!L Ch3. Asymptotic Notation

© copyright 2006 SNU IDB Lab.

SNU
IDB Lab.

i Preview of Chapters

= Chapter 2

= How to analyze the space and time complexities of program

= Chapter 3

= Review asymptotic notations such as O, @, ©, o for simplifying the
analysis

= Chapter 4

= Show how to measure the actual run time of a program by using a
clocking method

SNU
Data Structures 2 IDB Lab.

i Bird’s eye view

= In this chapter

We review asymptotic notations: O, @Q, ©, 0

The notations are for making statement about program performance
when the input data is large

Big-Oh “"O" is the most popular asymptotic notation

Asymptotic notations will be introduced in both informal and rigorous
manner

SNU

Data Structures 3 IDB Lab.

i Table of Contents

= Introduction

= Asymptotic Notation & Mathematics
= Complexity Analysis Example

= Practical Complexities

Data Structures 4

SNU
IDB Lab.

i Introduction (1/3)

Reasons to determine operation count and step count
= To predict the growth in run time
= To compare the time complexities of two programs

Facts of the previous two approaches
= The operation count method ignores all others except key operations

= The step count method overcome the above shortage, but the notion of
step is inexact
= X=Yy and x=y+z+(y/z) treated as a same step?
= Two analysts may arrive at 4n + 3 and 900n + 4 for the same program

Asymptotic analysis focuses on determining the biggest terms (but not
their coefficient) in the complexity function.

SNU

Data Structures 5 IDB Lab.

Introduction (2/3)

is ¢n’+cn+c ici |
= If the step countis & 2 3, coefficients and n term cannot give any
particular meanings when the instance size is large

2
ch”+cn+c,

lim (2 +—2) =0 __clis dominant factor when n is large |

e N N
1 ¢,n’ isimportantwhennis verylarge!

= Let nl and n2 be two large values of the instance size
tn) _an’ _ Ny
- 2 _()
tn,) ¢n” 'n,

= We can conclude that if the instance size is doubled, the runtime increases by a
factor of 4

SNU
Data Structures 6 IDB Lab.

i Introduction (3/3)

100030

=00 —

G000 —

rin)

4000 —

2000 —

e
T+ An

3
R+ 3N

fi

* Program A
2n“+3n or n°+3n

 Program B
83n or 42an

When n is large, program B
IS faster than program A

SNU
IDB Lab.

i Table of Contents

= Introduction

= Asymptotic Notation & Mathematics
= Complexity Analysis Example

= Practical Complexities

SNU
Data Structures 8 IDB Lab.

i Asymptotic Notation: concepts

= Definition

q(n) _
'!,[!J p(n)

= p(n) is asymptotically biggerthan q(n)
« q(n) is asymptotically smallerthan p(n)

= p(n) and q(n) is asymptotically equal iff neither is asymptotically
biggerthan the other

SNU
Data Structures 9 IDB Lab.

i Asymptotic Notation: terms

= Commonly occurring terms

Term Name

1 constant

logn | logarithmic

n linear

nlogn | nlogn

n2 quadratic

n3 cubic

2n exponential

nl factorial
l1<logn<n<nlogn<n?<n®<2"<nl

SNU
Data Structures 10 IDB Lab.

i Asymptotic Notation: Big Oh

f(n)=0(g(n) lim-oo =

——~= =0orConstantC
n-w g(n)

= f(n) is big oh of g(n)

= The above notation means that f(n) is asymptotically smaller than
or equal to g(n)

= g(n), multiplied by some constant C gives an asymptotic upper
bound for f(n)

= The notation gives no clue to the value of this constant C,
it only states that it exists

SNU
Data Structures 11 IDB Lab.

i Big Oh arithmetic

= Definition
f (n) =0(g(n) Iff positiveconstantgandn,

existsuch thatf (n) < cg(n)for alln, n=n,

= Consider f(n) = 3n+2
= When c=4,n, =2 then f(n) <=4n
= f(n) = O(n), therefore g(n) =n

= f(n) is bounded above by some function g(n) at all points to the right
of N,

SNU
Data Structures 12 IDB Lab.

f(n)=0(g(n))

m n—

Figure 3.4 g(n) is an upper bound (up to a constant factor ¢) on f(n)

n, Isanyintegergreater tanm

SNU
Data Structures 13 IDB Lab.

i Big Oh example

f (N) =3n° +4n=0(n%)

c=7n,=0 Big O gives us an upper bound,
3n°+4n<3n’ +4n° =7n° butdoes not promise a careful
(tight) upper bount!

f (n) =3n° +4n=0(n?)
c=4n,=4

3n°+4n<4n’

On=4-n°24n - 4n°=23n°+4n

SNU
Data Structures 14 IDB Lab.

i Asymptotic Notation: Big Theta

= Theta(©) Notations

f(n)=0(g(n) a<lim <

= f(n) is theta of g(n)
= f(n) is asymptotically equal to g(n)
= g(n) is an asymptotic tight bound for f(n)

SNU
Data Structures 15 IDB Lab.

i Big Theta

= Definition f (n)=o(g(n)) iff
positiveconstantsc, andc, and ann, exist
such thatc,g(n) < f(n)<c,g(n) forall n,n=n,

Example:3n® +4n=0(n?)
Proof:choose, = 3,c, =7andn, =0
wehave3n® <3n° +4n< 7n’ forall n,n=n,

= f(n) is bounded above and below by some function g(n) at
all points to the right of n,

SNU
Data Structures 16 IDB Lab.

t(n)=0(g(n) it c¢g(n)=f(n)=c,g(n)

/
S f (n))|
/ S
y //
/ 7
5 // /
crg(n) " P
o ’
s v ,///
L P g

m n—

Figure 3.6 g(n) is a lower and upper bound (up to a constant factor) on f(n)

SNU
Data Structures 17 IDB Lab.

i Big Theta arithmetic

= Example
f(n)=3n*+2n+1 f(n)=0(n?)

when ¢, = 3,C, = 4,nO:1+«/§
3n°<3n°+2n+1<4n°(n > 0)

= n=1++/2such that n, =1+ /2

Data Structures 18

SNU
IDB Lab.

i Asymptotic Notation: Big Omega
= Omega(R2) Notations

f(M)=0(g(n) lim—=

e g(n)

= oo Or Const.

f(n) is omega of g(n)

f(n) is asymptotically bigger than or equal to g(n)
g(n) is an asymptotic lower bound for f(n)

It is the reverse of big-O notation

SNU
Data Structures 19 IDB Lab.

Big Omega arithmetic

g INnition

f(n) =Q(g(n) Iff positiveconstantgandn,
exist such thatf (n) > cg(n) forall n,n=n,

= f(n)=3n+2 > 3nforalln,So f(n)=Q(n)

= f(n) is bounded below by a function g(n) at all points to the right of no

SNU
Data Structures 20 IDB Lab.

f(n)=Q(g(n) iff f(n)=cg(n)

Figure 3.5 g(n) is a lower bound (up to a constant factor ¢) on f(n)

SNU
Data Structures 21 IDB Lab.

i Little Oh Notation (o)

= Definition

t(n)=o(g(n)) it 1(n)=0(g(n)) and f(n)#Q(g(n))

= Upper bound that is not asymptotically tight
= Example

3n+2=0(n’) as3n+2=0(n°) and 3n+2# Q(n?)

SNU
Data Structures 22 IDB Lab.

i Big oh and Little oh

= Big O notation may or may not be asymptotically tight

2n° =0(n?):tight vs 2n=0(n?):not tight

= We use little o notation to denote an upper bound that is
not asymptotically tight

Ex: 2n=o0(n?%) 2n° #z o(n°)

SNU
Data Structures 23 IDB Lab.

i Legend in Asymptotic Notation

= Roughly f(n) = ® g(n) means f(n) = g(n)
= Roughly f(n) = O g(n) means f(n) <= g(n)

= In general we use O even though weget © !

=« In fact, O is a kind of ©

= Another reason: In general, finding © is difficult!
= Our textbook will use O and © interchangeably!

SNU
Data Structures 24 IDB Lab.

i Table of Contents

= Introduction

= Asymptotic Notation & Mathematics
s Complexity Analysis Example

= Practical Complexities

Data Structures 25

SNU
IDB Lab.

Sequential Search

o pression of step count as an asymptotic notation (program 2.1)

Statement afe Frequency Total Stepsa
public static int
sequentialSearch(.-.) 0 0 @ED%
{ 0 0 (0
int i; 1 1 (1)
for {i = 0; i < a.length &&
Ix.equala(a[i]); i++); 1 (1), Oln) &%, Ofn)
if {i == a.lenpth) return -1; | 1 1 1
else return i; 1 Q(0), Of1) Q0), Of1)
1 0 0 {0)
= Ignore terms without n!
Bestcase t squentiaisearch (N) =Q (1) ==> lowerboundisl

Worstcasd squeniaisearch (N) =0O(N) ==> upperboundisn

= In fact, the worst case is Big-Theta(n): Remember Big O is a kind of Bi%-N'I;heta

Data Structures 26 J IDB Lab.

Example 3.24

Binary Search

P tatiant binarySearch(Comparable [] a, Comparable x)
{/l Search a[0] <= a[l] <= ... <= a]a.lengfdr x.
int left = 0;

int right = a.length - 1;
while (left <= right)
{ int middle = (left + right)/2;

If (x.equals(a[middle]) return middle;
If (x.compareTo(a[middle]) > 0) left = middle + 1,
else right = middle - 1;
}
return-1; // x not found
}

» Each iteration of the while loo® Decrease in search space by a factor about 2
* Best case complexity> Q(1)
* Worst case complexity® ©(log a.length)/ because we have to go down to leaf nodes!

SNU
Data Structures 27 IDB Lab.

i Table of Contents

= Introduction

= Asymptotic Notation & Mathematics
= Complexity Analysis Example

= Practical Complexities

SNU
Data Structures 28 IDB Lab.

i Practical Complexities

= 1,000,000,00 instructions per second computer

= T0 execute a program of complexity f(n)

f(n)

n n | nlogon n n> n* nlt =
10 || .O1lus .03us Aus 1us 10us 10s 18
20 || .02us .08us A4S 88 160.s 2.84h ims
30 | .03us .1bus .Ous 27us 810us 6.83d 1s
40 | .04us 21us | 1.6us 64us 2.56ms 1214 18m
50 || .0bus .28us | 2.bus | 12bus 6.25ms 3.1y 134

100 | .10us | .66us | 10us 1ms 100ms 3171y | 4 1013y
103 || 1us | 9.96us 1ms 1s 16.67m |3.17 * 1013y | 32 x 10283y
10% | 10us | 130ps | 100ms | 16.67m 115.7d |3.17 = 1023y
10° | 100us | 1.66ms 10s | 11.57d 3171y [3.17 * 1033y
10% | 1ims | 19.92ms | 16.67m | 31.71y | 3.17 » 107y |3.17 » 10%%y
SNU
Data Structures 29 IDB Lab.

i Summary

= Big-O =» upper bound
= Big-theta =» tight (upper & lower) bound
= Big-omega =» lower bound

n>Z0(n) n°>=0(n") n°=0(n°
nZ0(n) n°=0(n°) n°#06(n°
n“=Q(n) n"=Q(n°) n°zQ(n°

SNU
Data Structures 30 IDB Lab.

Summary

= In this chapter
= We reviewed asymptotic notation O, @, ©, 0

= Asymptotic notation is for making statement about program
performance when the input data is large

= Big O notation is the most popular asymptotic notation

= Asymptotic notations were introduced in both informal and
rigorous manner

SNU
Data Structures 31 IDB Lab.

