, L9 7 29

4 Energy Equation for 1-D steady flow: Eq. (4.21)

~ use average values for P, 7, h, Uand V at each flow section

~use K, (energy correction coeff.) to account for non-uniform velocity distribution over

flow cross section

2
K. gv Q = _[ngdQ ---- kinetic energy/time = %m;/
[ZardQ
Ke — 2— > 1
P2
=V
5 Q

weight weight | ®29 ¥ °29 g
(4.23)

W 2 2 B
heat transfer Wi —{£+h+K V_} —{£+h+K V_} LUy
@ o
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Ch 4. Continuity, Energy, and Momentum Equation

K.= { 2, for laminar flow (parabolic velocity distribution)

1.06, for turbulent flow (smooth pipe)

For a fluid of uniform density ¥

P, Vi _ V' Waw _ heattransfer u, —u,

y “29 ¥ 229  weight weight g

(4.24)

— unit: m (energy per unit weight)
For viscous fluid;

_ heat transfer LUy
weight g :

— loss of mechanical energy
~ irreversible in liquid

Then, Eq. (4.24) becomes

2 2
&+h1+KeV#:&+h2+KeVL+AHM+AHL (4.24a)
y 29  2g

where AH,, = shaft work transmitted from the system to the outside

H1 = H2 + AHM + AH L, (424b)

where H,, H,= weight flow rate average values of total head

4 Bernoulli Equation
Assume

(Dideal fluid — friction losses are negligible
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Ch 4. Continuity, Energy, and Momentum Equation

@ no shaft work > AH,, = 0

3 no heat transfer and internal energy is constant — AH L, = 0
A V,?
&+h1+Kel;=&+hz+KeZL (4.25)
/4 g 7 29
H =H,
Potential head
Pressure head
If K, = K, =1, then Eq. (4§\educes to Velocity head
\
P, V]2 P, / Vz2
H="+h+-L="2+h +-2 (4.26)
/4 29 7 29

~ total head along a conduct is constant

4@ Grade lines

THE GENERAL ENERGY EQUATION

R 5 '-_ : Da_‘rium- _
p/Y+h=piezometric head
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Ch 4. Continuity, Energy, and Momentum Equation

1) Energy (total head) line (E.L)~ H above datum

2) Hydraulic (piezometric head) grade line (H.G.L.)

~ (E + hJ above datum
Y

For flow through a pipe with a constant diameter

LAY

V, =V
1 2 29 2g

1) If the fluid is real (viscous fluid) and if no energy is being added, then the energy line may

never be horizontal or slope upward in the direction of flow.

2) Vertical drop in energy line represents the head loss or energy dissipation.
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4.3 Linear Momentum Equation for Finite Control VVolumes

4.3.1 Momentum Principle

Newton's 2nd law of motion

- g d(mg v

E - maomdd_dl q)_dm (4.27)
dt dt dt

M = linear momentum vector = MQ

F = external force

—

=, boundary (surface) forces: - normal to boundary - pressure, Fp

—

F

tangential to boundary - shear, K

—

body forces - force due to gravitational or magnetic fields, F

- dM
(4.28)

o1
I

- -

Confine of Auid at
time {4-df

Control surface

confining fluid at
time {

dAl \ _ qE N o
Y qudAg is positive

FIG. 4-1. Flow through o finite control
volume of arbitrary shape,

qdA, | negative
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Ch 4. Continuity, Energy, and Momentum Equation

—

—— = total rate of change of momentum

= net momentum flux across the CV boundaries

+ time rate of increase of momentum within CV
~ §_dp(q.08) + <[ dpdv (429)
cs
where p(q’ . d,&) = flux of momentum = velocity x mass per time

dA = vector unit area pointing outward over the control surface

Substitute (4.29) into (4.28)

F,+F +F = 4) do(g-dA) ICV doadv (4.30)

For steady flow and negligible body forces

— —

F, +F = (ﬁcsq'p(q’.d,&) (4.30a)
* Eq. (4.30)

1) It is applicable to both ideal fluid systems and viscous fluid systems involving friction and

energy dissipation.

2) It is applicable to both compressible fluid and incompressible fluid.

3) Combined effects of friction, energy loss, and heat transfer appear implicitly in the
magnitude of the external forces.

* Eq. (4.30a)

1) Knowledge of the internal conditions is not necessary.

2) We can consider only external conditions.
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4.3.3 Inertial control volume for a generalized apparatus

* Three components of the forces

.- ) 0
x —dir FpX+FSX+FbX:<]SCSu,o(q dA)+a_[CVUpd
dir.: E. +E +F, = q-d8)+2 [ vpd
y—dir.: F, +F +F, = CSv,o(q dA)+a 7
dir.: F, +F, +F, = §-dA)+2 dv
z—dir.: F +F +F, = CSWp(q-dA)-i-a L Wp (4.32)

* For flow through generalized apparatus

Lz 2 o 0
X —dir. : pr+st+Fbx:L“de_ Lu,on + EJ.CV updvV

Confine of fluid
time {-4di

confining fluid
at time {

FIG. 4-9, Control volume for generalized apparatus,

0
For 1 - D steady flow, aJ‘CV gedV =0
~ Velocity and density are constant normal to the flow direction.
x—dir: F, +F +F =) F,=(V,0Q),-(V,0Q),
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= VprzQz - Vx1p1Q1 = Qp(vxz ) Q,O( Xout Vi )
y-dir: > F =(V,pQ) -(V,Q),

z—dir: ) F,=(V,pQ),-(V,mQ), (4.33)

where V = average velocity in flow direction

If velocity varies over the cross section, then introduce momentum flux coefficient

e

[dp (g-dA) = KV (pvA)
JdpdQ = K,VpQ
_ Japda
" VpQ
where

V = magnitude of average velocity over cross section =Q / A

—

V = average velocity vector
K., = momentum flux coefficient > 1

= [ 1.33 for laminar flow (pipe flow)

1.03-1.04 for turbulent flow (smooth pipe)
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[Cf] Energy correction coeff.

P 2
:JquQ

p_>
iy
5 V@

K

e

2.F
2.5
> F

(KmVXIOQ)2 o (Kmvpr)l
(KmVpr)2 - (I<mvyp(2)1

z (Kmvsz)2 - (Kmvsz)l

(4.34)

[Example 4-4] Continuity, energy, and linear momentum with unsteady flow

A =20f, A =0.1f, h =16

At time t=0 valve on the discharge nozzle is opened. Determine depth h, discharge rate

Q, and force F necessary to keep the tank stationary after t = 50 sec.

Water surface
at £==0

: T Control _-i

: volume E s 1 o0 ft2

I_ . t o 1= t)

;..._._.:“_%_ “““““““ -_i. Ag—_—Ol ft2
hqg i pvict ' ho=16 ft

1 Water surface |

| at =50 sec E

E |

: |

H |

% F-VQ
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Ch 4. Continuity, Energy, and Momentum Equation

1) Continuity equation, Eq. (4.4)
0
ajcv pdV =[pa,dA - [ pg,dA,

dvV = Adh, pq,dA = 0 (because no inflow across the section (1))

O ¢h
pA— [ dh == pV.A

dh
@y A
Aldt A (A)

i1) Energy equation, Eq. (4.19)
~ no shaft work
~ heat transfer and temperature changes due to friction are negligible

0F  Myg MWy
S/t dt dt

2

£ (P I P
_q.)cs(; +U+gh+ 7jp(q~dA) + ajcv epdV

- . 11
€ = energy per unit mass = U + gh + >

_ p O ) (4R
= gSCSEU +;+ gh +7Jp(q-dA)

2 2

:(u+£+gh+q—j pVZAZ—(u+£+gh+q—j PV, A
P 2 ), p 2),

2

P q
= - h+— \V V. =0
(u p+g +2lpzAZ (l )
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0 0
= —| epdV = — dv
et = 5 cv[u+gh+ %Z)p L

, A dh

" nearly constant in the

tank except near the nozzle

[(u+gn)an

0

0
= A&Pa

0= u+£+gh+q—2 pVA2+A1ngh(u+gh)dh
yo, 2 ), 2 otJo

Assume p =const., P, = p,, =0, h, =0 (datum)

V? dh dh
0 =uVv,A + TZVZA2 + UAE + Agha (B)

Substitute (A) into (B)
V2
0= WHR + VoA, + UV + gh(-V,A)
V2
72V2A2 = ghV,A,

V, = 4/2gh ©

Substitute (C) into (A)

AN2gh = A

d A
RS
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Integrate

h dh t h L L h
e R UK PN,

2
h =6 - 2-01 2(;2.2) tj

= (4 -0.0201t)’

At t =50sec, h = (4-0.0201x50)" = 8.98 ft

V, = 2gh = /2(32.2)(8.98) = 24.05 fps

Q, = (VA), = 24.05(0.1) = 2.405 cfs
. I 11
ii1) Momentum equation, Eq. (4.30)

/,
+ };/ };/ csqp va Gpdv

IT = Time rate of change of momentum inside CV is negligible

if tank area (A1 ) is large compared to the nozzle area (A2 ) .

1= §,,90(a-A) = [a., 00,0, - [Q.oqaR = V.oVoA,
pr = 2/OV2A2 = 2/0Q2

Fo = (1.94)(24.05)(2.405) = 112 1b
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4.4 The Moment of Momentum Equation for Finite Control Volumes

Yy q Y . O/r/'o
. F 0
0 Control volume

e

z z

FIG, 4-12, Position, force and momentum vectors, FIG. 4-13. Control volume for moment of momentum
analysis,

4.4.1 The Moment of momentum principle for inertial reference systems

Apply Newton's 2nd law to rotating fluid masses

— The vector sum (Fx If) of all the external moments acting on a fluid mass equals the

time rate of change of the moment of momentum (angular momentum) vector (Fx M ) of

the fluid mass.

T=rFxF :%(FXM)

where I = position vector of a mass in an arbitrary curvilinear motion

—

M = linear momentum

[Derivation |

—

Eq. (4.27) : F—M
q.(4.27): m

Take the vector cross product of T
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Ch 4. Continuity, Energy, and Momentum Equation

FxF = fxdd—l\:l

By the way,
i(Fxl\z) = d—er + de—M
dt dt dt

where ' x M = angular momentum (moment of momentum)

[Cf] Torque

T

T =rx
translational motion — Force — linear acceleration

rotational motion —  Torque — angular acceleration

[Re] Vector Product
V =daxb
magnitude = |\7| = |a| x ‘6‘ siny = area of parallelogram

direction = perpendicular to both d and b (plane of @ and 6)
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Ch 4. Continuity, Energy, and Momentum Equation

— use right-handed triple

Bxéi:—(éxﬁ)

» External moments arise from external forces

Forces Moment

Boundary (surface) force pr, |ES Tp, T,

—

Body force F T,

(FxF,)+ (FxF) + (FxF) = S(rx M)

_ S / RN _

T s T,
T+T+T, :i(FxM)
R

where fp R fs , fb = external torque
4.4.2 The general moment of momentum equation
dM e
e . Go(g-dA) + a.'.cv godVv (4.30)

d . o e
a(r X I\/I) = chcs(rxq)p(q.dA) + £ (Fxq)pdv
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angle between (|, and I,

T +T,+T, = Cj)cs(rqcosa)yzp(q-d,&) + = Cv(rqcosa)yzpdV

L 0
y—dir: T, + T, +T, = ¢, (racosa), p(q-dA) + —[  (racosa), pav

e D
z—dir.: T, + T, +T, :gSCS(rqcosoz)Xyp(q.dA)+a _(rgcosar)  pdv

4.4.3 Steady-flow equations for Turbomachinery

m Turbomachine
~ pumps, turbines, fans, blows, compressors

~ dynamic reaction occurs between a rotating vaned element (runner) and fluid passing

through the element

If rotating speed is constant — Fig. 4.14

T = j A rV,cosa,pdQ — L\ rV,cosa,pdQ — Euler's Eq. (4.39)

Where I, T, =radiiof fluid elements at the entrance and exist of the runner
V,,V, =Velocities relative to the fixed reference frame (absolute)

a,, o, = angles of absolute velocities with tangential direction
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Ch 4. Continuity, Energy, and Momentum Equation

A, A, = entrance and exit area of CV which encloses the runner

T,  =torque exerted on fluid by the runner

- T, {posmve for pump, compressor

negative for turbine

If V,cosa, and IV, cosq, are constant, O is constant

T, = pQ(rV,cosa, — 1V, cosa,) (4.41)

If V,cosa, = IV, cosq,

PQrVcosa = pQrv, = const.

~ zero torque, constant angular momentum

If ¢ = (0 — free vortex flow
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Homework Assignment # 2

Due: 1 week from today

4-11. Derive the equation for the volume rate of flow per unit width for the sluice gate

shown in Fig. 4-20 in terms of the geometric variable b, y,, and c_,. Assume the pressure

in hydrostatic at y, and cb and the velocity is constant over the depth at each of these

sections.

FIGURE 4-20

4-12. Derive the expression for the total force per unit width exerted by the above sluice gate

on the fluid in terms of vertical distances shown in Fig. 4-20.

4-14. Consider the flow of an incompressible fluid through the Venturi meter shown in Fig. 4-
22. Assuming uniform flow at sections (1) and (2) neglecting all losses, find the pressure
difference between these sections as a function of the flow rate Q, the diameters of the
sections, and the density of the fluid, p. Note that for a given configuration, Q is a
function of only the pressure drop and fluid density. The meter is named for Venturi, who
investigated its principle in about 1791. However, in 1886 Clemens Herschel first used the

meter to measure discharge, and he is usually credited with its invention.
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FIGURE 4-22

4-15. Water flows into a tank from a supply line and out of the tank through a horizontal
pipe as shown in Fig. 4-23. The rates of inflow and outflow are the same, and the water
surface in the tank remains a distance h above the discharge pipe centerline. All velocities
in the tank are negligible compared to those in the pipe. The head loss between the tank and

the pipe exit isH, . (a) Find the discharge Q in terms of h, A, and H_ . (b) What is the
horizontal force, F,, required to keep the tank from moving? (c) If the supply line has an

area A', what is the vertical force exerted on the water in the tank by the vertical jet?

T e : FIGURE 4-23

4-28. Derive the one-dimensional continuity equation for the unsteady, nonuniform flow of
an incompressible liquid in a horizontal open channel as shown in Fig. 4-29. The channel

has a rectangular cross section of a constant width, b. Both the depth, yo and the mean
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velocity, V are functions of X and t.

——__v Instantaneous water surface

T SO

e Yo ="Yo(@!)
V=Vt faice

T 7, FIGURE 4-29
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