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Chapter 10 Turbulence Models and Their Applications 

 

10.1 Introduction 

10.1.1 The Role of Turbulence Models 

(1) Why we need turbulence models? 

▪ Turbulent flows of practical relevance  

→ highly random, unsteady, three-dimensional  

→ Turbulent motion (velocity distribution), heat and mass transfer processes are 

extremely difficult to describe and to predict theoretically. 

 

▪ Solution for turbulent flows 

- Exact equations describing the turbulent motion are known.  

→ Navier-Stokes equation 

- Numerical procedures are available to solve N-S eqs. 

- Storage capacity and speed of present-day computers are still not sufficient to allow a 

solution for any practically relevant turbulent flows. 

 

- Average the governing equations to remove turbulent fluctuations completely  

→ Reynolds equation 

-Describe the complete effect of turbulence on the average motion by using 

turbulence model 
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(2) Turbulence  

▪ Scale of turbulence 

- eddying motion with a wide spectrum of eddy sizes and a corresponding spectrum of 

fluctuation frequencies 

i) The forms of the largest eddies (low-frequency fluctuations) are determined by the 

boundary conditions.  

ii) The forms of the smallest eddies (highest-frequency fluctuations) are determined by 

the viscous forces. 

 

▪ Classification of turbulence  

i) anisotropic turbulence ~ general turbulence; it varies in intensity in direction  

ii) isotropic turbulence ~ smallest turbulence; independent of direction (orientation) 

0,
. ,i j

i j
u u

const i j

ìï ¹ï= í =ïïî
 

 

iii) nonhomogeneous turbulence 

iv) homogeneous turbulence ~ statistically independent of the location  

2 2

a bi i
u u=  

( ) ( )i j i ja b
u u u u=  
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(3) Turbulence model 

~ a set of equations (algebraic or differential) which determine the turbulent transport 

terms in the mean-flow equations and thus close the system of equations 

 

▪ Simulation of Turbulence  

1)Time-averaging approaches (models) 

 

Name 
No. of turbulent 
transport eqns 

Turbulence quantities  
transported 

Zero equation models 0 None  

One equation models  1 k (turbulent kinetic energy) 

Two equation models  2 
k, ε (turbulent energy,  

dissipation rate) 

Stress/flux models  6 
i j
u u components  

Algebraic stress models  2 k, ε used to calculate 
i j
u u  

 

2) Space-averaged approaches 

→ Large Eddy Simulation (LES) 

- Simulate the larger and more easily-resolvable scales of the motions while accepting 

the smaller scales will not be properly represented 
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10.2 Mean Flow Equation and Closure Problem  

10.2.1 Reynolds averaged basic equation  

▪ Navier-Stokes eq. 

~ Eq. of motion for turbulent motion   

~ describes all the details of the turbulent fluctuating motion  

~ These details cannot presently be resolved by a numerical calculation procedure.  

~ Engineers are not interested in obtaining these details but interested in average 

quantities. 

 

▪ Definition of mean quantities by Reynolds 

2

12 1

1 t

ii t
U U dt

t t
=

- ò                      (10.1a) 

  2

12 1

1 t

t
dt

t t
F = F

- ò                     (10.1b) 

 

where 
2 1
t t-  = averaging time F = scalar quantity (temp, concentration) 

- Averaging time should be long compared with the time scale of the turbulent motion 

but small compared with that of the mean flow in transient (unsteady) problems.  

Example:  in stream 1 2

2 1
~ 10 ~ 10 sect t-   

 

▪ Decomposition of instantaneous values  


i i i
U U u= +                                        (10.2a) 
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 fF =F +
 

                                       (10.2b) 

mean   fluctuations 

 

Substitute (10.2) into time-dependent equations of continuity and N-S eqs. and average 

over time as indicated by (10.1) → mean flow equations  

 

continuity: 0
U V W

x y z

¶ ¶ ¶
+ + =

¶ ¶ ¶
                        (10.3) 

x-momentum: 
2 ( ) ( )U U VU WU

t x y z

¶ ¶ ¶ ¶
+ + +

¶ ¶ ¶ ¶
            (10.4) 

          

21 P u uv uw
fV

x x y zr
¶ ¶ ¶ ¶

= - + - - -
¶ ¶ ¶ ¶

 

 

y-momentum: 
2( ) ( )V UV V WV

t x y z

¶ ¶ ¶ ¶
+ + +

¶ ¶ ¶ ¶
            (10.5) 

21 P uv v vw
fU

y x y zr
¶ ¶ ¶ ¶

= - - - - -
¶ ¶ ¶ ¶

 

 

z-momentum: 
2( ) ( ) ( )W UW VW W

t x y z

¶ ¶ ¶ ¶
+ + +

¶ ¶ ¶ ¶
         (10.6) 

21 P uw vw w
g

z x y zr
¶ ¶ ¶ ¶

= - - - - -
¶ ¶ ¶ ¶

 

 

scalar transport: 
( ) ( ) ( )U V W

t x y z

¶F ¶ F ¶ F ¶ F
+ + +

¶ ¶ ¶ ¶
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( )u v w
S

x y z

f f f
F

¶ ¶ ¶
= - - +

¶ ¶ ¶
               (10.7) 

 

in which P = mean static pressure 

f = Coriolis parameter  

r = fluid density  

SF
= volumetric source/sink term of scalar quantity F  

 

◎ Eqs. (3)-(7)  

→ do not form a closed set  

 

▪ Non-linearity of the original N-S eq. and scalar transport eq. 

 

    

2

, , ; , , ,
u uv uw uc vc wc

x y z x y z

æ ö¶ ¶ ¶ ¶ ¶ ¶ ÷ç ÷ç ÷ç ÷ç ¶ ¶ ¶ ¶ ¶ ¶è ø
  

 

→ introduce unknown correlations between fluctuating velocities and between velocity 

and scalar fluctuations in the averaging processes 

 

2 2( , , , ; .,)u v uv u etcf  

 

2 .u etcr  = rate of transport of momentum  

= turbulent Reynolds stresses 
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.u etcr f  = rate of transport of heat or mass  

= turbulent heat or mass fluxes  

 

▪ In Eqs. (3)-(7), viscous stresses and molecular heat or mass fluxes are neglected 

because they are much smaller than their turbulent counterparts except in the viscous 

sublayer very near walls.  

 

▪ Eqs. (3)-(7) can be solved for average dependent variables when the turbulence 

correlation can be determined in some way.  

→ task of the turbulence models  

 

▪ Level of a turbulence model 

~ depends on the relative importance of the turbulent transport terms 

→ For the turbulent jet motion and heat and mass transport, simulation of turbulence is 

important.  
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10.3 Specialized Model Equations  

10.3.1 Three-Dimensional Lake Circulation and Transport Models 

(1) wind-driven lake circulation / open coast transport 

vertical momentum eq.: 
p

g
z

r
¶

= -
¶

 

→ hydrostatic pressure approximation  
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(2) Two ways of surface approximation  

1) atmospheric pressure at the water surface  

→ calculate surface elevation ζ with kinematic boundary condition at the surface 

 

0U V W
t x y

z z z¶ ¶ ¶
+ + - =

¶ ¶ ¶
                     (10.8) 

 

2) rigid-lid approximation  

- assume that the surface is covered by a frictionless lid 

- allows no surface deformations but permits variations of the surface pressure  

→ properly accounts for the pressure-gradient terms in the momentum equations, but 

an error is made in the continuity equations. 

→ is valid when the relative surface elevation / hz is small  

→ suppresses surface waves and therefore permits longer time steps in a numerical 

solutions  

→ Bennett (1974) , J. Physical Oceanography, 4(3), 400-414 

Haq and Lick (1975), J. Geophysical Res, 180, 431-437 
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10.3.2 Two-Dimension Depth-Averaged Models 

(1) shallow water situations 

~ vertical variation of flow quantities is small 

~ horizontal distribution of vertically averaged quantities is determined 

 

1
h

U U dz
H

z

-
= ò                                   (10.9a) 

1
k
dz

H

z

-
F = Fò                                   (10.9b) 

 

in which   H = total water depth = h z+  

h = location of bed below still water level  

z = surface elevation 

 

(2) Average Eqs. (3)-(7) over depth  

 

continuity:  
( ) ( )

0
HU HV

t x y

z¶ ¶ ¶
+ + =

¶ ¶ ¶
      (10.10) 

 

x-momentum:   
2( ) ( ) ( )HU HU HVU

gH
t x y x

z¶ ¶ ¶ ¶
+ + = -

¶ ¶ ¶ ¶
 

2

( )( )1 1

1 1
( ) ( )( )

(10.11)

xyxx sx bx

h h

HH

x y

U U dz U U V V dz
x y

z z

tt t t
r r r

r r
r r- -

¶¶ =
+ + +

¶ ¶

¶ ¶
+ - + - -

¶ ¶ò ò
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y-momentum:   
2( ) ( ) ( )HV HUV HV

gH
t x y y

z¶ ¶ ¶ ¶
+ + = -

¶ ¶ ¶ ¶
 

       

2

( ) ( )1 1

1 1
( )( ) ( )

(10.12)

yx yy sy by

h h

H H

x y

U U V V dz V V dz
x y

z z

t t t t

r r r

r r
r r- -

¶ ¶ =
+ + +

¶ ¶

¶ ¶
+ - - + -

¶ ¶ò ò  

 

scalar transport:   
( )( ) ( ) ( ) 1 x
HJH HU HV

t x y xr
¶¶ F ¶ F ¶ F

+ + =
¶ ¶ ¶ ¶

 

( )1 1
( )( )

1
( )( ) (10.13)

y s

h

h

HJ q
U U dz

y x

V V dz
y

z

z

r
r r r

r
r

-

-

¶ ¶
+ + + - F-F

¶ ¶

¶
+ - F-F

¶

ò

ò
 

 

where 
ij
t = depth-averaged stress( uvr- ) acting in 

i
x -direction on a face 

perpendicular to
j
x ; 

b
t = bottom shear stress; 

s
t = surface shear stress;

i
J  = depth-

averaged flux of ( )u or vr f r fF - - in direction
i
x ; 

s
q = heat flux through surface  

 

(3) Buoyancy effects cannot be represented in a depth-averaged model. 

(4) dispersion terms 

~ have same physical effects as turbulent terms but do not represent turbulent transport 

~ due to vertical non-uniformities (variations) of various quantities 

~ consequence of the depth-averaging process 

~ are very important in unsteady condition 
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10.3.3 Two-Dimensional Vertical Plane and Width-Averaged Models 

Examples: 

- long-wave-affected mixing of water masses with different densities  

- salt wedges in seiche  

- tide-affected estuaries  

- separation regions behind obstacles, sizable vertical motion  

 

Define width-averaged quantities  

 

2

1

( , )

( , )

1

( , )

y x z

y x z
U U dy

B x z
= ò                             (10.14a) 

2

1

( , )

( , )

1

( , )

y x z

y x z
dy

B x z
F = Fò                             (10.14b) 

 

in which B = channel width (local width of the flow)  

 

(1) Models for the vertical structure are obtained by width-averaging the original three-  

   dimensional eqs.  

continuity:  ( ) ( ) 0BU BW
x z

¶ ¶
+ =

¶ ¶
                     (10.15) 

 

x-momentum:  2

0

( ) ( ) ( ) d
pB

BU BU BWU gB
t x z x x

z
r

¶¶ ¶ ¶ ¶
+ + = - -

¶ ¶ ¶ ¶ ¶
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2 2

1 1

0 0 0

2

0 0

1 1
( ) ( )

1 1
( ) ( )( )

(10.16)

wx
xx xz

y y

y y

B B
x z

U U dy U U W W dy
x z

dispersion

t
t t

r r r

r
r r

¶ ¶
+ + +

¶ ¶

¶ ¶
+ - + - -

¶ ¶ò ò

 
 

 

z-momentum: 2

0

( ) ( ) ( ) d
pB

BW BUW BW
t x z zr

¶¶ ¶ ¶
+ + = - -

¶ ¶ ¶ ¶
 

2 2

1 1

0

0 0 0 0

2

0 0

1 1
( ) ( )

1 1
( )( ) ( )

(10.17)

wz
xz zz

y y

y y

B B B
x z

U U W W dy W W dy
x z

dispersion

r r t
z t t

r r r r

r r
r r

- ¶ ¶
+ + + +

¶ ¶

¶ ¶
+ - - + -

¶ ¶ò ò

 
 

scalar transport : 
( ) ( ) ( )B BU BW

t x z

¶ F ¶ F ¶ F
+ +

¶ ¶ ¶
 

2 2

1 1

0 0 0

0 0

1 ( ) 1 ( )

1 1
( )( ) ( )( )

(10.18)

x xs

y y

y y

Bq BJ BJ

x z

U U dy W W dy
x z

dispersion

r r r

r r
r r

¶ ¶
= + +

¶ ¶

¶ ¶
+ - F-F + - F-F

¶ ¶ò ò
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where 
0

r = reference density  

d
p =dynamic pressure  

~ pressure due to motion and buoyancy forces  

= static pressure - reference hydrostatic pressure  

 

(2) kinematic free surface condition  

0U W
t x

z z¶ ¶
+ - =

¶ ¶
                              (10.19) 

 

(3) dispersion terms  

  ~ due to lateral non-uniformities of the flow quantities 

 

(4) Further simplification  

  Replace z-momentum Eq. by hydrostatic pressure assumption 

0
( )d

p
g

z
r r

¶
= -

¶
                                  (10.20) 

 

Replace d
p

x

¶
¶

 in x-momentum Eq. as 

0
( )d

z

p
g dz

x x

z
r r

¶ ¶
= -

¶ ¶ ò                          (10.21) 

 

Integrate continuity Eq. (10.15) over the depth and combine with Eq. (10.19) 

1
0

h
s

BUdz
t B x

zz
-

¶ ¶
+ =

¶ ¶ ò                         (10.22) 
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10.4 Turbulence-Closure Models  

○ Turbulence model 

~ represent the turbulence correlations 2, ,u uv uf etc. in the mean-flow equations in a way 

which close these equations by relating the turbulence correlations to the averaged 

dependent variables 

 

○ Hypotheses must be introduced for the behavior of these correlations which are based on 

empirical informations.  

→ Turbulence models always contain empirical constants and functions. 

→ Turbulence models do not describe the details of the turbulent fluctuations but only the 

average effects of these terms on the mean quantities.  

 

○ Parameterization of turbulence  

~ core of turbulence modeling  

~ local state of turbulence and turbulence correlations are assumed to be characterized by 

only a few parameters. 

→ Two important parameters are velocity scale and length scale.  

 

○ Three steps of parameterization 

1) choose parameters 

2) establish relation between turbulence correlation and parameters 

3) determine distribution of these parameters over the flow field. 

 

10.4.1 Eddy Viscosity (Diffusivity) Concept 
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(1) Boussinesq (1877) introduced eddy viscosity, 
t
n assuming that, in analogy to the 

viscous stresses in laminar flow, the turbulent stresses are proportional to the mean 

velocity gradients. 

2

3
ji

i j t ij
j i

UU
u u k

x x
n d
æ ö¶¶ ÷ç ÷ç +- = -÷ç ÷ç ¶ ¶ ÷çè ø

                    (10.23) 

 

where k = turbulent kinetic energy per unit mass; 
ij
d = Kronecker delta, = 1 for 

i j= and = 0 for i j¹  

2 2 21
( )
2

k u v w= + +                               (10.24) 

 

(2) Eddy viscosity, 
t
n  

~ not a fluid property, and depends on state of the turbulence 

~ may vary considerably over the flow field  

~ is proportional to a velocity scaleV̂ , and a length scale L 

∝ ˆ
t
VLn                                            (10.25) 

 

(3) Turbulent heat or mass transport 

~ turbulent heat or mass transport is assumed to be proportional to the gradient of the 

transported quantity:  

i t
i

u
x

f
¶F

- = G
¶

                                    (10.26) 
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where 
t

G = eddy (turbulent) diffusivity of heat or mass  

 

(4) Turbulent Prandtl (heat) or Schmidt number (mass), 
t

s  

t
t

t

n
s =

G
                                         (10.27) 
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10.4.2 Types of Turbulence Models 

~ Classification of turbulence model according to the number of transport equations used 

for turbulence parameters.  

 

(1) Zero-Equation Models 

~ do not involve transport equations for turbulence quantities 

1) Constant eddy viscosity (diffusivity) model 

2) Mixing-length model  

3) Free-shear-layer model 

 

(2) One-Equation Models 

1) k -equation model 

2) Bradshaw et al.'s model 

 

(3) Two-Equation Models  

1) k e-  model 

2) lk-  model 

 

(4) Turbulent Stress/Flux-Equation Models 

1) Reynolds-stress equations 

2) Algebraic stress/flux models 

 

 

10.4.3 Zero-Equation Models 

(1) Constant Eddy Viscosity (Diffusivity) 
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~ simplest turbulence model 

~ used in depth-averaged model in which horizontal momentum transport is not , heat 

and mass transfer cannot be separated from dispersion effect due to vertical non-

uniformity 

~ use constant eddy viscosity (diffusivity) over the whole flow field  

~ appropriate only for far-field situations where the turbulence is governed by the natural 

water body and not by local man-made disturbances such as discharge jets 

- When turbulences are mainly bed-generated, as in the channel flow 

 

*duaG =  

 

(2) Turbulent (eddy) diffusion coeff  ε (Fischer et al., 1979) 

*0.067
v

due =     for uniform, straight channel  

*0.15
v

due =       for uniform, straight channel  

*0.60
v

due =       for meandering rivers 

 

(3) Dispersion coeff. K 

*5.93K du= ,   due to vertical variation (Elder, 1959)  

*150 300K du= - ,   due to transverse variation (Fischer et al., 1979) 

*5.71 11.5K du= - ,  flow zone only separating recirculating regions  

in the channel (Seo and Maxwell, 1992)  
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(4) Mixing-Length Model  

1) Near-field problems involving discharge jets, wakes, and the vicinity of banks and 

structures  

- assumption of a constant eddy viscosity is not sufficient  

- distribution of 
t
n over the flow field should be determined 

 

2) Prandtl's mixing-length hypothesis (Prandtl, 1925) 

Prandtl assumed that eddy viscosity 
t
n is proportional to a mean representation of 

the fluctuating velocity V̂ and a mixing-length lm. 

ˆ
t m
V ln µ                                       (A) 

Considering shear layers with only one significant turbulent stress (uv ) and velocity 

gradient /U z¶ ¶ , he postulated as  

ˆ
m

U
V l

z

¶
=

¶
                                    (B) 

 

Combine (A) and (B) 

2

t m

Ul
z

n ¶=
¶

                                     (10.28) 

 

i) Boundary-layer flows along walls: 

① Near-wall region 

m
l zk=  

in which k= von Korman constant (0.4) 
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② Outer region 

m
l dµ  

in which δ= boundary layer thickness 

 

ii) Free shear flows … mixing layers, jets, wakes 

m
l bµ  

where b = local shear-layer width 

 

 
Plane mixing 

layer 
Plane 

jet 
Round 

jet 
Radial 

jet 
Plane 
wake 

m
l

b
 0.07 0.09 0.075 0.125 0.16 

 

 

 

 

 

 

 

 

(5) Effect of Buoyancy  

~ Buoyancy forces acting on stratified fluid layers have a strong effect on the vertical 

turbulent transport of momentum and heat or mass 

→ eddy viscosity relations for vertical transport must be modified by introducing a 

Richardson number correction  
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Define gradient local Richardson number 
i
R as  

2

/
i

g z
R

U
z

r
r
¶ ¶

= -
æ ö¶ ÷ç ÷ç ÷çè ø¶

                               (10.29) 

 

~ ratio of gravity to inertial forces 

 

(6) Munk-Anderson (1948) relation  

0.5

0
( ) (1 10 )

tz tz i
Rn n -= +                                 (10.30a) 

( ) ( ) 1.5
0
1 3.3tz tz i

R
-

G = G +                                     (10.30b) 

0

1
1 , 0m

i i
m

l
R R

l
b= - >    (stable stratification)              (10.31a) 

( )
0

1/4

/ 2
, 01m m ii

l l RRb
-

= <-  (unstable stratification)      (10.31b) 

 

in which
1 2
7, 14b b» » ; subscript 0 refers to values during unstratified    

conditions( 0
i
R = ).  

 

(7) Mixing length model for general flows 

1

2
2 ji i

t m
j i j

UU U
l

x x x
n

é ùæ ö¶¶ ¶÷çê ú÷ç += +÷ê úç ÷ç ¶ ¶ ¶÷çê úè øë û
 

 

~ very difficult to specify 
m
l  in complex flow  
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~ 
m
l in general duct flows (Buleev, 1962)  

 

1 1
m D
l dk

p d
= Wò  

in which δ= distance of the point at which 
m
l is to be determined from wall along 

direction Ω; D = integration domain (= cross section of the duct) 

 

(8) Limitation of Mixing length model 

1) Mixing-length distribution is empirical and rather problem-dependent.  

→ model lacks universality 

2) Close link of eddy viscosity (diffusivity) with velocity gradient, i.e. 0
t
n =  when 

0i

i

U

x

¶
=

¶
, implies that this model is based on the assumption of local equilibrium 

of turbulence. 

<→ turbulence is locally dissipated by viscous action at the same rate as it is produced  

by shear.> 

→ Transport and history effects are neglected (turbulence generation at previous 

times). 

→ This model is not suitable when these effects are important as is the case in 

rapidly developing flows, recirculating flows and also in unsteady flows. 

 

(9) Heat and mass transfer  

 The mixing-length hypothesis is also used in heat and mass transfer calculations.  
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21t
t m

t t

Ul
z

n
s s

¶G = =
¶

 

 

where 
t

s = turbulent Prandtl (Schmidt) number  

= 0.9 in near-wall flows 

0.5 in plane jets and mixing layers 

0.7 in round jets 

1) Buoyancy effect on t  

→ Munk-Anderson formula  

0

1.5

0.5

(1 3.33 )

(1 10 )
t i

t i

R

R

s
s

+
=

+
 

 

2) Shortcomings of mixing-length model 

i) 
t
n and 

t
G vanish whenever the velocity gradient is zero. 

For pipes and channels,  

ⓐ
max

centerline 0.8( )
t t
n n»   in reality  

ⓐ0 centerline 0
t t

U

z
n

¶
« =  = G =

¶
 

 

ii) The mixing-length model implies that turbulence is in a state of local equilibrium. 

→ Thus, this model is unable to account for transport of turbulence quantities.  

 

 

 



Chapter 10 Turbulence Models and Their Applications  

10-25 

3) Prandtl's free-shear-layer model 

Prandtl (1942) proposed a simpler model applicable only to free shear layers. (mixing 

layers, jets, wakes) 

m
l dµ  

max min
V̂ U Uµ -  

max mint
C U Un d\ = -  

   
Plane mixing 

layers  
Plane

jet 
Round

jet  
Radial 

jet  
Plane 
wake  

 
C 

 
0.01 

 
0.014 0.01 

 
0.019 

 
0.026 

 

 

10.4.4 One-Equation Models 

- This model accounts for transport or history effects (time-rate change) of turbulence 

quantities by solving differential transport equations. 

 

- One-equation models determine the fluctuating velocity scale from a transport equation 

rather than the direct link between this scale and the mean velocity gradients. 

 

(1) K-Equation Model 

1) Velocity fluctuations are to be characterized by k where k is the turbulent kinetic 

energy per unit mass defined as  

2 2 21
( )
2

k u v w= + +  

 

2) Eddy viscosity 
t
n  
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ˆ
t
V Ln µ  

'

t
c kLmn = … Kolmogorov-Prandtl equation  

in which 'cm = empirical constant.  

 

3) Turbulent Kinetic Energy (TKE) equation  

~ Exact form can be derived from the Navier-Stokes equation. 

~ Exact equation contains certain higher-order correlations which must be 

approximated by models in order to achieve a closure of the equations. 

 

~ For high Reynolds number, this equation reads 

2
ij j

i i ji
i i i

Uk k u u pU u uu
t x x xr

é ùæ ö ¶¶ ¶ ¶ ê ú÷ç ÷+ = - -ç +ê ú÷ç ÷¶ ¶ ¶ ¶çè øê úë û
 

rate of      advective        diffusive transport         production by  
change      transport             due to velocity and          turbulent shear 
of k        due to mean         pressure fluctuations        stress = P  

motion  
 

i i
i

j j

u u
g u

x x
b f n

¶ ¶
- -

¶ ¶
 

buoyant production   viscous dissipation 
/ destruction = G     into heat = ε 
due to buoyancy 
force 

 

P = transfer of kinetic energy from the mean motion to the turbulent motion (large scale 

eddies) 

G = exchange between the turbulent kinetic energy k and potential energy 
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→negative for stable stratification (k is reduced, turbulence is damped while potential 

energy of the system increases)  

→positive for unstable stratification (k is produced at the expense of the potential 

energy) 

ε = transfers kinetic energy into internal energy of the fluid  

= negative (sink) 

 

4) Energy cascade  

→ Kinetic energy extracted from mean motion is first fed into large scale turbulent 

motion.  

→ This energy is passed on to smaller and smaller eddies by vortex stretching (vortex 

trail, vortex street) until viscous force become active and dissipate the energy.  

 

5) Local isotropy  

- Large-scale turbulences are anisotropic, whereas small-scale turbulences are isotropic. 

- Because of interaction between large-scale turbulent motion and mean flow, the large-

scale turbulent motion depends strongly on the boundary conditions. 

→ large-scale turbulence = anisotropic 

 

- During the energy cascade process, energy is passed on to smaller eddies by vortex 

stretching.  

→ The direction sensitivity is diminished.  

→ small-scale turbulence = isotropic 
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6) Modeled form of the k-equation 

~ The exact k-equation contains new unknown correlations. 

→ To obtain a closed set of equations, model assumptions must be introduced for these 

terms. 

 

i) diffusion term 

~ In analogy to the diffusion expression for the scalar quantityԄ, the diffusion flux of k 

is assumed proportional to the gradient k. 
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in which 
k

s = empirical diffusion constant. 

 

ii) Reynolds stress 
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iii) heat (mass) flux 

t
i

t i

u
x

n
f

s
¶F

- =
¶

 

in which t = turbulent Prandtl or Schmidt number 
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iv) viscous dissipation 

3/2

D

k
c
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in which 
D
c = empirical constant.  

Substitute  i) ~ iv) into exact k-equation  
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~ This model is restricted to high Reynolds number flows; 

' 0.08 1
D k

c c andm s» »  

 

~ For low Reynolds number flows, a viscous diffusion term should be accounted for 

and empirical constants are functions of the turbulent Reynolds 

number,Re /
f

kL n= . 

 

7) Special case of local equilibrium 

~ rate of change, advection and diffusion are negligible.  

→ production of k is equal to dissipation.  

For non-buoyant shear layers 
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Substitute this into Kolmogorov-Prandtl expression 
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Set 
m
l = mixing length =

1
3 4'
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 → mixing-length model 

 

8) Length-scale determination  

~ Because the length scale L appears both in Kolmogorov-Prandtl equation and in 

dissipation term of the k-equation, this must be specified empirically.  

~ In most models, L is determined from simple empirical relations similar to those for 

the mixing length  lm. 

→ Launder and Spalding (1972) for estuary 

Smith and Takhar (1977) for open-channel 

 

9) Bobyleva et al. (1965) 's length scale formula  

~ similar to von Kaman's formula  

/
L
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Y
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where k= von Karman's const. 
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1

2k

L
Y =  =  turbulence parameter 

 

~ applicable to flows where turbulent transport is mainly in vertical direction 

~ When the turbulence is in local equilibrium in the shear layer, 
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→ von Karman's formula 

 

(2) Bradshaw et al.'s Model (uv -equation model) 

~ This model does not employ the eddy-viscosity concept. 

~ It solves a transport equation for the shear stressuv . 

 

For wall boundary layers (2-D) 

1
0.3

uv
a const

k
= » » (experiment) 

 

Convert k-equation into uv -equation for steady flows 

3/2

11 1
2

max( )

advection diffusion production dissipation

uv uv

a a U uv
U V uvGuv uvx y y y L

¶ ¶
¶ ¶é ù+ = - - -ê ú¶ ¶ ¶ ë û ¶

 



Chapter 10 Turbulence Models and Their Applications  

10-32 

in which 
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1) Heat and Mass Transfer  

i) Find eddy viscosity (
t
n ) or the shear stress (

i j
u u ) using one-equation model. 

ii) Use gradient-diffusion concept to calculate heat and mass transfer 
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iii) Solve scalar transport equation  

 

2) Assessment of one-equation models 

i) Avdvantages : 

① One-equation models can account for advective and diffusive transport and for 

history effects on the turbulent velocity scale.  

→ It is superior to the mixing-length model when these effects are important 

(Examples:  nonequilibrium shear layers with rapidly changing free stream 

conditions, abrupt changes in the boundary conditions, shear layers in estuary 

with velocity reversal, heat and mass exchange in area with vanishing velocity 

gradients) 
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② Buoyancy term appears automatically in the k-equation model. 

 

ii) Disadvantages;  

①The application is restricted to shear-layer situation not applicable to more 

complex flows. 

②The empirical formulas for calculating length scale in general flows so far been 

tested insufficiently. 

 

 

10.4.5 Two-Equation Models 

  ○ Length scale L is also subject to transport processes in a similar manner to the kinetic    

    energy k. 

Examples:  

① Eddies generated by a grid are advected downstream so that their size at any station 

depends on their initial size. → history effect 

② Dissipation destroys the small eddies and thus effectively increases the eddy size.  

③ Vortex stretching connected with the energy cascade reduces the eddy size. 

→ The balance of all these processes can be expressed in a transport model for L. 

 

(1) Length scale equations  

m nZ k l=   ← general form 

 

1) Energy dissipation rate:  

3/2 /k Le µ   by Chou (1945), Davidov (1961), Jones & Launder (1972) 
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kLe µ  by  Rotta (1968) 

2) Frequency: 
1

2k L by Kolmogorov (1941) 

3) Turbulence vorticity: 2/k L by Spalding (1971), Saffman (1970) 

 

(2) Length scale transport equation 

~ exact form can be derived from Navier-Stokes eq. 

1 2
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S = secondary source term which is important near walls  

 

(3) The k e- model 

- Z e= model works better near walls than other equations.  

- The e -equation does not require a near-wall correction term S. 

 

○ At high Reynolds numbers where local isotropy prevails, 
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where n = molecular kinematic viscosity 

 

- Exact e -equation can be derived from N-S equations for fluctuating vorticity.  

→ rate of change + advection = diffusion + generation of vorticity due to vortex 

stretching + viscous destruction of vorticity  

→ need model assumptions for diffusion, generation, and destruction terms (diffusion is 

modelled with gradient assumption). 

 

(4) Modeled  -equation 
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where P = stress production of kinetic energy k; 

G = buoyancy production of kinetic energy k 

 

(5) Complete k e- model 
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Substitute (b) into (a)  

3/2 2

' 'D
t D

c k k
c k c cm mn

e e
= =  

 

Set '
D

c c cm m=  

2

t

k
cmn

e
=                                                 ① 

t
t

t

n
s

G =                    ② 

 

: jt i i
i t

k i i ji i j

t
i
t i

UU Ukk k
k eq U

x x xt x x x

g
x

n
n

s
n

b e
s

æ öæ ö ¶¶ ¶¶¶ ¶ ¶ ÷ç÷ç ÷÷ ç +- + = +ç ÷÷ çç ÷÷ç ç¶ ¶ ¶¶ ¶ ¶ ¶÷çè ø è ø
¶F

+ -
¶

 ③         

 

( )
2

1 23
: t

i
ii i

eq U c cP c G
xt x x k ke ee

e

n ee e e e
e

s

æ ö¶¶ ¶ ¶ ÷ç ÷- + = + -ç +÷ç ÷ç ¶¶ ¶ ¶ è ø
       

          ④ 

 


