Ch 6. Equations of Continuity and Motion

Chapter 6 Equations of Continuity and Motion

e Derivation of 3-D Eq.

{

conservation of mass — Eq. of continuity

conservation of momentum — Eq. of motion — Navier-Strokes Eq.

6.1 Continuity Equation

Y
d(pu)
A hYuhnd's
[pu + . A:c] Ay Az
Az ' .
pu Ay Az -~ E _—
Ay ',*--" -
Ax

Net flux through face
perpendicular to z-axis

o(pu)
2 = — | A
[ Ey A;cJ Ay Az

Consider differential (infinitesimal) control volume ( AXAYAZ)

[Cf] Finite control volume

e Principle of conservation of matter

— sum of net flux = time rate change of mass inside C.V.
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Ch 6. Equations of Continuity and Motion

1) mass flux per unit time

mass vol
time time

net flux through face perpendicular to X -axis

= flux in —flux out

= PUAYAZ —(pu + 6(§u) Ax}AyAz = —@AxAyAz
X X

net flux through face perpendicular to Y -axis

= Apv) AXAYyAz
oy

net flux through face perpendicular to Z -axis

=— Apw) AXAYyAz
0z (A)

2) time rate change of mass inside C.V.

= 9 (oAXAYAZ)

Thus, equating (A) and (B) gives

o (oAXAYAZ) = _9(pw) AXAYAZ — Apv) AXAYAZ — Apw) AXAYAzZ
ot OX oy 0z

0 0 op
LHS = —(pAXAYAZ) = p—(AXAYAZ) + AXAYAZ —
p (PAXAYAZ) pat( yAz) y p
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Ch 6. Equations of Continuity and Motion

O(AXAYAZ)
ot

Since C.V. is fixed — =0

LHS = AxAyAz%—f =0

Cancelling terms makes

9p_ olpy)  9(pv)  o(pW) _ 4
ot ox oy oz

op _
—+V-pG=0
ot ~rq

— Continuity Eq. for compressible fluid in unsteady flow

The 2™ term of Eq. (6.1) can be expressed as

V-(pd)=0qVp+pV-q

1 T o
op~ Op
I \% ui +vj +wk)| =i + =7 + 22Kk
(M: qvVp=( | )Lax ayj azj
gradient
—uap+va—'0+wa'0
OX oy 0z

divergence _\
. V .

- op op op (8_u+8v+6WJ
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Ch 6. Equations of Continuity and Motion

Substituting (1) into Eq (6.1) yields

a—p+ua—p+va—p+wa—p+ 8u+8v+8w =0
ot OX oy 0z

¥

dp ou ov ow
—+p| —+—+—1|=0
dt oX oy o0z

dp _
—E 4 p(V-G)=0
= p(V-0)

[Re] Total derivative (total rate of density change)

dp_dp opdk dpdy dpdz
dt ot oxdt oy dt oz dt

1) For steady-state conditions

P _y
ot

Then (6.1) becomes

a(pu) _ a(pv) | A(pw)

:v O :O
x o P (p0)

2) For incompressible fluid (whether or not flow is steady)

dp

e —:O

dt

(6.2a)

(6.2b)

(6.3)



Ch 6. Equations of Continuity and Motion

Then (6.2) becomes

ou v ow

-t —4+—=V.-d=0 6.5
ox oy oz q (-3

[Re] Continuity equation derived using a finite CV method

Eq. (4.5a):

op 6 dA —
ICV — v+ gSCS oG dA=0 (4.5)

— volume-averaged (integrated) form

e Gauss' theorem:
volume integral < surface integral

— reduce dimensions by 1 (3D — 2D)

jv(v-i)dV:jAX-dA

RHS of (4.5) = qSCS oG dA = jcvv (pg)dV

Eq. (4.5) becomes

op gy — [ [ 9P A |y —
IchdV +jcvv-(pq)dv _jcv (E+V-(pq)jdv =0

Since integrands must be equal.

op ~
L iv. =0
p (P9)

— same as Eq. (6.1) — point form
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Ch 6. Equations of Continuity and Motion

[Cf] 1D Continuity equation in integrated form

op opu .
IEdA+JWdA—O

%J.pdA"f- %IpudA =0

For incompressible fluid flow

p%IdA+ p%judA: 0

2

VA

where V = cross-sectional average velocity

6A 8VA
' 8t X

Consider lateral inflow/outflow

aVA
at - I do

where ( = flow through o

A
For steady flow; — =0
ot

8VA
ax

=0

VA=const.=Q
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Ch 6. Equations of Continuity and Motion

[Re] Continuity equation in polar (cylindrical) coordinates
u,r - radial
V,0 - azimuthal
W,Z - axial

For compressible fluid of unsteady flow

9p  1o(pur) 10(pv) o(pW) _ 4
ot r or r 06 0z

For incompressible fluid

1o(ur) 1ov ow
— +——+ =
r or rofd oz

For incompressible fluid and flow of axial symmetry

Py P_%_%_, A _,

b b

ot or 06 oz 00
1 owur) + @ =0 — 2-D boundary layer flow
r or 0z
Example: submerged jet
e e R
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Ch 6. Equations of Continuity and Motion

[Re] Green's Theorem

1) Transformation of double integrals into line integrals

“[aF jd dy = (Fdx+Fydy)
JI(curl F)-kdxdy =g, F -dF
:
F=Fi+Fj
2) 1t form of Green's theorem

J‘! (fvzg+grad f -grad g)dV:LJfZ_?]dA

3) 2nd form of Green's theorem

(v +0v1) av - ”( %% fon

[Re] Divergence theorem of Gauss

— transformation between volume integrals and surface integrals

|| divF dv =[[F - dA
T s
Where N = outer unit normal vector of S

F=Fi+Fj+Fk
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Ch 6. Equations of Continuity and Motion

fi = cosai +cos B] +cos yk

(55

T

I(F cosa+F,cos f+F cosy)dA

S

By the way

([ ¥ -ridA= [[(Fidydz + F,dzdx + F.dxdy)
S S

(T B o

= ﬂ F.dydz + F,dzdx + F,dxdy)
S

6-9



Ch 6. Equations of Continuity and Motion

6.2 Stream Function in 2-D, Incompressible Flows

2-D incompressible continuity eq. is

ou ov
+ —=

— 0 6.7
2y 6.7)

Now, define stream function (X, Y)as

yo OV - y = [~udy
% w=fvdy

v=2v (6.8)

Then LHS of Eq. (6.7) becomes

2 2
u v _0f oy) O0f Oy|_ 0y dy_,
ox oy ox\_ oy ) oy\ oy

— Continuity equation is satisfied.

1) Equation for a stream line in 2-D flow

Eq. (2.10): vdx—udy =0 (6.11)

Substitute (6.8) into (6.11)

W i+ OV dy=d =0 (6.12)
X oy
—> I/ = constant along a streamline (6.13)
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Ch 6. Equations of Continuity and Motion

\"q PN '
‘_ Vo=y+av

2) Law of conservation of mass
—qdn = —udy + vdx (6.14)

Substitute (6.8) into (6.14)

_qdn="Ydy+ W 4x —dy
oy OX (6.15)

— Change iny (diy) between adjacent streamlines is equal to the volume rate of flow per

unit width.

3) Stream function in cylindrical coordinates

0
vV, = _v radial
ro
0
V, = W azimuthal
or
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Ch 6. Equations of Continuity and Motion

6.3 Rotational and Irrotational Motion

6.3.1 Rotation and vorticity

3 U
uiﬁ\ég ( shear

Shes
/(f \6 Flow )
s \ N
U
2 IS AN
N A
A AT
- Z
2 -~ - L

Assume the rate of rotation of fluid element AX and Ay about Z-axis is positive when

rotate counterclockwise.

time rate of rotation of AX -face about Z -axis

e

At AX OX

time rate of rotation of Ay -face about Z -axis

{u +(auAyJ—u}At
1L\ __

At Ay oy

net rate of rotation = average of sum of rotation of AX-and Ay -face

l1{ov ou
w,=————
2[6x ay]

6—-12



Ch 6. Equations of Continuity and Motion

Doing the same way for X-, and Y -axis

I{ow ov
o, == ———
2\ 0y oz
o =1 @_%)
1) Rotation
. Ifow ov)- 1(8u awj? 1{ov ou)-
O=————|l+=—| ——— |]J+=| ——— |k
2\ oy oz 2\ 0z ox 2\ 0x oy
=1(V><q'):lcurl q (6.16b)
2 2
Magnitude:
‘c?)‘:\/a)f+a)§+a)f
a) Ideal fluid— irrotational flow
Vxq=0
o,=0,=0,=0
W v ou_ow v _ou
oy o0z’ 01 ox Ox oy 6.17)

b) Viscous fluid— rotational flow
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Ch 6. Equations of Continuity and Motion

Fluid particles not rotating

G
&

2) Vorticity

—

S=curl =Vx{=2a

[Re] Rotation in cylindrical coordinates

_1f1lov, ov,
" 2lro0 oz
_lfov,_ow
¢ 2loz  or

6—-14

FIGURE 4-24
The difference between rotational and
irrotational flow: fluid elements in a

rotational region of the flow rotate, but

those in an irrotational region of the
flow do not.



Ch 6. Equations of Continuity and Motion

6.3.2 Circulation

I" = line integral of the tangential velocity component about any closed contour S

cmﬁq-ds (6.19)

ine integral from A to

B,C,D,A
dF;{u—a—uﬂ}dx+[v+@%}d —{ a—u—y}d —{ —@%}d
oy 2 2 X 2
_(@_a_u)dxd

ox oy
dr;(@—a—“jd dy

ox oy

ov ou
Fz.[A(&—EjdAz.&[zwsz:g(qu) aA

(6.20)

For irrotational flow,

circulation I'=0 (if there is no singularity vorticity source).
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Ch 6. Equations of Continuity and Motion

[Re] Fluid Motion and Deformation of fluid element

translation
Motion
rotation
linear deformation
Deformation
angular deformation
(1) Motion

1) Translation: f Ny

wdt f[———n |
"*‘“““""!_ ‘ : E=udt, U=d—§
v = 4
4 L"P R R =V, V:z—n
; i t
dz

2) Rotation < Shear flow

MY,
3:.

. l(ov_au
\//\! /\—“—L-'_(Li ““2lox oy
\—_.Q /_ST___’,‘ L 2
\~ '\\

. l/y

\ -~
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Ch 6. Equations of Continuity and Motion

(2) Deformation

1) Linear deformation — normal strain

_;22%%&
1 =-§%d%

1
|
|
]
!
!

-

d4|

|

|

|

II :
I 71— %Ui dxdt

e
= 3zdx

OX

g 29N

1) For compressible fluid, changes in temperature or pressure cause change in volume.

i1) For incompressible fluid, if length in 2-D increases, then length in another 1-D decreases in

order to make total volume unchanged.

2) Angular deformation— shear strain

owdy o e 4
.{#wr&=£?

- FE az =

/T;;*{ . ot 2
-~
0 0
W}ﬂ%é
OX OX
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Ch 6. Equations of Continuity and Motion

6.4 Equations of Motion

STRESS-STRAIN RELATIONS

o, + 9o, AX
OX
» Apply Newton's 2nd law of motion
> F=ma (A)
AF, = Ama,

* External forces = surface force + body force
* surface force = normal force + tangential force
* body forces

~ due to gravitational or electromagnetic fields

~ act at the centroid of the element — centroidal force

Consider only gravitational force

—

g =ig, + jo, +kg,

6—18



Ch 6. Equations of Continuity and Motion

LHS of (A):

AF, =(pAxAyAz) g, body force (B)

-0, AYAZ + (ax + aaax ij AyAz
X

normal force

07,

AY |AXAZ
oy yj

—7AXAZ + (ryx +

tangential force

—7, AXAY + (Z’ZX + %Az) AXAy
Z

tangential force

Divide (B) by volume of element

AF, oo, 07, 0t,
= POyttt ©
AXAYAz OX oy 0z
RHS of (A):
Ama, D)
AXAYAZ P5

Combine (C) and (D)

g +80‘X +5Tyx+érzx = pa
PYx x oy P,
N 0T, . oo, N 0T, q
PO Ty T
or, 07, 0o,
P9, + o + oy + p = pa, (6.21)

6—-19



Ch 6. Equations of Continuity and Motion

6.4.1 Navier-Stokes equations
—Eq (6.21) ~ general equation of motion

— For Newtonian fluids (with single viscosity coeff.), use stress-strain relation given in

(5.29) and (5.30)

— Navier-Stokes equations

Eq. (5.29):

3
pressure normal stress due to fluid deformation and viscosity

ou 2 _
o, =—p+ 2;1& —~ (—)y(v-q)

o, =—p+2ﬂ%—@)u(v-q)

ow 3
02=—p+2ﬂ5—(—)ﬂ(v-q)

Eq. (5.30):
T =T = @4‘6—“
w =Py T H ox oy
romr =y XY
e =ty T H 5y T

ZX Xz 62 8X
Substitute Egs. (5.29) & (5.30) into (6.21)

£9 _a_p+i|:2 a_u_% (V"):|+i @_'_a_u +i|: (a_u+@j = pa
Tk ax| Hax 3 8yﬂ6x oy az| “\ oz T ox %
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Ch 6. Equations of Continuity and Motion

Assume constant viscosity (neglect effect of pressure and temperature on viscosity variation)

pole _a_p_l_ £|:28_u_%(v—’):‘+ i @_Fa_u + i(a_u_F@j :pa
T x| Tax 3V ﬂay oX oy Hor|\a T ox "
ou ov ow
ox oy oz
Expand and simplify

op o’'u 2 (ou ov  o'w o’v. ou ou o’w
2 > U —+ + +u t—+—+
OX ox~ 3" \oX° oOxoy oxoz oxoy oy 01" oXxoz

op o’'u éu ol 1 (du v ow
+ u + + +—u -t +
ox* oy oz | 37\ oxT oxoy oxoz

i(a_u+@+@j
op o’u ou odul 1 0 ox\ ox oy oz
+ + V-

+—u—(V-4)=pa, (6.24)

— Navier-Stokes equation for compressible fluids with constant viscosity
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Ch 6. Equations of Continuity and Motion

4 Vector form

_ _ _ og . ~
PI-Vp+uV'a+EV(V-0)=p T+ p(0-V)a
where a 23—?2%+(G-V)q ---Eq. (2.5)

1) For inviscid fluid flow, ( U= O)

—

3 0 o
pg—Vp=pa—?+p(qV)q

— FEuler equations for ideal fluid

2) For incompressible fluids, V- =0 (Continuity Eq.)

—

3 Y BN
PG —Vp+uVig =pa—?+p(q V) (6.25)

Define acceleration due to gravity as

6,=-00
" ox

oh -
9,="95, [ 9="9vn
6, =92"
z oz J

where h= vertical direction measured positive upward

For Cartesian axes oriented so that h and Z coincide

622



Ch 6. Equations of Continuity and Motion

— minus sign indicates that acceleration due to gravity is in the negative h direction

Then, N-S equation for incompressible fluids and isothermal flows are

ou ou ou _au oh 1d6p wu|ld’u ou &
—4+U—+V—FW—=—(g————+ +—+—
ot ox oy 0z oX pox ploxt oy oz
v, v, v v oh lop w[dv v dv
—+U—+V—+ g————+5& +—+
ot ox oy oz oy poy plox’ oyt o
ow,  ow ow ow__ oh 1op uldw dw o'w
—+tU—+V—-FW—=-0g———— +— (6.28)
ot OX oy 0z oz p 82 pl ox> oy 82
[ [ | |
Local Convective ‘/
acceleration acceleration
Body force Pressure force Viscosity force
per mass per mass per mass
Eq. (6.28): unknowns- U, V, W, P

— We need one more equation to obtain a solution when the boundary conditions are specified.

— Eq. of continuity for incompressible fluid

ou ov ow
—+—+

20

ox oy oz
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Ch 6. Equations of Continuity and Motion

¢ Boundary conditions
1) kinematic BC: velocity normal to any rigid boundary (wall) equal the boundary
velocity (velocity=0 for stationary boundary)

2) physical BC: no slip condition (continuum stick to a rigid boundary)

— tangential velocity relative to the wall vanish at the wall surface

¢ General solutions for Navier-Stocks equations are not available because of the nonlinear,

2nd-order nature of the partial differential equations.

— Only particular solutions may be obtained by simplifications.

— Numerical solutions are usually sought.
¢ Navier-Stocks equations in cylindrical coordinates for constant density and viscosity

I - component:

(avr NV, 0V V)’ avrj
P +V + L2 4y

o4 "or rod r oz

op d(1o 16, 20ov, 0
= PO, ———+ p| —{—(rv, )|+ 5~ L+ —
PO o ‘{ar{r or f)} 200> oo o

@ - component:

p(%+v %Jrv_gavg_vrveJrv aveJ
ot  "or r o6 r * oz

roo “lar

1 op d(1o 10, 2ov, 0%,
= ———+ U —{——=(rv, )} +— +—=—=+
F9 { {r ar ‘9)} rr o0 r’of o’
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Ch 6. Equations of Continuity and Motion

Z - component:

(8vz v, v, v, asz
P +V + +V

ot "or r oo oz

‘ooz ror\" or r’ 06° oz°

Continuity eq. for incompressible fluid

1 o0 0

10
_ _ - =(
r ar(rvr)+ r 89(V9)+82 (v.)

Normal & shear stresses for constant density and viscosity

o =—p+2 6Vr
' ”ar
lov, V
o, =—p+2u| —4L+-—-
’ P ”(rae rj
ov
o,=—p+2 :
2 P ﬂaz
0 'u_ or\r) roé
“ Tlaz roo
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Ch 6. Equations of Continuity and Motion

6.5 Examples of Laminar Motion

- N-S equations are important in viscous flow problems.

¢ Laminar motion

~ orderly state of flow in which macroscopic fluid particles move in layers

~ viscosity effect is dominant

¢ Laminar flow through a tube (pipe) of constant diameter

~ instantaneous velocity at any point is always unidirectional (along the axis of the tube)
~ no-slip condition @ boundary wall

~ apply concept of the Newtonian viscosity

~ velocity gradient gives rise to viscous force within the fluid

~low Re

— Reynolds number = inertial force/viscous force = destabilizing force/stabilizing force

4 Viscous force
~ dissipative
~ have a stabilizing or damping effect on the motion

~ use Reynolds number

[Re] Turbulent flow
~ unstable flow
~ instantaneous velocity is no longer unidirectional

~ destabilizing force > stabilizing force

~ high Re
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Ch 6. Equations of Continuity and Motion

6.5.1 Laminar flow between parallel plates
Consider the two-dimensional, steady, laminar flow between parallel plates in which either

of the two surface is moving at constant velocity and there is also an external pressure gradient.

P

da
\ P1 L P2
¢ Assumptions:
oy
steady flow — @ =0
ot
parallel flow - w=0; ﬂ =0
o( )
L . oh oh oh
z-axis coincides with h —» —=—=0; —=1
ox oy 0z

¢ External pressure gradient

— P> P,

1) P <0 — pressure gradient assists the viscously induced motion to overcome the
X

shear force at the lower surface
i) 8_p >(0 — pressure gradient resists the motion which is induced by the motion of
X

the upper surface

P, <P, 627




Ch 6. Equations of Continuity and Motion

Continuity eq. for two-dimensional, parallel flow:

u_,
OX
2
du_,
— {0X
u= f(Z) only

:_ggﬁ_Lﬁ_P ,U{@/ oA az}

L OX ﬁ(y 0z
2
0=t P ”(a ) (6.31a)
p OX oz’

z—dir. : %%+u%%+v%+wg%
t X z

oh _1ap, y{@)l( ow /%z)lq

oz poz /é(y

0=-g-——— (6.31b)

0
6310y —7=-pg=—y
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Ch 6. Equations of Continuity and Motion

p=—yz+ f(x) 6.32)
— hydrostatic pressure distribution normal to flow
— For any orientation of Z -axis. in case of a parallel flow, pressure is distributed

hydrostatically in a direction normal to the flow.

op_,dp .
(6.31a): — —>— ~independent of Z
ox  dx
W0 N
e
¥
Pressure | — Energy loss due to
drop viscosity
Integrate (A) twice w.r.t. Z
dp .. ¢ OU
J‘J‘& dZdZ = J]ﬂdedZ
dp_ . ¢ oau
j&zdz _J./‘Edz +J.C1 dz
dp z°
——=uu+Cz+C 6.33
dx 2 LTt (639

Use the boundary conditions,

i) z=0, u=0 > $xo=y(o)+02 -~ C,=0
X
ii) z=h, u=U —>d—pa—2—yU+Ca
’ dx 2 1
2
aldx 2
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Ch 6. Equations of Continuity and Motion

.. (6.33) becomes

2

2
dx 2 aldx 2

a dx\2 2
Uz ad z
u(z):u:————p 1-— |z (6.34)
a 2udx a
. / Pressure
Velocity driven
driven
. dp
i) If ™ = (0 — Couette flow (plane Couette flow)
X
U=—1

— driving mechanism = U (velocity)

I

B.CO§

ii)If U=0—  2-D Poiseuille flow (plane Poiseuille flow)

u= L%(Z - a) Z ~ parabolic

24 dx
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Ch 6. Equations of Continuity and Motion

— driving mechanism = external pressure gradient, —

2
o =2

max

8 1 dx

V =average velocity

Q

Q _adp
A

121 dx

max

2
=—U =
3

[Re] detail
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Ch 6. Equations of Continuity and Motion

6.5.2 Laminar flow in a circular tube of constant diameter a_p <0
OX

— Hagen-Poiseuille flow

— Poiseuille flow: steady laminar flow due to pressure drop along a tube

Assumptions:

— use cylindrical coordinates

f v, =
¢ parallel flow —
b, Vy =0
{
0
\ o
continuityeq. — —==0
0z
0 ) >3 | ov
| paraboloid  — £=0
00
ov
steady flow  — £=0
ot
Eq. (6.29¢) becomes
op 18 ( ov j
0=——"—+ +pU—— r—=% A
oz Po T o or W
By the way, I'—comp. Eq. »
op 0 d 1 0p
~ L 5y, =—Z(pryh)=——(p+rh 0=-——"+g,
0z rI: az(p ) dz(p ) por
/ X — p(r) =const.
|: £Y, =—pg 8—h:| independent of I
z
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Ch 6. Equations of Continuity and Motion

Then (A) becomes

%( p+rh) =u%§(r %Vrzj

)
Integrate (B) twice w.rt. I

%%( p +7h)r—22 =T 2\/; +C, ©

St

1 d r’

Ea(p+}/h)7=VZ+Cllnr+C2 (D)

Using BC's

Then we can get V, from (D)

v, L{—%( D WL;/h)}(rO2 -r?)

v=—i( +h)i1 LZ
: dzpy4,u r,

l} (6.39)

. . . iezometri
— equation of a paraboloid of revolution prezometric
pressure
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Ch 6. Equations of Continuity and Motion

(1) maximum velocity, V

dQ =v,dA

- %{_%( p+ 7/h)}(r02 — r2)27rrdr
u

Q= J.roi{—— p+7/h)}(r02—r2)27zrdr

[ d 2ot ﬂr‘[ d }
S - A | 1S L I L DL
2/1{ Pt )}{r‘) 2 4} 8. az (P

r

2
: Vz=%= QﬁL{—i(pwh)}: 5 (E)

o 2
[Re] For 2 - D Poiseuille flow V =—U

max
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Ch 6. Equations of Continuity and Motion

(3) Head loss per unit length of pipe

Total head = piezometric head + velocity head

Here, velocity head is constant.

Thus, total head = piezometric head

h | d 8V, 32V
_fz_[__(pﬂ,h)}: e 22 (6.42)
L yL dz 4 R yD
(E)
where D = 2r; = diameter
[Re] Consider Darcy-Weisbach Eq.
h 2
Lot (F)
L D 29

hf = head loss due to friction

f = friction factor

Combine (6.42) and (F)

_Gdv_ 64 64
V, D V,D/v Re

— For laminar flow
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Ch 6. Equations of Continuity and Motion

(4) Shear stress

Differentiate (6.39) wrt r

ov, d 1
L=— h)—r
or dz(p+7 )2,u

Combine (G) and (H)

1d

T, ZEE( p+yh)r

At center and walls

(G)

(H)

(6.45)

o = f"i{ﬂrrﬂ)

@
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Ch 6. Equations of Continuity and Motion

6.6 Equations for Irrotational Motion

o Newton's 2nd law — Momentum eq. — Eq. of Motion

o In Ch. 4, 1st Law of thermodynamics — 1D Energy eq.

= Bernoulli eq. for steady flow of an incompressible fluid with zero friction (ideal fluid)

o In Ch. 6, Eq. of Motion — Bernoulli eq.

Integration assuming irrotational flow

o Irrotational flow = Potential flow

6.6.1 Velocity potential and stream function

If ¢(X,Y,Z,1)is any scalar quantity having continuous first and second derivatives, then by a

fundamental vector identity

—curl(grad ¢)=Vx(Vg)=0 (6.46)

[Detail] vector identity

Op- 0¢~ 09
rad —|+— +—Lk
grad ¢ = OX E}yJ 0z

i ] k

o 0 0

curl(grad ¢)=|— — —
(grad ¢) x oy 0
op 9p ¢

oXx oy oz

B T A {0 W e
o0yoz oyoz 00X 00X oxoy axay
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Ch 6. Equations of Continuity and Motion

By the way, for irrotational flow

Eq.(6.17): Vx({=0 (A)

Thus, from (6.46) and (A), we can say that for irrotational flow there must exist a scalar

function ¢ whose gradient is equal to the velocity vector (.

grad ¢ =q (B)

Now, let's define the positive direction of flow is the direction in which ® is decreasing,
then
q=-grad ¢(x,y,z,t)=-V¢ (6.47)

where @ = velocity potential

0,3, %

OX oy 0z (6.47a)

U=

— Velocity potential exists only for irrotational flows; however stream function is not subject

to this restriction.

— irrotational flow = potential flow for both compressible and incompressible fluids

(1) Continuity equation for incompressible fluid

Eq. (6.5): V-G=0 (©)

Substitute (6.47) into (C)
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Y -(—V¢) =-V’¢=0 — Laplace Eq.
2 2 2
V2¢ = 0 ? + 0 ? + g ? =0 « Cartesian coordinates
ox" oy- oz
2 2
V= li(r%j + iz 0 ¢§ + % =0 <« Cylindrical coordinates
ror\ or) r-o00° oz

[Detail] velocity potential in cylindrical coordinates

o 0, _ 0, _ 0
or roé 0z

(2) For 2-D incompressible irrotational motion

* Velocity potential

u=_2
OX
yo_9¢
oy
* Stream function: Eq. (6.8)
yo v
oy
—cl
OX
oy _o¢
oy OX
— Cauchy-Riemann (6.51)
oy _ 09
OX oy
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Now, substitute stream function, (6.8) into irrotational flow, (6.17)

u_ov
oy OX

Eq. (6.17) : < [rotation=0 Vxq=0]

o’y 3 o’y o’y Oy 3
2 > > T 2
oy~ 0oX ox~ oy

0 — Laplace Eq. (D)

Also, for 2-D flow, velocity potential satisfies the Laplace eq.

2 2
o9 .9_,

ox> oy’ &)

— Both @and  satisfy the Laplace Eq. for 2-D incompressible irrotational motion.

— @and ¥ may be interchanged.
— Lines of constant @and i must form an orthogonal mesh system

— Flow Net

v,
Equipstontion Lines , g=const.
P=const,

v,
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(3) Flow net analysis

Along a streamline, | =constant.

Eq. for a streamline, Eq. (2.10)

dy
dx

\Y
u

w=const.

Along lines of constant velocity potential

— dg=0

dp=2Lax+2ay -0
OX oy Substitute Eq. (6.47a)

dy
dx

\'
g=const.
%

From Egs. (6.54) and (6.55)

o4,

dy
dx

_ &
dy

y=const. @=const.

— Slopes are the negative reciprocal of each other.

(6.54)

(F)

(6.55)

(6.56)

— Flow net analysis (graphical method) can be used when a solution of the Laplace equation

1s difficult for complex boundaries.
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[Appendix 1] Typical potential flow systems

1. Uniform flow

9
u — u:QQ:U
OX
9

- ¢ =Ux+const. 1-D
¢ =U(Ix+my+nz) 3-D

where |, m, n = directional unit vectors

2. Source or Sink

@= R (spherical source)
M = strength of sink or source (M’ / S)

U =—— (spherical coordinates) =—

oR R?

v=w=0
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3. Doublet

— sink plus source with the distance between d — 0

bk spurce
b M M
A
4. Vortex

In Cylindrical coord : ¢ = k&

u=0
10¢ k
T re0 r
w=0
v=_o%
By the way or

w:—j Edr:—klnr+C
r

2z
I'= CﬁVdS = J.o vrd& = 27K (" singularity at the origin)

[Appendix 1] Potential flow problem

Find ¥ — Find flow pattern

Find velocity potential ¢ Find velocity
Find pressure, force

Find kinetic energy

Bernoulli Eq.
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6.6.2 The Bernoulli equation for irrotational incompressible fluids

(1) For irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

Eq. (6.17): Vx({d=0

o
0z
o] . .
=— irrotational flow
OX
ou
oy

Eq. (6.28): Navier-Stokes eq ( X -comp.) for incompressible fluid

1 || Lo
20X 2 0X
ou éu  ou ou oh 1ép wu|ldu @ou ou
—+U—+V—fFW—=f————+ | — +—+—
ot OX oy 0z ox pox ploxt oy oz
tou’ ovo | ow v w
2 0OX OX OX OYyOX 00X

2 2 2
aqua[u2 v2 V;j: oh 18_p+ﬁQ£8u ov awj (6.57)

ot ox _gax_;8x p OX ER @ oz

Substitute q2 =u’+Vv>*+Wand Continuity Eq. for incompressible fluid into Eq. (6.57)

. _ Ou ou oau
Continuity Eq., Eq. (6.5): V- -(=—+ + _

—+—=0
oXx oy oz

Then,
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u,o(q)__ o 1a
ot ox\ 2 OX p OX
2
a_u_|_£ q_+gh_|_£ =0 — X—Eq.
ot ox| 2 yo,
[ ~2
y —Eq. @-Fi q—+gh+£ =0
ot oy| 2 el
-, _
z—-Eq. @+£ q—+gh+£ =0 (6.59)
ot oz| el
o R R
Introduce velocity potential ¢ OX oy Oz
u__ 0 N 0 ow_ 0 "
ot otox’ ot oty ot otor
Substituting (A) into (6.59) yields
_ , -
i _%+_+gh+£ =0 X—Eq.
ox| ot 2 o
_ , -
o —%+q—+gh+£ =0 y - Eq.
oy| ot 2 el
_ , -
9 _%+q_+gh+£ =0 z-Eq. (B)
oz| ot 2 o
Integrating (B) leads to
2
_%+q_+gh+£:|:(t) (6.60)
ot 2 yo,
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~ valid throughout the entire field of irrotational motion

For a steady flow; — =0
ot

2
9—+gh+3:cmmt (6.61)
2 p

— Bernoulli eq. for a steady, irrotational flow of an incompressible fluid

Dividing (6.61) by g (acceleration of gravity) gives the head terms

2

g P

—— +h+-==const.

29 /4

q; PG p

—+h+-+t=—"2+4+h +-2=H (6.62)
29 7y 29 /4

H = total head at a point; constant for entire flow field of irrotational motion

(for both along and normal to any streamline)

— 3-D form of 1- D Bernoulli Eq. for negligible friction

p, H, g = values at particular point — point values in flow field

[Cf] Eq. (4.26)

2 2
&+hl+v_1:&+h2+v_2:H
4 29 vy 29

H = constant along a stream tube

— 1-D form of 1-D Bernoulli eq.

P, h, V = cross-sectional average values at each section — averagevalues
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* Assumptions made in deriving Eq. (6.62)

— incompressibility + steadiness + irrotational motion+ constant viscosity (Newtonian fluid)

In Eq. (6.57), viscosity term dropped out because V -( =0 (continuity Eq.).

— Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.

* Viscous flow

Velocity gradients result in viscous shear.

— Viscosity causes a spread of vorticity (forced vortex).
— Flow becomes rotational.

— H in Eq. (6.62) varies throughout the fluid field.

— Irrotational motion takes place only in a few special cases (irrotational vortex).

potential flow

Fluid particles not rotating

Y

[rrotational outer flow region

YYY Y
:
©
:
©

!
(

FIGURE 4-24
The difference between rotational and
irrotational flow: fluid elements in a
tational region of the flow rotate, but
those in an irrotational region of the
flow do not.

R e

€ o

Wall Fluid particles rotating

rotational flow

e[rrotational motion can never become rotational as long as only gravitational and pressure

force acts on the fluid particles (without shear forces).

— In real fluids, nearly irrotational flows may be generated if the motion is primarily a
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result of pressure and gravity forces.
[Ex] free surface wave motion generated by pressure forces (Fig. 6.8 )

flow over a weir under gravity forces (Fig. 6.9)

ST,

T e T T T

FIG. 6-B. Wave generation by pressure forces. FIG. 6-9. Flow over a weir under gravity
forces.
*Vortex motion

1) Forced vortex - rotational flow

~ generated by the transmission of tangential shear stresses

— rotating cylinder

i1) Free vortex - irrotational flow

~ generated by the gravity and pressure

— drain in the tank bottom, tornado, hurricane

!U\_)

Figure 5.2 Constant pressure surfaces in a solid-body rotation generated in a rotating tank containing

liquid Figure £3  Irrotational vortes.in a biquid
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*Boundary layer flow (Ch. 8)

1) Flow within thin boundary layer - viscous flow- rotational flow

— use boundary layer theory

i1) Flow outside the boundary layer - irrotational (potential) flow

— use potential flow theory
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6.7 Equations for Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline

For inviscid flow (u =0)
— Assume no frictional (viscous) effects but compressible fluid flows

— Bernoulli eq. can be obtained by integrating Navier-Stokes equation along a streamline.

Eq. (6.24a): N-S eq. for compressible fluid (4 =0)

P - Vp+ﬂ+§}ev/) p—+qu)q

g——=— (G-V)q (6.63)

— Euler's equation of motion for inviscid (ideal) fluid flow

g =-gVh

Substituting (6.26a) into (6.63) leads to

Vp _aq "
—gVh———= -V 6.64
g A +(G-V)q (6.64)

/ idx + jdy + kdz

Multiply dF (element of streamline length) and integrate along the streamline

—gh—j %:j (@j-dmj [(G-V)q]-dr +C(t) (6.66)

II
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By the way,

Eq. (6.66) becomes

dp O () 4
I ;4‘ gh+7+J’ (E]dr ——C(t)

-

For steady motion, (?Eq =0;C ('[) —C

d 2
J. a +gh+ % =const. along a streamline
P

For incompressible fluids, p© = const.

2
£+ gh +q— =const.
Yo, 2

Divide by g

6-51
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2
P +h+ a4 ._ C  along a streamline (6.69)

/4 29

— Bernoulli equation for steady, frictionless, incompressible fluid flow
— Constant C is varying from one streamline to another in a rotational flow;

it is invariant throughout the fluid for irrotational flow.

6.7.2 Summary of Bernoulli equation forms

* Bernoulli equations for steady, incompressible flow

1) For irrotational flow

2
H= P +h+ ;— = constant throughout the flow field (6.62)
4 g

2) For frictionless flow (rotational)

2

H= P +h+ ;— = constant along a streamline (6.69)
/4 g

3) For 1-D frictionless flow (rotational)

V 2
H = P +h+ Kez— = constant along finite pipe (4.25)
/4 g

4) For steady flow with friction

~ include head loss N,

2 2
&+h1+q—1:&+h2+q—2

+h,
/4 20 7 29

652
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6.7.3 Applications of Bernoulli's equation to flows of real fluids

(1) Efflux from a short tube

e of vizaw influence = $ (L) > rotational

d, ol
(o) i cif “ TM _
L g >/\ - pl D
P
-—
7 Core:

irrotational flow

1) Zone of viscous action (boundary layer): frictional effects cannot be neglected.
2) Flow in the reservoir and central core of the tube: primary forces are pressure and
gravity forces. — irrotational flow

Apply Bernoulli eq. along the centerline streamline between (0) and (1)

2 2
&+ZO+Q_OZ&+ZI+Q_1
/4 29 7y 29

P, = hydrostatic pressure=yd, p,=p,, > P, =0

gage
= Z1

0, =0 (neglect velocity at the large reservoir)

2

4 _,
° 0

g, =+/29d, — Torricelli’s result (6.74)

If we neglect thickness of the zone of viscous influence

B zD?

Q==
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(2) Stratified flow

) Ah
T N
YAy : ; e
Tl’nermoclin\e‘: interface | () 3 T Antake channel
: - . X .
] | TN Y
¥ Oooag Ni3g = =~
Datum : R i ‘{ - SN A A RN

FAG. 6-11. Cold water intake from
a stratified reservoir,

During summer months, large reservoirs and lakes become thermally stratified.

— At thermocline, temperature changes rapidly with depth.

*Selective withdrawal: ~ Colder water is withdrawn into the intake channel with a velocity (),

(uniform over the height D) in order to provide cool condenser water for thermal (nuclear)

power plant.

Apply Bernoulli eq. between points (0) and (1)

2 2
&+ao+qL:£+bl+q—1
Y 29 7 29

g, =0
P, = hydrostatic pressure = (7/ - A?’)(do - ao)

P, =7(d0—Ah—b1)

2
%:Ah—%(do—ao)
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1
A 2
g, = {29 {Ah —77(0'0 —ao)H (6.77)

For isothermal (unstratified) case, &, = d0

q, =+ /29Ah — Torricelli’s result

(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

— Measure velocity from stagnation or impact pressure

L3
1
ﬁi

ol s
20 - >’ P/J.J Y.
1

Srogmation point
fs=0

2
&+h0+qL_&+hs+%Z
4 29 7 ¢

h,=h, g,=0
A" _ Ps= Py _ ap
29 Y
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Jo :\lngh

*Pitot-static tube

P (A)

By the way,

p, =P, +yAh=p, =p, +7,Ah

P, = Py =Ah(7, = 7) (B)
Combine (A) and (B)
_ \/ 2Ah(7, ~7)
4 =
yo,
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6.8 VVortex Motion

eyortex = fluid motion in which streamlines are concentric circles

For steady flow of an incompressible fluid, apply Navier-Stokes equations in cylindrical

coordinates
Va
A
Assumptions
0
O_,
ot
v=0 v, =0; 220
0z
»_,
o6
@ = @ (h=vertical direction)
0z ¢oh

Continuity Eq.:  Eq. (6.30)

10 1o 0
rar P g+ 5 ) =0

657
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F—(VQ)ZO—)—:O

Navier-Stokes Eq.:  Eq. (6.29)

1) r-comp.

2
o, 5%+vr%%+v—“’a\%—\/9 +V, a\%
ot r r,ée r /ﬁz
ap (1 1 0’ 2 av
= — + _
or or 492

2
Vi:l@ (6.832)

r por

2) @-comp

no0=HC li(rve)} (6.83 b)
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op 1o ov 1 0° o
=——t Ui ——| 4+ |+ = 4 + 5 o+
oz 'u{r ar[ br j P 50° 67 } /ng/

0
c =2
0
c =2
r 1 8r(rV9)

%Cl +C, =rv, (A)

c c need 2 BC’s
v, :Elr +Tz (B)
Z-Eq.
op _ _
oh pPI=-y

p=-yh hydrostatic pressure distribution

6—-59
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6.8.1 Forced Vortex - rotational flow

o2 | e
< veor & |
G| Tt hed R
\ é 5| Y e
\ / ’ j ) AR
Spt / PR A N LA
% NS | s s gt (e st ) RN T
5[ | e RPN
£ b AT, Liguid / T
| Puticks rotate s (vwﬁ&' &

Qbout their awm 4% 4oter
= piatived flow

- et HYau

Consider cylindrical container of radius R is rotated at a constant angular velocity 2 about

a vertical axis
Substitute BC’s into Eq.2

i r=0, v,=0 —->(A): 0+C,=0 .. C,=0
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ii) r=R, v,=RQ —>(B):RQ:%R .. C =20

Eq. (B) becomes

20 . :
v, = B r=Qr solid-body rotation
Qr* 10p op )
r-Eq.: =—— - — = pQ°r ©)
r p or or
op
Z—-EQ.: —=- D
g oh v (D)

Consider total derivative

op op )
dp =—dr +—dh = pQ°rdr — ydh
P o 4

Integrate once

2

r
p:pQZ?—;/h—l-(%

Incorporate B.C.

r=0; h=h, and p=p,

p,=0-yh,+C, .. C,=p,+rh,

erz
_V(h_ho)

P—Py=p
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At free surface

P=DP,

2
h=h, +=—r’ — paraboloid of revolution

29

*Rotation components in cylindrical coordinates

Eq. (6.18):
1( lov,/ v, avgj
o,=———=4,4+L+—=2
2\ r 8 r or
:1(E+i(rg)j:l(mg):g
2\ r or 2

vorticity =2, =2Q# 0
— rotational flow

— Forced vortex is generated by the transmission of tangential shear stresses.

*Total head

2
H =£+h+vi¢const.
4 29

— increases with radius
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6.8.2 Irrotational or free vortex

Free vortex: drain hole vortex, tornado, hurricane, morning glory spillway

E-l:he;‘r o(o»n am~
—» [rrotationad -1\

-P:eld. F r ..... » O »‘

tq

|

 ee surfue for Rodbie combived vorteye

o APPLIED HYDRAULICS IN ENGINEERING [Ch

6=13. Morni r, Hu Horse Dam, Montana. (U5, Buresu of
‘ﬁ& i ng-glory spillway, Hungry Herse w.
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For irrotational flow,

PV .
—+h+ 2— = const throughout the fluid field
/4 g

Differentiate w.r.t I

Z coincides with h

Top oy 1. N _, (ah_ah Oah_lj

yor or g ’or or 00 oz
op ov,

L = py, L A
o P ()

Eq (6.83a): I -Eq. of N-S Eq.

) v’
el )
Equate (A) and (B)
oV v,
—pv,—L=pt 5 _Llr=y
P ar =P or ?

Integrate using separation of variables
1 1
| v v, =| —or
Inv,=-Inr+C
Inv, +Inr=1In(v,r)=C

V,r =C, ~ constant angular momentum
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V_C4
, =—2
[

[Cf] Forced vortex

v, =Qr
*Radial pressure gradient

(B):

52 P r - r’ =P r
op _
*Total derivative f % ==V
op op C/

dp=—dr +—dh= p—dr —ydh

= oh P 4
Integrate once

C 2
p:_Pﬁ—VthCs (6.93)

B.C.. r=o0: h=h0 and P=p,
Substitute B.C. into Eq. (6.93)
P, =—7h, +C,

Cs=p, +7h
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p—p,=7(h,—h)-p=5 (6.94)

[Cf] Forced vortex: P— P, = ngrz + ]/(ho - h)

*Locus of free surface is given when P = [,

c’
2gr

h=h, ——= — hyperboloid of revolution

QZ
[Cf] Forced vortex: h = h0 _|_2_ r2
g

*Circulation / ds=rd@
2

r=¢g-ds=| "v,rdo=[C,0]" =22C, #0
¥

— Even though flow is irrotational, circulation for a contour enclosing the origin is not zero

v,r=C,

because of the singularity point.

Stream function, C _r
Yoox

V:—:—4:_
eor r 2nr
BN LS By 6.97)
v 2’ r 2w '
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where I = vortex strength

*Vorticity component @,

1oy v, ov,
@, =—— +-L+ £
roé r or

. C
Substitute V, = —4

.
o :&+£(&j:&_&:0
“orr oorlr rr r?

— Irrotational motion

At = 0 of drain hole vortex, either fluid does not occupy the space or fluid is rotational
(forced vortex) when drain in the tank bottom is suddenly closed.
— Rankine combined vortex

— fluid motion is ultimately dissipated through viscous action
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Flow A Uy

@ g = wr

FIGURE 4-28

Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is
rotational, but flow B is irrotational
everywhere except at the origin.

(a)

FIGURE 4-29

A simple analogy: (a) rotational circular flow is analogous to a roundabout,
while (b) irrotational circular flow is analogous to a Ferris wheel.

© Robb Gregg/PhotoEdit
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Homework Assignment # 4

Due: 1 week from today

6-4. Consider an incompressible two-dimensional flow of a viscous fluid in the Xy -plane in
which the body force is due to gravity. (a) Prove that the divergence of the vorticity vector is
zero. (This expresses the conservation of vorticity,V-{ =0.) (b) Show that the Navier-
Stokes equation for this flow can be written in terms of the vorticity as d¢ /dt =wW?>¢. (This

is a “diffusion” equation and indicates that vorticity is diffused into a fluid at a rate which

depends on the magnitude of the kinematic viscosity.) Note that d¢ /dt is the substantial

derivative defined in Section 2-1.

6-5. Consider a steady, incompressible laminar flow between parallel plates as shown in Fig. 6-

4 for the following conditions: a =0.03 m, U =03 m/sec, x=0.476 N-sec/mz,
dp/ 6x =625 N/m’ (pressure increases in + X -direction). (a) Plot the velocity distribution,u ,

in the z-direction. (b) In which direction is the net fluid motion? (c) Plot the distribution

of shear stress 7,, inthe z -direction.

6-7. An incompressible liquid of density o and viscosity x flows in a thin film down glass

plate inclined at an angle « to the horizontal. The thickness, a, of the liquid film normal to
the plate is constant, the velocity is everywhere parallel to the plate, and the flow is steady.
Neglect viscous shear between the air and the moving liquid at the free surface. Determine the
variation in longitudinal velocity in the direction normal to the plate, the shear stress at the

plate, and the average velocity of flow.
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6-11. Consider steady laminar flow in the horizontal axial direction through the annular space

between two concentric circular tubes. The radii of the inner and outer tube are I, andr,,

respectively. Derive the expression for the velocity distribution in the direction as a function of

viscosity, pressure gradient op / 0X , and tube dimensions.

6-15. The wvelocity potential for a steady incompressible flow 1is given by

® =(-a/2)(x*+2y—-12°), where a is an arbitrary constant greater than zero. (a) Find the

equation for the velocity vector §=1iu+ jv+ kw . (b) Find the equation for the streamlines in

the xz (y=0)plane. (c) Prove that the continuity equation is satisfied.

6-21. The velocity variation across the radius of a rectangular bend (Fig.6-22) may be
approximated by a free vortex distribution V,r=const. Derive an expression for the pressure
difference between the inside and outside of the bend as a function of the discharge Q, the

fluid density p, and the geometric parameters R and b, assuming frictionless flow.

1

Sec. A-A4 FGURE 6-22
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