# Ch3. Asymptotic Notation

© copyright 2006 SNU IDB Lab.



#### **Preview of Chapters**

- Chapter 2
  - How to analyze the space and time complexities of program
- Chapter 3
  - Review asymptotic notations such as O, Ω, Θ, o for simplifying the analysis
- Chapter 4
  - Show how to measure the actual run time of a program by using a clocking method

# Bird's eye view

- In this chapter
  - We review asymptotic notations: O,  $\Omega$ ,  $\Theta$ , o
  - The notations are for making statement about program performance when the input data is large
  - Big-Oh "O" is the most popular asymptotic notation
  - Asymptotic notations will be introduced in both informal and rigorous manner

#### **Table of Contents**

- Introduction
- Asymptotic Notation & Mathematics
- Complexity Analysis Example
- Practical Complexities

# Introduction (1/3)

- Reasons to determine operation count and step count
  - To predict the growth in run time
  - To compare the time complexities of two programs
- Facts of the previous two approaches
  - The operation count method ignores all others except key operations
  - The step count method overcome the above shortage, but the notion of step is inexact
    - x=y and x=y+z+(y/z) treated as a same step?
    - Two analysts may arrive at 4n + 3 and 900n + 4 for the same program
- Asymptotic analysis focuses on determining the biggest terms (but not their coefficient) in the complexity function.

# Introduction (2/3)

• If the step count is  $c_1n^2 + c_2n + c_3$ , coefficients and n term cannot give any particular meanings when the instance size is large

$$c_1 n^2 + c_2 n + c_3$$
  
$$\lim_{n \to \infty} \left( \frac{c_2}{c_1 n} + \frac{c_3}{c_1 n^2} \right) = 0$$
 c1 is dominant factor when n is large

- $\therefore c_1 n^2$  is important when n is very large!
- Let n1 and n2 be two large values of the instance size

$$\frac{t(n_1)}{t(n_2)} = \frac{c_1 n_1^2}{c_1 n_2^2} = (\frac{n_1}{n_2})^2$$

We can conclude that if the instance size is doubled, the runtime increases by a factor of 4

Data Structures



• Program A

$$2n^2 + 3n$$
 or  $n^2 + 3n$ 

• Program B 83*n* or 43*n* 

When n is large, program B is faster than program A



## **Table of Contents**

- Introduction
- Asymptotic Notation & Mathematics
- Complexity Analysis Example
- Practical Complexities

#### Asymptotic Notation: concepts

Definition

$$\lim_{n\to\infty}\frac{q(n)}{p(n)}=0$$

- p(n) is *asymptotically bigger* than q(n)
- q(n) is *asymptotically smaller* than p(n)
- p(n) and q(n) is asymptotically equal iff neither is asymptotically bigger than the other

#### Asymptotic Notation: terms

#### Commonly occurring terms



Data Structures

# Asymptotic Notation: Big Oh

$$f(n) = O(g(n))$$
  $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$  or Constant C

- f(n) is big oh of g(n)
- The above notation means that f(n) is asymptotically smaller than or equal to g(n)
- g(n), multiplied by some constant C gives an asymptotic upper bound for f(n)
- The notation gives no clue to the value of this constant C, it only states that it exists

# Big Oh arithmetic

Definition

f(n) = O(g(n)) iff positive constants c and  $n_0$ 

exist such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ 

- Consider f(n) = 3n+2
  - When c = 4,  $n_0 = 2$  then f(n) <= 4n
  - f(n) = O(n), therefore g(n) = n
- f(n) is bounded above by some function g(n) at all points to the right of n<sub>0</sub>

f(n) = O(g(n))



**Figure 3.4** g(n) is an upper bound (up to a constant factor c) on f(n) $n_0$  is any integer greater than m

SNU

IDB Lab.

Big Oh example

$$f(n) = 3n^{2} + 4n = O(n^{3})$$
  

$$c = 7, n_{0} = 0$$
  

$$3n^{2} + 4n \le 3n^{3} + 4n^{3} = 7n^{3}$$

Big O gives us an upper bound, but does not promise a careful (tight) upper bound!!!

$$f(n) = 3n^{2} + 4n = O(n^{2})$$

$$c = 4, n_{0} = 4$$

$$3n^{2} + 4n \le 4n^{2}$$

$$\Theta n \ge 4 \rightarrow n^{2} \ge 4n \rightarrow 4n^{2} \ge 3n^{2} + 4n$$



**Data Structures** 

#### Asymptotic Notation: Big Theta

■ Theta(⊖) Notations

 $f(n) = \Theta(g(n)) \quad c_1 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq c_2$ 

- f(n) is theta of g(n)
- f(n) is asymptotically equal to g(n)
- g(n) is an asymptotic tight bound for f(n)

# Big Theta

• Definition  $f(n) = \Theta(g(n))$  iff positive constants  $c_1$  and  $c_2$  and  $an n_0$  exist

such that  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n, n \ge n_0$ 

Example:  $3n^2 + 4n = \Theta(n^2)$ Proof : choose  $c_1 = 3, c_2 = 7$  and  $n_0 = 0$ we have  $3n^2 \le 3n^2 + 4n \le 7n^2$  for all  $n, n \ge n_0$ 

f(n) is bounded above and below by some function g(n) at all points to the right of n<sub>0</sub>

#### $f(n) = \Theta(g(n))$ iff $c_1g(n) \le f(n) \le c_2g(n)$



Figure 3.6 g(n) is a lower and upper bound (up to a constant factor) on f(n)

IDB Lab.

#### Big Theta arithmetic

Example

$$f(n) = 3n^{2} + 2n + 1, \quad f(n) = \Theta(n^{2})$$
  
when  $c_{1} = 3, c_{2} = 4, n_{0} = 1 + \sqrt{2}$   
 $3n^{2} \le 3n^{2} + 2n + 1 \le 4n^{2} \quad (n > 0)$   
 $\Rightarrow n \ge 1 + \sqrt{2}$  such that  $n_{0} = 1 + \sqrt{2}$ 



#### Asymptotic Notation: Big Omega

Omega(Ω) Notations

$$f(n) = \Omega(g(n))$$
  $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$  or Const.

- f(n) is omega of g(n)
- f(n) is asymptotically bigger than or equal to g(n)
- g(n) is an asymptotic lower bound for f(n)
- It is the reverse of big-O notation

# Big Omega arithmetic

Definition

 $f(n) = \Omega(g(n))$  iff positive constants c and  $n_0$ exist such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ 

• 
$$f(n)=3n+2 > 3n$$
 for all n, So  $f(n) = \Omega(n)$ 

• f(n) is bounded below by a function g(n) at all points to the right of  $n_0$ 





**Figure 3.5** g(n) is a lower bound (up to a constant factor c) on f(n)

#### Data Structures

SNU

IDB Lab.

# Little Oh Notation (o)

Definition

$$f(n) = o(g(n))$$
 iff  $f(n) = O(g(n))$  and  $f(n) \neq \Omega(g(n))$ 

- Upper bound that is not asymptotically tight
- Example

$$3n+2 = o(n^2)$$
 as  $3n+2 = O(n^2)$  and  $3n+2 \neq \Omega(n^2)$ 

Data Structures

DB Lab.

# Big oh and Little oh

Big O notation may or may not be asymptotically tight

$$2n^2 = O(n^2)$$
: tight vs.  $2n = O(n^2)$ : not tight

 We use little o notation to denote an upper bound that is not asymptotically tight

$$Ex: \ 2n = o(n^2) \qquad 2n^2 \neq o(n^2)$$

**Data Structures** 

#### Legend in Asymptotic Notation

- Roughly  $f(n) = \Theta$  g(n) means f(n) = g(n)
- Roughly f(n) = O g(n) means  $f(n) \le g(n)$

- $\hfill\blacksquare$  In general we use O  $\hfill$  even though we get  $\Theta$   $\hfill$
- In fact, O is a kind of  $\Theta$
- Another reason: In general, finding  $\Theta$  is difficult!
- Our textbook will use O and  $\Theta$  interchangeably!

## **Table of Contents**

- Introduction
- Asymptotic Notation & Mathematics
- Complexity Analysis Example
- Practical Complexities



## Sequential Search

Expression of step count as an asymptotic notation (program 2.1)

| Statement                         | s/e  | Frequency              | Total Steps            |
|-----------------------------------|------|------------------------|------------------------|
| public static int                 |      |                        | Caller Street          |
| sequentialSearch(···)             | 0    | 0                      | $\Theta(0)$            |
| 1                                 | 0    | 0                      | 0(0)                   |
| int i;                            | 1    | 1                      | $\Theta(1)$            |
| for $(i = 0; i < a.length \&\&$   | 1155 |                        | 64 48 487250           |
| <pre>!x.equals(a[i]); i++);</pre> | 1    | $\Omega(1), \Omega(n)$ | $\Omega(1), \Omega(n)$ |
| if (i == a.length) return -1;     | 1    | 1                      | $\Theta(1)$            |
| else return i;                    | 1    | $\Omega(0), \Omega(1)$ | $\Omega(0), \Omega(1)$ |
| <b>}</b>                          | 0    | 0                      | (0)                    |

Ignore terms without n!

Best case t sequentialSearch  $(n) = \Omega(1) \implies$  lower bound is 1 Worst case t sequentialSearch  $(n) = O(n) \implies$  upper bound is n

In fact, the worst case is Big-Theta(n): Remember Big O is a kind of Big-Theta
 Data Structures
 26

#### Example 3.24

# **Binary Search**

```
public static int binarySearch(Comparable [] a, Comparable x)
{// Search a[0] <= a[1] <= ... <= a[a.length-1] for x.
int left = 0;
int right = a.length - 1;
while (left <= right)
{ int middle = (left + right)/2;
    if (x.equals(a[middle]) return middle;
    if (x.compareTo(a[middle]) > 0) left = middle + 1;
    else right = middle - 1;
}
return -1; // x not found
}
```

- Each iteration of the while loop  $\rightarrow$  Decrease in search space by a factor about 2
- Best case complexity  $\rightarrow \Omega(1)$
- Worst case complexity  $\rightarrow \Theta(\log a.length) // because we have to go down to leaf nodes!$



## **Table of Contents**

- Introduction
- Asymptotic Notation & Mathematics
- Complexity Analysis Example
- Practical Complexities



#### **Practical Complexities**

- 1,000,000,00 instructions per second computer
- To execute a program of complexity f(n)

|                 | f(n)      |              |              |            |                 | 1                  |                   |
|-----------------|-----------|--------------|--------------|------------|-----------------|--------------------|-------------------|
| n               | n         | $n \log_2 n$ | $n^2$        | $n^3$      | n <sup>4</sup>  | $n^{10}$           | 2 <sup>n</sup>    |
| 10              | .01µs     | .03µs        | .1µs         | 1µs        | 10µs            | 10s                | $1 \mu s$         |
| 20              | .02µs     | .09µs        | .4µs         | 8µs        | <b>160µs</b>    | 2.84h              | 1ms               |
| 30              | .03µs     | .15µs        | .9µs         | 27µs       | 810µs           | 6.83d              | 1s                |
| 40              | .04µs     | .21µs        | <b>1.6µs</b> | 64µs       | 2.56ms          | 121d               | 18m               |
| 50              | .05µs     | .28µs        | 2.5µs        | 125µs      | 6.25ms          | 3.1y               | 13d               |
| 100             | .10µs     | .66µs        | 10µs         | 1ms        | 100ms           | 3171y              | $4 * 10^{13}$ y   |
| 103             | $1 \mu s$ | 9.96µs       | 1ms          | <b>1</b> s | 16.67m          | $3.17 * 10^{13}$ y | $32 * 10^{283}$ y |
| 104             | 10µs      | 130µs        | 100ms        | 16.67m     | 115.7d          | $3.17 * 10^{23}$ y |                   |
| 10 <sup>5</sup> | 100µs     | 1.66ms       | 10s          | 11.57d     | 3171y           | $3.17 * 10^{33}$ y |                   |
| 106             | 1ms       | 19.92ms      | 16.67m       | 31.71y     | $3.17 * 10^7 y$ | $3.17 * 10^{43}$ y |                   |

# Summary

- Big-O → upper bound
- Big-theta → tight (upper & lower) bound
- Big-omega → lower bound

$$n^{2} \neq O(n) \quad n^{2} = O(n^{2}) \quad n^{2} = O(n^{3})$$
$$n^{2} \neq \Theta(n) \quad n^{2} = \Theta(n^{2}) \quad n^{2} \neq \Theta(n^{3})$$
$$n^{2} = \Omega(n) \quad n^{2} = \Omega(n^{2}) \quad n^{2} \neq \Omega(n^{3})$$

**Data Structures** 

# Summary

- In this chapter
  - We reviewed asymptotic notation O,  $\Omega$ ,  $\Theta$ , o
  - Asymptotic notation is for making statement about program performance when the input data is large
  - Big O notation is the most popular asymptotic notation
  - Asymptotic notations were introduced in both informal and rigorous manner

