
Principal mechanisms for mass transport

- Advection

- Dispersion/Diffusion

- Reactions: degradation, precipitation, adsorption, partitioning, ion exchange, etc.  
whereC = concentration of a contaminant [M/L

3
];

vz = seepage velocity (or average linear velocity) [L/T];

D = diffusion coefficient of the contaminant [L
2
/T]; and

z = travel distance [L].

D h = D m+ D'
whereDh = hydrodynamic dispersion coefficient;

Dm = molecular diffusion coefficient; and

D' = mechanical dispersion coefficient.D' = α⋅v z
where α = dispersivity [L].

Overall Mass Transport = Mass Transport due to Advection

+ Mass Transport due to Diffusion/Dispersion

Mass Transport due to Advection
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Fig. 5.1 Elemental control volume for mass transport

  
whereMx,i = mass flux into the unit volume along x direction  = {q x, i⋅C i+△( q x⋅C)}⋅(△y⋅△z)≅( q x, i⋅C i+ ∂q x⋅C∂x ⋅△x)⋅(△y⋅△z)
whereMx,o = mass flux out from the unit volume along x directionM x, i-M x, out =- ∂∂x ( q x⋅C⋅△x⋅△y⋅△z)M y, i-M y, out =- ∂∂y ( q y⋅C⋅△x⋅△y⋅△z)M z, i -M z, out =- ∂∂z ( q z⋅C⋅△x⋅△y⋅△z)∴ 



 
where, ne = effective porosity.∴ ∂C∂t = 1ne ⋅{ ∂∂x (qx⋅C)+ ∂∂y (qy⋅C)+ ∂∂z (q z⋅C)}
or n e⋅ ∂C∂t =-▽⋅( q⋅C) ∂C∂t =-v⋅▽C
Mass Transport due to Dispersion/Diffusion    = {-D h⋅( ∂C∂x ) i- ∂∂x (D h⋅ ∂C∂x )⋅△x}⋅(n t⋅△y⋅△z)=-D h⋅( ∂C∂x ) i⋅(n t⋅△y⋅△z)- ∂∂x ⋅(D h⋅ ∂C∂x )⋅( n t⋅△x⋅△y⋅△z)∴Mx, i-Mx, out = ∂∂x { (D h⋅ ∂C∂x )⋅(n t⋅△x⋅△y⋅△z)}∴My, i-My, out = ∂∂y { (D h⋅ ∂C∂y )⋅(n t⋅△x⋅△y⋅△z)}∴M z, i-M z, out = ∂∂z { (D h⋅ ∂C∂x )⋅( n t⋅△x⋅△y⋅△z)}M i-Mout = (n t⋅△x⋅△y⋅△z)⋅{ ∂∂x (D h⋅ ∂C∂x )+ ∂∂y (Dh⋅ ∂C∂y )+ ∂∂z (Dh⋅ ∂C∂z )}M i-M out = ∂C∂t ⋅( n t⋅△x⋅△y⋅△z)



Overall Mass Transport∂C∂t = D h⋅ ▽ 2C-v⋅▽C ( ▽C = Divergence of C)

for one-dimensional case ∂C∂t =Dh⋅ ∂2C∂z 2 -v z⋅ ∂C∂z
(1) Biodegradation

(2) Ion Exchange

(3) Precipitation

Seepage velocity    
wherev = specific discharge [L/T];

Q = flow rate [L
3
/T];

A = cross-sectional area [L
2
];

Kh = hydraulic conductivity or permeability [L/T];Δh = hydraulic head difference [L];Δl = distance along the fluid flowing direction [L]; and



i = hydraulic gradient.

Effective porosity

Total porosity (nt) is readily measurable.

Relationship between effective porosity and total porosity is case-dependent.

Typical compacted clay liner, ne = 90% of nt (Kim, et al., 2001).

Using the olumn test with tracers, effective porosity can be estimated.
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Fig 5.2 Breakthrough concentration data and mathematical breakthrough curve

Partition Coefficient

- Many previous studies have reported that the partition coefficients estimated from batch tests

and column tests are significantly different.

- Partition coefficient estimation is also affefted by the water chemistry (e.g., pH, DOM,

temperature, etc.)

- The effect of solid:liquid ratio in batch test on the estimated partition coeffi ent
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Fig. 5.3 Effect of soil:solution ration on the observed partition coefficient of between soil and

water (Kim, et al., 2003)

∂C∂t =Dh⋅ ∂2C∂z 2 -v z⋅ ∂C∂z
Ogata and Banks (1961)

Initial condition:

C(z,0) = 0 0 < z <

Boundary conditions:

C(0,t) = Co 0 < t; and

C( ,t) = 0 0 < t.C( z, t)= C o2 ⋅[erfc{ z-v z⋅t2 D h⋅t }+exp (
v z⋅zD h )⋅erfc{ z+v z⋅t2 D h⋅t }]erfc(x) = 2Π ⋅⌠⌡ ∞x exp(-u 2)du

whereerfc = complementary error function; and

exp = exponential function.



Table 5.1 Sorption isotherm models and their corresponding retardation equations

Isotherm Isotherm model Retardation equation

Linear

model

C s = K p⋅C l
where Cs = solid phase concentration;

Kp = partition coefficient (or

distribution coefficient); and

Cl = liquid phase concentration.

R f = 1+ (1-n t )n t ⋅ρ s⋅K p
where ρs = soil solid density.

Freundlich

model

C s =K f⋅C l n f
where Kf and nf = Freundlich constant.

R f = 1+ (1-n t )n t ⋅ρ s⋅n f⋅K f⋅ C l n f-1
Langmuir

model

C s = Q o⋅K l⋅C l1+K l⋅C l
where Qo = saturation constant; and

Kl = Langmuir constant.

R f = 1+ ( 1-n t )⋅ρ s⋅Q o⋅K ln t⋅(1+K l⋅C l) 2
linear isotherm model (Vermeulen and Hiester, 1952).∂C∂t = DhR f ⋅ ∂2C∂z 2 - v zR f ⋅ ∂C∂z
whereRf = Retardation factor (Hashimoto et al., 1964).

Initial condition:

C(z,0) = 0 0 < z <

Boundary conditions:

C(0,t) = Co 0 < t; and

C( ,t) = 0 0 < t.C( z, t) = C o2 ⋅[erfc{ R f⋅z-v z⋅t2 R f⋅D h⋅t }+exp (
v z⋅zD h )⋅erfc{ R f⋅z+v z⋅t2 R f⋅D h⋅t }]

Lindstrom et al., 1967; Gershon and Nir, 1969; and van Genuchten and Alves, 1982

Initial condition: C(z,0) = C i
Boundary conditions:



v⋅C( 0 +,t)-D⋅ dC( 0 +,t)dz = v⋅C o ;dC(∞, t)dz =0C( z,t)-C iC o-C i = 12 ⋅[erfc(ξ 1)+2⋅ ξ 4π ⋅exp ( ξ 21)-(1+ξ 2+ξ 4)⋅exp (ξ 2)⋅erfc( ξ 3)]ξ 1 = R f⋅z-v z⋅t2⋅ R f⋅D h⋅tξ 2 = v z⋅zD hξ 3 = R f⋅z+v z⋅t2⋅ R f⋅D h⋅tξ 4= v 2z⋅tD h⋅R fPeclet number = v z⋅dD m (Perkins, et al., 1963)

whered = mean particle diameter.

Peclet number > 6 : dispersion dominant zone; and

Peclet number < 0.02 : diffusion dominant zone.

Shackelford (1994) P c = v z⋅LD m
wherePc = column Peclet number; and

L = travel distance [L].

Pc > 50 : advection dominant zone; and

Pc < 1 : diffusion dominant zone.



(i) Partitioning between leachate and geomembrane;

(ii) Diffusion within the geomembrane;

(iii) Partitioning between geomembrane and groundwater.
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Fig. 5.3 Contaminant transport mechanisms through a composite liner system consist of

geomembrane and compacted soil liner

(1) Partitioning K= ρ GM⋅ C GMC l
whereK = partition coefficient [dimensionless];ρGM = density of geomembrane [M/L

3
];

CGM = concentration of a solute in geomembrane [M/M]; and

Cl = concentration of the solute in the solution [M/L].

(2) Diffusion

Fick's law J diffusion =-D⋅∇C GM



and ∂CGM∂t =∇2CGM
whereD = diffusion coefficient [L

2
/T].

Permeation P ≡ D⋅K
where P = permeability coefficient.

(3) Physical Damage on Geomembranes

Giroud and Bonaparte (1989)

- High QA/QC 1 hole/acre (= 247 holes/km
2
)

- Low QA/QC 10 holes/acre.

Pin holes (d << tg): Poiseuille's equation for flow through a capillary tube.Q= π⋅ρ w⋅g⋅h w⋅d 4128⋅η w⋅t g
whereQ = leakage rate through a geomembrane hole [L

3
/T];ρw = density of water;

hw = water height on the top of geomembrane;

d = diameter of hole;ηw = dynamic viscosity of water; and

tg = thickness of geomembrane.

Holes (d > tg): Bernoulli's equation for free flow through an orifice.Q= C B⋅a⋅ 2⋅g⋅h w
whereCB = dimensionless coefficient (= 0.6 for sharp edge); and

a = hole area.



For composite liner system

In the case of good contact; Q= 0.21⋅ hw 0.9⋅a 0.1⋅ k s0.74
In the case of poor contact; Q= 1.15⋅ hw 0.9⋅a 0.1⋅ k s0.74
whereQ = (m

3
/sec);

hw = (m);

a = (m
2
); and

ks = hydraulic conductivity of underlying soil liner (m/sec)

Assumptions:

(i) i < 2;

(ii) T = 20
o
C (or QT= ηw, 20ηw,T ⋅Q20);

(iii) 1x10
-10

m/sec < ks < 1x10
-6

m/sec; and

(iv) > ks.

(1) Batch test K= ρ GM⋅(C l, o-C l, e)⋅V lMGM⋅C l, e
whereρGM = density of geomembrane (g/cm

3
);

Cl,o = initial concentration of a solute in the solution (mg/L);

Cl,e = equilibrium concentration of the solute in the solution (mg/L);

Vl = volume of liquid contacting with geomembrane (mL); and

MGM = mass of geomembrane applied (g).
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Fig. 5.4 A batch test apparatus for measurement of partition and diffusion coefficients of

geomembranes. ∂CGM∂t =D⋅ ∂2CGM∂x2
Initial condition: CGM(x,0)= 0 -l < x < l

Boundary conditions:a⋅ ∂C l∂t =∓D⋅ ∂CGM∂x or
aK ⋅ ∂C l∂t =∓D⋅ ∂CGM∂x x = ± l, t > 0

where a = V l2⋅A
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Figure 5.5 Schematic diagram of diffusion model from a well mixed solution of limited

volume.

An analytical solution for small values of time (before solute reaches at the center of

geomembrane): MtM∞ =1- ∑∞n=1 2⋅α⋅(1+α)1+α+α 2⋅q 2n ⋅e -D⋅ q 2n⋅t/l 2
whereMt = amount of solute in geomembrane at time t [M];

M = amount of solute in geomembrane in the inifinite time (at equilibrium) [M];

=α a / (K l) [dimensionless]; and

qn = non-zero positive roots of tan(q n) =-α⋅q n.
An alternative solution, M tM∞ = (1+α)⋅[ 1-e T/α 2⋅erfc T/α 2]T= D⋅t/l 2
In terms of concentration in solution at time, t, (Reynolds et al., 1990)C l, tC l, o = e T/α 2⋅erfc T/α 2
and t 1/2 = 0.585⋅ a 2K 2⋅D
where t1/2 = time for Cl,t/Cl,o = 0.5.

Numerical Analysis
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Fig 5.6 An example of partition and diffusion coefficient estimation using mathematical model

and observed data from batch test (Joo et al., 2004)
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Fig 5.7 Relationship between the octanol-water partition coefficients (KOW) and the HDPE-water

partition coefficients (KHDPE-W) of various organic compounds in dilute aqueous solutions (Joo, et al.

2004)
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Fig. 5.8 Relationship between the diffusion coefficients (D) and molecular diameter (dm) of organic

compounds for dilute aqueous organic compound

(2) Compartment test
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Fig. 5.9 Example of schematic of confined double-compartment apparatus.
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Fig. 5.10 An example of partition and diffusion coefficient estimation using mathematical

model and observed data from compartment test




