g Chl. Java Review

© copyright 2006 SNU IDB Lab




i Bird’s eye view

= Requirements of program development

= Representing data in an effective way
= We need data structures

= Developing a suitable procedure
= We need algorithm design methods

= Before you go, you need to be
= A proficient java programmer
= An adept analyst of computer programs

adept = skillful = proficient

SNU
Data Structures p) IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 3 IDB Lab.



i Introduction (1/2)

= When examining a computer program
« Is it correct?
= How easy is it to read the program?
= Is the program well documented?
= How easy is it to make changes to the program?
= How much memory is needed to run the program?
=« For how long will the program run?
=« How general is the code?
= Can the code be compiled & run on a variety of computers?

SNU
Data Structures 4 IDB Lab.



i Introduction (2/2)

= Regardless of the application, the most important attribute of a
program is correctness

= The goal of software courses is to teach techniques that will enable
you to develop correct, elegant, and efficient programming

= This course “data structure” is regarding efficient programming
techniques

= Let’s begin with JAVA

SNU
Data Structures 5 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 6 IDB Lab.



i Java Skeleton (1)

= Every Java program
= Class with data member & method member

= Stand-alone program
= Method main()
» javac programname, and then java programname

= Applet
= After compilation, applet is embedded in HTML
=« Method /nit()
= Web browser or applet viewer

SNU
Data Structures 7 IDB Lab.



i Java Skeleton (2)

= Source File

= A plain text file ( *.java ) containing the Java code

=« The Java compiler ( javac ) processes the source file to produce
a byte code file ( *.class )

A source file may have
= Only one public class (or interface)
= And an unlimited # of default classes (or interfaces) defined within it

The name of the source file must be the same as the name of the
“only one” public class

Package name can be specified in the source file
= Compilation created the directory for the classes in a package

SNU
Data Structures 8 IDB Lab.



i Java Skeleton (3)

= Declarations

= A declaration introduces a class, interface, method, package, or
variable into a Java program

= The order in which you place your declarations in the source file
IS important
« 1. The package declaration (optional, at the top)
« 2. The import function (optional)
= 3. Any class declarations

s Class

= A declaration for a potential object

= You can think of a class as a skeleton or framework that contains
methods but no data

= Once the class is initiated it becomes an object (or an instance)

SNU
Data Structures 9 IDB Lab.



i Java Skeleton (4)

= Package
= An entity that groups classes together
= Packages perform the following functions
= Organize and group classes
= Help to specify access restrictions to variables and methods
= Make it easy to import other programmers’ classes into your code

= The name of the package must reflect the directory structure
used to store the classes in your package after compilation

= Place the package declaration at the top of the source file

SNU
Data Structures 10 IDB Lab.



i Java Skeleton (5)

= Each package defines a directory at compile time

packagemisc;//This program is a member of the package misc

public classNelcome//name of this class is Welcome

{

public static voidmain(String argsl])
{

System.out.printin(*Welcome to the text Data Struesy;
}

} [IWelcome.java is in the directory misc

SNU
Data Structures 11 IDB Lab.



Importing Classes and Packages (1/2)

= An import statement allows you to use shorthand in your source code so
that we don't have to type a fully qualified name for each class you use

= Use a class that is contained in some other program
= Require a path to this class

= import java.lang.*;

System.out.printin(*Welcome”); t

out is a data member of

System is a class of System class

java.lang package System println is a method

of PrintStream

out: java.io.PrintStream SNU
Data Structures 12 IDB Lab.




Importing Classes and Packages (2/2)

= You can select classes within a package, or select an entire package of
classes that you may use in your code

packageamisc;
Importjava.lang.*; //default (imported automatically)
Importjava.io.*; //import entire java.io package

Importjava.io.PrintStream; //import java.io.PrintStream class
public classWelcome \
{ public static voidnain(String args[])

{ System.out.printin(*“Welcome”); } -
}

class myclass{ ....}.

class myextraclass{ ...}.

SNU
Data Structures 13 IDB Lab.



iSupercIasses and Subclasses (1/2)

Object

Mumber | | Stong | [Throwable

loput
Stream

Cutput
Strearm

superclass
subclass

/\ /\ /\ / relationship

lntcger Double

Excecption | Eccor

File Cutpuy |Filter Cutpun
Stream Stream

N

Funtime
Ezception

osuchblethod
Exception

N\

CutputStreacn

Butfered PrintStrearn

Figure 1.1 Hierarchy for a few Java classes

SNU
IDB Lab.



Superclasses and Subclasses (2/2)

= All classes are subclasses of java.lang.Object
= No class has more than one superclass: single inheritance

java

t lang

7L
Object System

public class WelcomextendsNameOfSuperClass // Specify the superclass

publicfinal class Welcome // prevent extending the class

SNU
Data Structures 15 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 16 IDB Lab.



iThe JAVA Complier and Virtual Machine (1/2)

= JAVA compiler
= Javac ProgramName.java // generates ProgramName.class
= Java ProgramName // JVM interprets ProgramName.class

byte code (program.class)

SNU
Data Structures 17 IDB Lab.



iThe JAVA Complier and Virtual Machine (2/2)

= JVM Advantage

= Write Once, Run Anywhere =» Portability
= Compact size
= Higher level of security

= JVM Disadvantage
= Slower than C or C++

SNU
Data Structures 18 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 19 IDB Lab.



i Documentation Comments (1/3)

= Three ways to write comments
= // beginning with a double slash
« /*and ending with */  =» general comments

= /** and ending with */ =» documentation comments
= Java documentation generation system “javadoc”

javadoc —d docDirectory nameOfPackage
f
generation of documentation in the

docDirectory for nameOfPackage

SNU
Data Structures 20 IDB Lab.



i Documentation Comments (2/3)

/** Method to find the position of the largest integer.
@param a is the array containing the integers
@param n gives the position of the last integer
@throws lllegalArgumentException when n <0
@return position of max element in a[0:n}/

public static int max(int [] a, int n)

implementation of max comes here
SNU
Data Structures 21 IDB Lab.



i Documentation Comments (3/3)

javadoc —d docDirectory nameOfPacka_

Public static int max(int a[], int n)
Method to find the position of the largest integer
Parameters:
a Is the array containing the integers
n gives the position of the last integer
Returns:
position of max element in a[0:n]
Throws:
lllegalArgumentException - when n <0

SNU
Data Structures 22 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 23 IDB Lab.



i Data Types (1/3)

Type Default Space Range
{(bits)
boolean false 1 [true, false]
byte 0 8 [—128,127]
char \u0000 16 [\u000,\uFFFF]
double 0.0 64 +4.9 % 10524 |
to +1.8 » 10308
float 0.0 a2 +1.4% 1075
to £3.4 % 1038
int 0 32 -2,147,483,648
to 2,147 ,483,647
long 0 64 +9.2 % 107
short 0 16 [—32768,32767]

Java’s primitive data types

SNU
Data Structures 24 IDB Lab.



i Data Types (2/3)

= Primitive Data Types
= int, float, long, short, boolean, byte, char, double

= Nonprimitive Data Types
= Byte, Integer, Boolean, String
= Declared in java.lang package
= They have many useful methods of their own

String s = “hello”;
System.out.printin ( “The length of s is “sHength());

SNU
Data Structures 25 IDB Lab.



i Data Types (3/3)

= Creation of an object instance

= Primitive data type
« int thelnt; // an instance is created & default value is assigned

= Nonprimitive data type
« String s; // it creates an object that can reference a string
= String s = new String("Bye");

SNU
Data Structures 26 IDB Lab.



i Methods (1/2)

= Method
= A function or procedure to perform a well-defined task
public static int aba(t a, int b, int ¢ /[formal parameters
{ return at+b*c+b/c;
}
z = abck, X, /[ actual parameters
= In Java

= All method parameters are value parameters

SNU
Data Structures 27 IDB Lab.



i Methods (2/2)

= Java allows method overloading
= Same name with different signature

public static int abc(int a, int b, int ¢) {
return a+b*c+b/c;

}

public static float abc(float a, float b, float c) {
return a+b*c+b/c;

z = abc(10, 11, 12);
z = abc(9.9, 10.0, 10.1);

SNU
Data Structures 28 IDB Lab.



‘L SWAP — Changing References

public static void swap (Example x, Example y){

public class Example { int a; int b}
Example temp =Xx;

X =Y,
y =temp;
}
X a98df0
main T
heap
y cal5a0 \ X
g X calsal ).
swap temp calsal
heap
y a98df0 y

SNU
Data Structures 29 IDB Lab.



SWAP — Changing Data Member

lic static void swap2 (Example x, Example y){

nttemp = x.a public class Example { int a; int b}

Xx.a = y.a;
ya = temp;
}
X a98dfo
main
heap
y calsal
g X a98df0
swap
heap temp 1
y calsa0l

SNU
Data Structures 30 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 31 IDB Lab.



i Exceptions (1/4)

= Exception

= Means “exceptional condition”
= an occurrence that alters the normal program flow

=« Caused by a variety of happenings
= HW failures
= Resource exhaustion
= Good old bugs

= When an exceptional event occurs,
= An exception is said to be thrown

= The code that is responsible for doing something about the
error is called an exception handler

= The exception handler catches the exception

SNU
Data Structures 32 IDB Lab.



i Exceptions (2/4)

= Throwing an Exception

= System Built Exceptions

« ArithmeticException, ArrayIndexOutOfBoundsException,
IllegalArgumentException , IOException, RuntimeException, Error,......

= Can be taken care of by system automatically

= Some system built exceptions can be thrown by the user’s program
« public static int abc(int a, int b) throws IllegalArgumentException
= Proper exception handler must be provided by the user

= Some system built exceptions cannot be thrown by the user’s program
= subclasses of either RuntimeException class or Error class

SNU
Data Structures 33 IDB Lab.



i Exceptions (3/4)

= Handling Exceptions

try-catch-finally block

In a try block, exceptions can occur

In a catch block, exceptions are handled
Codes in finally block always get executed

public static inigetVolume (int a, int b, int c) {
if(@a<=0||b<=0]||c<=0)
throw newlllegalArgumentException ("All parameters must be"} 0
else
returna*b *c;

SNU
Data Structures 34 IDB Lab.



i Exceptions (4/4)

public static void main(String [] args) {

try {
System.out.printin getVolume(2, -3, 4);

}

catch(lllegalArgumentException e) {

System.out.println (“Some parameters have minus véjues.
System.out.printin (e);

}
catch(Throwable e) // Throwable class> Exception Class> many exceptions
System.out.printin (e);
}
finally { // this code gets executed whether or not an exuoe thrown in the try block
System.out.printin("Thanks for trying this program")

}

}

SNU

Data Structures 35 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 36 IDB Lab.



i Your Very Own Data Type

There is a case that you want to specify the format of U.S money with
a sign, dollars and cents and avoid the situation that

= dollars < 0
= cents < 0 or cents > 99
= If you declare the currency simply with the float data type, you cannot
avoid the situation such as
= Currency = 35.4755
= Currency = -9.888

SNU

Data Structures 37 IDB Lab.



i The Class Currency

= Define your own data types : Currency class
= Components of Currency : Data Member
= Sign, dollars, cents
= Operations for Currency : Methods
= Set their value
Determine the components
Add two instances of type Currency
Increment the value of an instance
Output

public class Currency

// data and method members of Currency come here

SNU
Data Structures 38 IDB Lab.



The Data Members of Currency

= Five data members
= PLUS, MINUS, sign, dollars, cents
= Keywords
= Public : Visible to all classes
= Static : PLUS and MINUS are class data members
= Final : PLUS and MINUS cannot be changed
= Private : Visible only within the class Currency

// class constants

public static final boolean PLUS = true;
public static final boolean MINUS = false;
// instance data members

private boolean sign;

private long dollars;

private byte cents;

SNU
Data Structures 39 IDB Lab.



The Method Members of Currency

= Constructor methods
= Automatically invoked when an instance is created

s Accessor methods
= Return the value of data member

= Mutator methods
= Change the data member value

= Output methods
= Converting a class instance into its output format

= Arithmetic methods
= Arithmetic operations on class instances

= Main method
= Present in all stand-alone Java applications

SNU
Data Structures 40 IDB Lab.



i The Constructors of Currency (1)

= Constructor Method name
= Same as the class name

= Access modifier: default, public, protected, private
= public Currency()

= Initialize the data members

public Currency (booleatneSign longtheDollars bytetheCent}¥

= this() invokes a constructor with the same signature
= Constructors never return a value

SNU
Data Structures 41 IDB Lab.



i The Constructors of Currency (2)

[** initialize instance to theSign $ theDollars.theCents
@throws lllegalArgumentException when theDollars &r0 theCents < 0 or theCents > 99 */
public CurrencybooleartheSign,ong theDollars byte theCents)
{ sign = theSign;
If (theDollars < 0)
thrownew lllegalArgumentException ("Dollar value must be ®);
else dollars = theDollars;
If (theCents < 0 || theCents > 99)
thrownew lllegalArgumentException ("Cents must be betweand99");
else cents = theCents;

}

public Currency()/** initialize instance to $0.00 */
{this(PLUS, OL, (byte) 0);}
public Currency(double theValué)* initialize with double */

{setValue(theValue);} SNU
Data Structures 42 IDB Lab.



‘L Creating Instances of Currency

Currency g, h, 1, J; //declare variables

g = new Currency()/create instances using constructors
h = new Currency(PLUS, 3L, (byte)50);

| = new Currency(-2.50);

] = new Currency();

Or

Currency g = new Currency();

SNU
Data Structures 43 IDB Lab.



The Accessor Methods of Currency

[** @return sign */
public booleargetSign()
{return sign;}

[** @return dollars */
public longgetDollars()
{return dollars;

[** @return cents */
public bytegetCents()
{return cents;}

SNU

Data Structures 44 IDB Lab.



The Mutator Methods of Currency (1)

= Set or change the characteristics of an object
[** set sign = theSign */
public voidsetSign(boolean theSign)
{sign = theSign;}

[** set dollars = theDollars

* @throws lllegalArgumentException when theDollar &/
public voidsetDollars(long theDollars){
If (theDollars < 0)

throw newlllegalArgumentException ("Dollar value must be >3;0"
else dollars =theDollars;

}

SNU

Data Structures 45 IDB Lab.



The Mutator Methods of Currency (2)

[** set sign, dollars, and cents from a “double” data *
public voidsetValue(double theValue) {
If (theValue <0) {
sign = MINUS;
theValue = - theValue; }
else sign = PLUS;
dollars = (long) (theValue + 0.005);extract integral part
cents = (byte) ((theValue + 0.005 - dollars) * 100jet two decimal digits
}

[** set sign, dollars, and cents from a “Currency” aljé
public voidsetValue(Currency x)
{ sign = x.sign;
dollars = x.dollars;
cents = x.cents;

SNU
Data §tructures 46

IDB Lab.



Invoking Methods & Accessing Data Members

= Instance methods
= byte gCents = g.getCents()

= Class methods
= double a = Math.sqgrt(4.0)

= Accessing data members
= byte cents = x.cents

SNU
Data Structures 47 IDB Lab.



Output Method for Currency

= The output method: toString()
= Defined in the Object class

= Redefine toString()
= We can get the Java to output our object

/** convert to a string */
public String toString()
{ if (sign == PLUS) {return "$" + dollars + "." + cents;}
else {return "-$" + dollars + "." + cents;}

¥

SNU
Data Structures 48 IDB Lab.



Arithmetic Methods for Currency

public Currency add(Currency X)* @return this + x */

{ long al =dollars * 100 + cents;convert this to a long
If (sign ==MINUS) al =-al;
long a2 = x.dollars * 100 + x.cents;convert x to a long
If (x.sign == MINUS) a2 =-a2;
long a3 =al + az,
answer = new Currency();// convert result to Currency object
if (a3 <0){ answer.sign = MINUS; a3 = -a3; }
else answer.sign = PLUS;
answer.dollars = a3/ 100;

answer.cents = (byte) (a3 - answer.dollars * 100);
return answer;

}
public Currency increment(Currency K} @return this incremented by x */
{ setValue(add(x));
return this;
} SNU

Data Structures 49 IDB Lab.



Main method for Currency (1)

publi€ static void mai(string [] args)
{ /] test constructors
Currency g = new Currency(), h =new Currenty(B, 3L, (byte) 50),
| = new Currency(-2.50), j = new Currency();
/] test toString
System.out.printin ("The initial values are: 'g#+""+h+""+1+"" +]);
System.out.printin();

// test mutators; first make g nonzero
g.setDollars(2);

g.setSign(MINUS);

g.setCents((byte) 25);

l.setValue(-6.45);

System.out.println ("New values are" +g+"" +1);
System.out.printin();

SNU
Data Structures 50 IDB Lab.



i Main method for Currency (2)

// do some arithmetic
j = h.add(9Q);
System.out.printn (h+"+"+g+"="+);

System.out.print (i + " incremented by " + h + " is ")
l.increment(h);
System.out.printin(i);

j = l.add(g).add(h);
System.out.printin i+"+"+g+"+"+ h+""=));
System.out.printin();

j = i.increment(g).add(h);
System.out.printin(j);
System.out.printin(i);

} SNU
Data Structures 51 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Maodifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 52 IDB Lab.



Access Modifiers

Access Member Visibility

Modifier

defanlt member is wisible only to
classes in the same package

private member is wisible only within
the class C

protected | member is visible to all classes
in the same package and to subclasses
of C in other packages

public member is wisible to all classes
in all packages

Data Structures

SNU
53 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 54 IDB Lab.



Inheritance and Method Overriding

= Inheritance
= Data and method member from the superclass
= Newly defined member for the new class
= extends” means “ISA” relationship
= Method overriding
= Same signature as superclass
= Newly defined method is invoked
= No more overriding
= public final boolean equals(Object theObject)
= static, private methods cannot be overridden either

SNU
Data Structures 55 IDB Lab.



i Currency Revisited (1)

= Currency has many data members, which make the class

complicated

= What if we use only one data member named ‘amount’ which is cents
representation of the given money?

Money Data members of | Data members of
Currency CurrencyAsLong
sign=PLUS
$1.32 dollars=1 amount=132
cents=32
sign=MINUS
-$0.20 dollars=0 amount=-20
cents=20

Data Structures

56

SNU
IDB Lab.



i Currency Revisited (2)

CurrencyAsLong:
«Currency with additional private data member “am®dwhich is of type long
public class CurrencyAsLomngxtendsCurrency {
long amournt

public CurrencyAsLong add(CurrencyAsLong/X) @return this + x */
{return new CurrencyAsLong(amount + x.amount);}

public CurrencyAsLong increment(CurrencyAsLong X)
[** @return this incremented by x */
{ amount += x.amount;
return this;

}

SNU
Data Structures 57 IDB Lab.



i Currency Revisited (3)

public booleangetSign() { /** @return sign */
If (amount <0) return MINUS;
else return PLUS;
}
public long getDollars(){ /** @return dollars */
if (amount <0) return -amount/ 100;
else return amount/ 100;

}

[** Set the sign of amount to theSign.*For this tavork properly amount must be
nonzero. */
public void setSign(boolean theSign){
I/l change the sign as necessary
If ((@amount < 0 && theSign == PLUS) || (amount > 0 &&theSign == MINUS))
amount = -amount;

}

} I/ end of class CurrencyAsLong

SNU
Data Structures 58 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 59 IDB Lab.



i User-defined Exception Class

= We can define our own exception

public static void main(String[] args){
int n = Integer.parselnt(args[0]);
if (n==0) throw newDivideByZeroException();
System.out.printin(“Inverse of "+ n + “is 7 + (1.0 / n))

}

classDivideByZeroExceptiorextends ArithmeticException{
public DivideByZeroException() {
System.out.printin(“*Can not divide a number by zexo!”

}

SNU
Data Structures 60 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 61 IDB Lab.



i Generic Methods (1/3)

= Similar methods differing only in the data types of the
formal parameters

public voidswap (nt[] a, int i, int j{ public voidswap (loatf] a, int i, int j){
int temp = aij; float temp = aJi];
ali] = aj]; all] = a[l];
a[j] = temp; a[j] = temp;

} }

= One generic method can do the same job

public voidswapQbjecf] a, int i, int j){
Objecttemp = a[i;
ali] = aj];
a[j] = temp;

}

SNU
Data Structures 62 IDB Lab.



i Generic Methods (2/3)

= Primitive type = Impossible to write generic code

public static voicswap (nt[] a, inti, int)) {
// Don't bother to check that indexes i and j arbounds.
// Java will do this and throw an ArraylndexOutOfBdaEkxception

//'if i or j is out of bounds.

Int temp = a[i];
all] = afj];
afj] = temp;

SNU
Data Structures 63 IDB Lab.



Generic Methods (3/3)

= Non primitive type =» Generic code works for subclasses

public static voicswap (Object []a, inti, intj){
Object temp = a[i];
afi] = a[j]; @
a[j] = temp;
} (integer) (_Float>

public static voidmain ( String[] args){
Integer [] 1 = {new Integer(1), new Integer(3) wénteger(2)},
Float[] f ={new Float(0.3), new Float(0.2)ew Float(0.1)};
swap (1, 1, 2); // {1, 2, 3}
swap (f, 0, 2); //{0.1, 0.2, 0.3}

SNU
Data Structures 64 IDB Lab.



i Interface and Generic Method

= A Java interface

= A list of zero or more static final data members
= A list of zero or more method headers

= No implementation is provided

= No instance is created

= Similar to C++ “Abstract Class”

SNU
Data Structures 65 IDB Lab.



i Interface Computable

[** Interface to be implemented by all classes tleatpt the standard arithmetic

operations. */

public interfaceComputablé
public Object add(Object x) ;
public Object subtract(Object x) ;
public Object multiply(Object x) ;
public Object divide(Object x) ;
public Object mod(Object x) ;

[** @return this + x */
[** @return this - x  */
[** @return this * x */
[** @return quotient of this/ x  */
[** @return remainder of this / x */

public Object increment(Object x) ; /** @return this incremented by x */
public Object decrement(Object x); /** @return this decremented by x */

public Object zero();
public Object identity() ;

Data Structures

[** @return the additivezero element */
[** @return the multiplicative identity element */

SNU
66 IDB Lab.



Generic method using Computable

= Using method overload

public statiant abc (int a, int b, intc) public staticfloat abc (float a, float b, float c)

{ {

returna + b*c + b/c; returna + b*c + b/c;

} }

= Using generic method

public staticComputable abc (Computable a, Computable b, Comiautab

{
Computable t = (Computable) a.add (b.multiply(c));

return(Computable) t.add (b.divide(c));
}

SNU
Data Structures 67 IDB Lab.



Copying a reference vs. Cloning an object (1)

= Copying a reference

X = new Currency(3.42);

y =X

y.setValue(6.25);

System.out.printin(x);

/[l print “$6.25”

X

a98dfo

a98dfo

Data Structures

68

sign=PLUS
dollars=3>6
cents=422

SNU
IDB Lab.



Copying a reference vs. Cloning an object (2)

= Cloning an object

X = new Currency(3.42);
y = X.clone();

y.setValue(6.25);
System.out.printin(x); // “$3.42"

a98dfo

\>

calba0

fsign = PLUS X

dollars = 3
cents = 42

- x.clone()

-

Data Structures

69

sign =PLUS
dollars =3-6
cents =42 25

SNU
IDB Lab.



i Implementing Interface (1)

= public interface Computable {...}

= public interface Comparable {...}

= public interface Operable extends Computable, Comparable {}
D
D

= Public interface Zero { public int zero()}
= Public interface CloneableObject { public clone() }

= If a class “implements” one or more interfaces, all of the
methods in the interfaces should be implemented

SNU
Data Structures 70 IDB Lab.



Implementing the Interface (2)

public classMylInteger implementsOperable, Zero, CloneableObject {
private int value; // value of the integer
public Myinteger (int theValue) {value =theValue;}// constructor

/[ a Computable interface method : @return this + x¢/
public Object add(Obiject x)
{return new MyIinteger (value + ((Myinteger) x).value); }

/[ Comparable interface method
[** @return -1 if this < x, return O if this == X, return 1 if this > x */
public int compareTo(Object x){
inty = ((MylInteger) x).value;
if (value <y) return -1,
if (value == y)return O;
return 1;

}

} /I Only some method implementations are shown!
SNU
Data Structures 71 IDB Lab.



Finding out the types of parameters

¥ ample generic code (incomplete)

public voidmyFunc (Objecbbj) {
// How can we find out the type obj ?
If obj is an instance of String, print “String”
If obj is an instance of Integer, print “Integer”

}

¥ E\é_ery object has a method named ‘getClass’, which returns the type of
object

e.g. If x is a String, x.getClass() returns String.class

= Example generic code (complete)
public voidmyFunc (Objecbbj) {
if ( obj.getClass(F= String.class) System.out.printin(“String”);

if ( obj.getClass(F= Integer.class) System.out.printin(“Integer”;
}

SNU
Data Structures 72 IDB Lab.



i The method /nputArray

[** input objects of type theClass and store into aaya*/
public voidinputArray (Class theClass, MylnputStream stream)
{ try{ /] get the proper method to be used to read iwvdhees
Class [| parameterTypes = {MylnputStream.class};
Method inputMethod = theClass.getMethod("input'tgmaeterTypes);
/Il input number of elements and create an arrdlyaifsize
System.out.printin("Enter number of elements");
int n = stream.readInteger();
a = new Object [n];
Obiject [] inputMethodArgs = {stream}] input the elements
for (inti=0;1<n; i++) {
System.out.printin("Enter element " + (i+1));
a[i] = inputMethod.invoke(null, inputMethodArgs},;
} I/ end of try
catch(Exception e) { System.out.printin(e);
throw new lllegalArgumentException("Arrayl1D.inputArray");

}
SNU
Iﬁata Structures 73 IDB Lab.



The alternative /inputArray

[** Ihput objects of type theClass and store into aayat/
public voidinputArray (Method inputMethod, MylnputStream stream)
{ try { /I input number of elements and create an arrdigaifsize
System.out.printin("Enter number of elements");
int n = stream.readInteger();
a = new Object [n];
Il input the elements
Object [] inputMethodArgs = {stream};
for (inti=0;1<n; i++)
{ System.out.printin("Enter element " + (i+1));
a[i] = inputMethod.invoke(null, inputMethodArgs);
}
} I/l end of try
catch(Exception e)
{ System.out.printin(e);
throw new lllegalArgumentException ("Arrayl1D.inputArray");

}
} SNU
Data Structures 74 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 75 IDB Lab.



i Garbage Collection

= Memory allocation
= int[] a = new int[100];
Currency ¢ = new Currency();
= Out of memory
» Java’s garbage collector is invoked
= Checking the references in program variables
= If not referenced any more
= Garbage collection and memory reallocation
= Explicit garbage collection

= Set the references to null
=« a = null

« b =null

SNU
Data Structures 76 IDB Lab.



i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 77 IDB Lab.



i Recursive Functions

= Define a function in terms of itself

£ on) = 1 n<l
(n)_{nf(n—l) n>1

= Requirements
= The definition must include a base component

= Recursive component on the right side should have a parameter
smaller than

= f(5) = 5 X f(4) = 20 X f(3) = 60 X f(2) = 120 X f(1)

SNU
Data Structures 78 IDB Lab.



i Induction (1/2)

s Proof
= Induction base
= Induction hypothesis
= Induction step

= Example

i:n(n+1),n20

0 2

SNU
Data Structures 79 IDB Lab.



i Induction (2/2)

= Induction base
n
n=0,» i=0
1=0

= Induction hypothesis
= We assume that equation is valid for n<m

= Induction step

= d m(m+1) _ (m+1)(m+2)

Nn=m+1>i=m+1+) i=m+1+
i=0 i=0 2

SNU
Data Structures 80 IDB Lab.



Example 1.1

i Recursive Methods for n!

= Java allows us to write recursive methods

public static inffactorial(intn) { || factorial(5)
if (n<=1) = 5*factorial(4)
returni; = 5*4*factorial(3)
else .
returnn * factorial(n - 1); | |=5*4*3*2* 1
}

SNU

Data Structures 81 IDB Lab.



Example 1.2
Recursive Methods for sum

/ eneric sum method.
* @return null if array has no objects and sum ofdbgects a[0:n-1] otherwise */
public staticComputable sum (Computable [] a, int n)
{ if (a.length == O)eturnnuill;
Computable sum = (Computable) a[0].zero();
for (int1=0;1<n;i++) sum.increment(ali]);
returnsum; }

[** Recursive Generic sum method.

public staticComputable recursiveSum (Computable [] a, int n) {
If (a.length > 0)returnrSum(a, n);
else returmull; // no elements to sum }

private staticComputable rSum (Computable [] a, int n)
{ If (n==0)return(Computable) a[0].zero();
else retur(Computable) rSum (a, n - 1).add(a[n-1]); } SN
Data Structures 82 IDB Lab.



Example 1.3

Recursive Method for permutations

[** perm(x, O, n) outputs all permutations of xjiD?*/
public static voidoerm (Object [] list, int k, int m)
{ Il Generate all permutations of list[k:ml].

int 1;

If (k==m) {// listlk:m] has one permutation, output it
for 1i=0;1<=m;i++) System.out.print(list[i]);
System.out.printin();

}

else// listfk:m] has more than one permutation

I/l generate these recursively
for (i=k;i<=m; i++)
{ MyMath.swap(list, k, 1);
perm(list, k+1, m);
MyMath.swap(list, k, 1);

}

} SNU
Data Structures 83 IDB Lab.




i Table of Contents

Introduction
= Structure of a Java Program
= The Java Complier and Virtual Machine
= Documentation Comments
= Data Types & Methods
= Exceptions
= Your Very Own Data Type
= Access Modifiers
= Inheritance and Method Overriding
= Defining an Exception Class
= Generic Methods
= Garbage Collection
= Recursion
= Testing and Debugging

SNU
Data Structures 84 IDB Lab.



i What is Testing?

= Mathematical proof of correctness
= Even a small program - quite difficult

= Program Testing

= Test data

= Subset of possible input data

= Cannot cover all possible inputs
= Objective of testing

= TO expose the presence of errors

SNU
Data Structures 85 IDB Lab.



Example 1.4

Test Example: Quadratic Equation

public static void outputRoots(double a, double b, double c){
If (a ==0)throw new lllegalArgumentException ("Coefficient of x*2 must be nonzero");
doubled=b*b-4*a*c;

if (d > 0){// two real roots
double sqrtd = Math.sqgrt(d);
System.out.printin (“2 real roots:" + (-b + sgrtd) / (2*a) + "and" + (-b - sqgrtd) / (2*a));}

else if(d == 0) // both roots are the same
System.out.println (“1 distinct root: "+ -b /(2 * a));

else{// complex conjugate roots
System.out.printin("The roots are complex");
System.out.printin("The real partis" +-b /(2 * a));
System.out.printin("The imaginary part is " + Math.s grt(-d) / (2 * a));
}

SNU
Data Structures 86 IDB Lab.



i Designing Test data (1)

= Evaluating candidate test data
= What is these data’s potential to expose errors?
= Can we verify the correctness of the program behavior on this data?

= Black box method
« Partitioning data into qualitative different classes

= Quadratic equation program
= Test set 23 classes
= complex, real and distinct, real and the same roots

=  White box method
= Code based

= Statement coverage
= Every lines should be executed by test set
= Decision coverage
= Test set should cause each conditional in the program

SNU
Data Structures 87 IDB Lab.



i Designhing Test data (2)

= Black box method
« Partitioning data into qualitative different classes

input program output

1,1,1) {(-1-~30)/2, (-1+/3i)/2}
(1,-1, ) § B B NN * {(1-~/31)/2, (1+/3i)/2}

complex roots

_ ax’ +bx+c=0
Different (1,1, -1) {(-1-45)/2, (-1+/5)/2} Different
0'6(‘)5]:565 @ -, ) W N EE N * {(1-N5)/2, (AHB)/2} | » CErEn

. outputs
inputs - [o? - 4ac distant real roots
2a
1,2,1) {-1}
(1,-2,1)—lllll* {1}
double root

A test set should include at least one input fraicheclass
SNU
Data Structures 88 IDB Lab.



i Designing Test data (3)

= White Box Method

= Clause coverage
= Strengthen the decision coverage

= Boolean expression based

« If ((C1 && C2) |] (C3 && C4)) S1;
else S2

= Make test set for C1, C2, C3, and C4 truth combination

= Execution coverage
= Execution paths = order of statements executed in the program
= Make test set for each execution path

SNU
Data Structures 89 IDB Lab.



i Debugging

= Try to determine the cause of an error by logical reasoning
= Do not attempt to correct errors by creating special cases

= Be certain that your correction does not result in another
error

= Begin with a single method that is independent of the others

SNU
Data Structures 90 IDB Lab.



i Summary

= Requirements of program development

= Representing data in an effective way
= We need efficient data structures

= Developing a suitable procedure
= We need good algorithms

= Before you go further, you need to be
« A proficient java programmer
= An adept analyst of computer programs

SNU
Data Structures 91 IDB Lab.



