
SNU

IDB Lab.

Ch7. Linear Lists –
Simulated Pointers

© copyright 2006 SNU IDB Lab

2
SNU

IDB Lab.Data Structures

Bird’s-Eye View

� Ch.5 ~ Ch.7: Linear List
� Ch. 5 – array representation
� Ch. 6 – linked representation
� Ch. 7 – simulated pointer representation

� Simulated Pointers
� Memory Management
� Comparison with Garbage Collection
� Simulated Chains
� Memory Managed Chains
� Application: Union-Find Problem

※ In succeeding chapters - matrices, stacks, queues, dictionaries, priority
queues

� Java’s linear list classes
� java.util.ArrayList
� Java.util.Vector
� java.util.LinkedList

3
SNU

IDB Lab.Data Structures

Bird’s-Eye View
� Simulated-pointer representation

� What if we want to have linked structures on disk

� What if we want to have user-defined pointers instead of Java
references

� Simulated pointers are represented by integers rather than by
Java references

� To use simulated pointers
� Must implement our own memory management scheme: a

scheme to keep track of the free nodes in our memory (i.e., array
of nodes)

4
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

5
SNU

IDB Lab.Data Structures

The Need for Simulated Pointers

� Memory allocation via the Java new method
� Automatically reclaimed by garbage collection

� Java references are internal memory addresses and not addresses of
disk memory

� Java references (pointers) cannot be used for
� Disk storage management
� Data structure backup
� External data structures

� Solution
� Simulated pointers
� User defined memory allocation and deallocation

6
SNU

IDB Lab.Data Structures

Disk Storage Management

� Operating System’s disk management

� Disk is partitioned into blocks of a predetermined size

� So called “block size” (say 32KB)

� These blocks are linked together from a chain

� Each chain entry is made in the file allocation table (FAT)

� The address of each disk block is different from main memory address

� Simulated pointers make easy the process

7
SNU

IDB Lab.Data Structures

Data Structure Backup

� What if you want to work on a chain of student grades next week?
� Serialization: the process of writing every element of the data structure in

some sequential order into a file

� Deserialization: read back the serialized version from the file and
reconstruct the chain in memory

� During deserialization we need to capture the pointer information to
reconstruct the linked structure

� Simulated pointers make easy the process

� So called, Persistent Data Structure

8
SNU

IDB Lab.Data Structures

External Data Structures

� Data structures with pointers for the data on a disk

� B+ tree index (will soon be covered)

� Leaf nodes of B+ tree are pointing the records on a disk

9
SNU

IDB Lab.Data Structures

Simulating Pointers
� How to simulate pointers in internal memory?

� By implementing linked lists using an array of nodes
� By simulating Java references by integers that are indexes into this array

� Useful for backup and recovery of data structure
� To backup, we need merely back up the contents of each node as it appears

from left to right in the node array
� To recover, we read back the node contents in left-to-right in the node array

� Each array position has an element field and a next field (type int)

c a e d b

10
SNU

IDB Lab.Data Structures

Node Representation

� ChainNode’s next: java reference

� SimulatedNode’s next: int type

class SimulatedNode

{ // package visible data members

Object element;

int next;

// package visible constructors

SimulatedNode() { };

SimulatedNode(int next)

{this.next = next;}

}

11
SNU

IDB Lab.Data Structures

How It All Looks?

14

c a e d b

0 1 2 3 4 5 8 11 14

14 011 8-1

firstNode= 4

next

element

• Initially, the nodes in the available space were all empty nodes

• Allocate nodes & store “a b c d e”

• Free nodes are members of a linked list

• In-use nodes are also members of a linked list

12
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

13
SNU

IDB Lab.Data Structures

Memory Management using SP

� Memory management
� Create a collection of nodes (a storage pool): node[0:numOfNodes-1]

� Allocate a node as needed: allocateNode()

� Reclaim nodes that are no longer in use: deallocateNode()

� In our simple memory management scheme, nodes that are
not in use are kept in a storage pool

� Memory management with different sizes is rather complex

14
SNU

IDB Lab.Data Structures

Storage Pool (same size nodes)

� Maintain a chain of free nodes

� In the beginning, all nodes are free

� Allocate a free node from the front of chain

� Add node that is freed (deallocated) to the front of chain

a b c d e
null

firstNode

15
SNU

IDB Lab.Data Structures

The Class SimulatedSpace1
/** memory management for simulated pointer classes */

package dataStructures;

import utilities.*;

public class SimulatedSpace1

{ // data members

private int firstNode;

SimulatedNode [] node;

// package visible constructor and other methods here

}

16
SNU

IDB Lab.Data Structures

Constructor of SimulatedSpace1

** creating the available space list

public SimulatedSpace1(int numberOfNodes)

{ node = new SimulatedNode [numberOfNodes]; // array declaration

// create nodes and link into a chain: array initializatin

for (int i = 0; i < numberOfNodes - 1; i++)

node[i] = new SimulatedNode(i + 1);

// last node of array and chain

node[numberOfNodes - 1] = new SimulatedNode(-1);

// firstNode has the default initial value 0

}

17
SNU

IDB Lab.Data Structures

Array in Java

� Primitive type: declaration & allocation at once

node = new int [10]

VS

� Complex type: declaration & allocation separately

node = new SimulatedNode[10]

for (int i = 0; i < 9; i++)

node[i] = new SimulatedNode(i+1);

18
SNU

IDB Lab.Data Structures

Allocate a Node using SP: O(n)
public int allocateNode(Object element, int next)

{// Allocate a free node and set its fields.

if (firstNode == -1)

{ // if no more free nodes in the available space list,

// create and line new nodes (doubling)}

int i = firstNode; // allocate first node

firstNode = node[i].next; // firstNode points to next free node

node[i].element = element; // set its fields

node[i].next = next;

return i; // return the sp of new node

}

19
SNU

IDB Lab.Data Structures

Free a Node using SP: O(1)

public void deallocateNode(int i)

{// Free node i.

// make i first node on free space list

node[i].next = firstNode;

firstNode = i;

// remove element reference so that the space

// (the referenced “ABC”) can be garbage collected:

node[i].element = null;

}

20
SNU

IDB Lab.Data Structures

The class SimuatedSpace2
� A list for free nodes not been used yet (first1) & used at least once (first2)
� Lazy initialization

public int allocateNode(Object element, int next)
{// Allocate a free node and set its fields.

if (first2 == -1) { // 2nd list is empty
if (first1 == node.length) {

// code for doubling number of nodes
}

node[first1] = new SimulatedNode(); // lazy initialization
node[first1].element = element;
node[first1].next = next; return first1++; }

int i = first2; // allocate first node of 2nd chain
first2 = node[i].next; node[i].element = element;
node[i].next = next; return i;

}

21
SNU

IDB Lab.Data Structures

Facts of Simulated Pointers
� Can free a chain of nodes in O(1) time (bulk deallocation) when

first node f and last node e of chain are known
� Node[e].next = firstnode;

firstNode = f;

� If you deal with only in-memory stuff, don’t use simulated pointers
unless you see a clear advantage to using simulated pointers over
Java references

22
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application – Union-Find Problem

23
SNU

IDB Lab.Data Structures

Garbage Collection (GC)

� User’s DeallocateNode vs. System’s Garbage Collection

� GC: The system determines which nodes/memory are not in use and
returns these nodes (this memory) to the pool of free storage

� Periodic & Automatic Invokation

� This is done in two or three steps

� Mark nodes that are not in use

� Compact free spaces (optional)

� Move free nodes to storage pool

24
SNU

IDB Lab.Data Structures

GC Step 1: Marking

� There is a mark-bit for each node

� Unmark all nodes (set all mark-bits “false”)

� Marking: Start at firstNode and mark all nodes reachable
from firstNode by setting the mark-bit “true”

� Repeat marking for all reference variables

c a e d b

firstNode

25
SNU

IDB Lab.Data Structures

GC Step 2: Compaction (optional)

� Move all marked nodes (i.e., nodes in use) to one end of memory,
and update all pointers as necessary

c b e d b

firstNode

a e d Free Memory

26
SNU

IDB Lab.Data Structures

GC Step 3: Restoring Free Memory

� The storage pool is also a linked list

� Free nodes are linked with the storage pool

� If the reusable nodes can be found by scanning memory for unmarked
nodes � return those nodes to the storage pool

� Otherwise (cannot find reusable nodes) � need to put a new single
free block into the storage pool

27
SNU

IDB Lab.Data Structures

Facts of GC
� Due to automatic GC, programmers doesn’t have to worry about

freeing nodes as they become free
� However, for garbage collection to be effective, we must set

reference variables to null when the object being referenced is no
longer needed (still the programmer’s responsibility!)

� In general, the actual exec time of deallocateNode is faster than that
of GC
� Garbage collection time is linear in memory size (not in amount of free

memory). GC could be expensive!

� Application may run faster when run on computers that have more
memory because GC does not need to be invoked frequently

� Sometimes GC wins, sometimes deallocateNode wins depending
upon the characteristics of application and the size of given memory

28
SNU

IDB Lab.Data Structures

Alternatives to Garbage Collection

� malloc()/free() at C language

� new()/delete() at C++ language

� new()/GC at Java

� By manual “delete()” and “free()”, now free nodes are always in storage
pool

� Time to free node by “delete()” and “free()” is proportional to number of
nodes being freed and not to total memory size

29
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

30
SNU

IDB Lab.Data Structures

Simulated Chains (Linear List with SP)

� So far, we concerned only the free space management with simulated
pointers

� Now, we move to LinearList that use the simulated space S for storing
and retrieving the data elements
� S is declared as a static data member
� So, all simulated chains share the same simulated space

� Linear List implementations
� FastArrayLinearList (Array)

� Get(O(1)), Remove(O(n-k)), Add(O(n-k))
� Chain (Linked list)

� Java based & Simulated pointers
� Get(O(k)), Remove(O(k)), Add(O(k))

� Figure 7.5 (242pp) shows the performances

31
SNU

IDB Lab.Data Structures

The Class SimulatedChain
public class SimulatedChain implements LinearList

{ // data members

private int firstNode;

protected int size;

public static SimulatedSpace1 S = new SimulatedSpace(10);

// all simulated chains share S

//constructors

public SimulatedChain (int initialCapacity) {

firstNode = -1;

// size has the default initial value 0

}

}

32
SNU

IDB Lab.Data Structures

The method indexOf()

public int indexOf(Object elm) {

// search the chain for elm;

int currentNode = firstNode;

int index = ; // index of currentNode;

while (currentNode != -1
&& !S.node[currentNode].element.equals(elem)) {

currentNode = S.node[currentNode].next; // move to next node

index++; }

// make sure we found matching element

if (currentNode == -1) return -1;

else return index;

………

}

33
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

34
SNU

IDB Lab.Data Structures

Memory Managed Chains (1)

� Want to improve the performance of the class Chain (chap 6) without

actually using simulated pointers

� Dynamic memory allocation methods such as new usually take a lot
more time than memory allocation methods such as allocateNode

� Suppose add and remove operations are done in a mixed
manner and always less than 50 list elements are in the list

� “new” is invoked times in the original Chain class

� If we use allocateNode/deallocateNode

� Only 50 calls to new() will do with times of allocateNode() and
deallocateNode() each

610

610

610

610

35
SNU

IDB Lab.Data Structures

Memory Managed Chain (2)

� Even though we do not implement the simulatedChain class,
the idea of buffering free nodes is useful!

� Modify the class Chain
� Add a static data member of type ChainNode :

� first free node

� Add a static method deallocateNode :
� insert a node at the front of the free node chain

� Add a static method allocateNode :
� allocates a node from the free node chain (or may call new)

� Modify Chain.remove :
� use deallocateNode

� Modify Chain.add :
� invoke allocateNode rather than new

36
SNU

IDB Lab.Data Structures

Table of Contents

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

37
SNU

IDB Lab.Data Structures

Equivalence Classes

� The relation R is an equivalence relation Iff the following
conditions are true:

� (a, a) ∈ R for all a ∈ U (reflexive)

� (a, b) ∈ R iff (b, a) ∈ R (symmetric)

� (a, b) ∈ R and (b, c) ∈ R � (a, c) ∈ R (transitive)

� Two elements are equivalent if (a, b) ∈ R

� Equivalence class

� A maximal set of equivalent elements

38
SNU

IDB Lab.Data Structures

Equivalent Classes: Example

� Suppose R = {(1, 11), (7, 11), (2, 12), (12, 8), (11,12),
(3, 13), (4,13), (13, 14), (14, 9), (5, 14), (6, 10)} and n = 14

� For simplicity omit reflexive and transitive pairs

� Three equivalent classes

� {1, 2, 7, 8, 11, 12}

� {3, 4, 5, 9, 13, 14}

� {6, 10}

39
SNU

IDB Lab.Data Structures

Equivalence Class Problem

� Determine the equivalence classes

� The offline equivalence class problem
� Given n elements and Given a relation R
� We are to determine the equivalence classes
� Can be solved easily with various ways

� The online equivalence class problem
(namely, the Union-Find problem)

� R is built incrementally by online inputs
� Begin with n elements, each in a separate equiv class
� Process a sequence of the operations

� combine(a, b) : combine an equiv class A and an equiv Class B
� find(theElement) : find a class having theElement

40
SNU

IDB Lab.Data Structures

Combine and Find Operation

� combine(a,b)
� Combine the equivalence classes that contain elements a and b into a

single class

� Is equivalent to

classA = find(a);

classB = find(b);

if (classA != classB) union(classA, classB);

� find(theElement)
� Determine the class that currently contains element theElement

� To determine whether two elements are in the same class

41
SNU

IDB Lab.Data Structures

Union-Find Problem Example

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

{a} {b, d} {c} {e} {f} {g} {h} {i} {j}
{a} {b, d} {c} {e, g} {f} {h} {i} {j}

{a, c} {b, d} {e, g} {f} {h} {i} {j}

{a, c} {b, d} {e, g} {f} {h, i} {j}
{a, b, c, d} {e, g} {f} {h, i} {j}

{a, b, c, d} {e, f, g} {h, i} {j}

{a, b, c, d} {e, f, g} {h, i} {j}

initial sets

(b, d)
(e, g)

(a, c)

(h, i)
(a, b)

(e, f)

(b, c)

Collection of disjoint setsEdge processed

a

c

b

d

e f

g

h

i

j

We are given set of elements and build up equivalence classes
At each step, sets are build by find and union operations

42
SNU

IDB Lab.Data Structures

Equiv Class Applications –
Machine-scheduling problem (1)

� How to make a feasible schedule?

� A single machine that is to perform n tasks

� Each task has release time and deadline and is assigned to a time
slot between its release time and deadline

� Example
Task A B C D

ReleaseTime 0 0 1 2

Deadline 4 4 2 3

0 1 2 3 4

------------------------------------�

A C D B

43
SNU

IDB Lab.Data Structures

Equiv Class Applications –
Machine-scheduling problem (2)

� Method to construct a schedule

1. Sort the tasks into nonincreasing order of release time

2. For each task, determine the free slot nearest to, but not after, its
deadline

� If this free slot is before the task’s release time, fail

� Otherwise, assign the task to this slot

44
SNU

IDB Lab.Data Structures

Equiv Class Applications –
Machine-scheduling problem (3)

� The online equivalence class problem can be used to implement step(2)
� near(a) : the largest i such that i<=a and slot i is free

� If no such i exists, near(a) = near(0) = 0

� Two slots a and b are in the same equivalence class iff near(a) = near(b)

� Initial condition : near(a) = a for all slots, and each slot is in a separate
equivalence class

� When slot a is assigned a task in stop(2), near changes for all slots b with
near(b) = a

� When slot a is assigned a task, perform a union on the equivalence classes that
currently contain slots a and a - 1

45
SNU

IDB Lab.Data Structures

Equiv Class Applications –
Circuit-wiring Problem (1)

� Electrically equivalent

� Connected by a wire or there is a sequence of pins connected by wires

� Net

� Maximal set of electrically equivalent pins

46
SNU

IDB Lab.Data Structures

Equiv Class Applications –
Circuit-wiring Problem (2)

� Each wire may be described by the two pins that it connects

� Set of wires {(1,11), (7,11),…, (6,10)}

� Nets {1,2,7,8,11,12},{3,4,5,9,13,14},{6,10}

47
SNU

IDB Lab.Data Structures

Equiv Class Applications -
Circuit-wiring Problem (3)

� The Offline net finding problem

� Given the pins and wires

� Determine the nets

� Modeled by the offline equivalent problem with each pin (as a member of U)
and each wire (as a member of R)

� The Online net finding problem

� Begin with a collection of pins and no wires

� Perform a sequence of operations of the form

� Add a wire “one-by-one” to connect pins a and b

� Find the net that contains pin a

48
SNU

IDB Lab.Data Structures

OECP: The 1st Union-Find solution

� By array equivClass[]

� equivClass[i] is the class that currently contains element I

� Inputs to Union are equivClass values

� Initialize & Union � O(n), Find � O(1)

� Given n elements: 1 initialization, u unions, and f finds � O(n + u*n + f)

49
SNU

IDB Lab.Data Structures

OECP using Arrays

e bc a d

a b c d e

41 2 3 5Initial State

combine(b,c)

combine(b,e)

combine(a,d)

41 2 2 5

41 2 2 2

11 2 2 2

Classes with one element each

‘a’ and ‘b’ belongs to same class

{a, b, c} and {d, f}

※index 0 is not used

50
SNU

IDB Lab.Data Structures

OECP: The 1st Union-Find Solution (1)

public class UnionFindFirstSolution {

static int [] equivClass;

static int n; // number of elements

// initialize numberOfElements classes with one element each

static void initialize(int numberOfElements) {

n = numberOfElements;

equivClass = new int [n + 1];

for (int e = 1; e<=n; e++)

equivClass[e] = e;

}

// continued

51
SNU

IDB Lab.Data Structures

OECP: The 1st Union-Find Solution (2)

// unite the classes classA and classB

static void union(int classA, int classB) {

// assume classA != classB

for (int k = 1; k <= n; k++)

if (equivClass[k] == classB)

equivClass[k] = classA;

}

// find the class that contains theElement

static int find(int theElement) {

return equivClass[theElement];

}

}

52
SNU

IDB Lab.Data Structures

The 2nd Union-Find Solution

� Reduce the time complexity of the union operation by keeping a chain
for each equivalence class

� We can find all elements in a given equivalence class by going down the
chain

� Size and Next are added

� In array, full scan is required for changing a class

53
SNU

IDB Lab.Data Structures

The 2nd Union-Find Solution using Chains

e bc a d a b c d e

Initial State

combine(b,c)

combine(c,e)

combine(a,d)

1
1
0

2
1
0

3
1
0

4
1
0

5
1
0

0
0
0

1
1
0

3
1
0

3
2
2

4
1
0

5
1
0

0
0
0

1
1
0

3
1
5

3
3
2

4
1
0

3
1
0

0
0
0

4
1
0

3
1
0

3
3
0

4
2
1

3
1
0

0
0
0

equivClass
size
next

54
SNU

IDB Lab.Data Structures

The 2nd UFS: The Class EquivNode

class EquivNode

{

int equivClass; // element class identifier

int size; // size of class

int next; // pointer to next element in class

// constuctor

EquivNode (int theClas, int theSize) {

equivClass = theClass;

size = theSize;

// next has the default value 0

}

}

55
SNU

IDB Lab.Data Structures

The Class UnionFindSecondSolution (1)

public class UnionFindSecondSolution {
static EquivNode [] node; // array of nodes
static int n; // number of elements

// initialize numberOfElements classes with one element each
static void initialize(int numberOfElements) {

n = numberOfElements;
equivClass = new EquivNode[n + 1];
for (int e = 1; e<=n; e++)

// node[e] is initialized so that its equivClass is e
node[e] = new EquivNode(e, 1);

}
// continued

56
SNU

IDB Lab.Data Structures

The Class UnionFindSecondSolution (2)
static void union(int classA, int classB) {
// assume classA != classB, make classA smaller class

if (node[classA].size > node[classB].size) { // swap classA and classB

int t = classA; classA = classB; classB = t; }
int k;
for (k = classA; node[k].next != 0; k = node[k].next)

node[k].equivClass = classB;
node[k].equivClass = classB;
// insert chain classA after first node in chain classB and update new chain size

node[classB].size += node[classA].size;
node[k].next = node[classB].next;
node[classB].next = classA;
}

static int find(int theElement) {
return node[theElement].equivClass;

}
}

57
SNU

IDB Lab.Data Structures

Summary (1)
� Simulated-pointer representation

� What if we want to have linked structures on disk

� What if we want to have user-defined pointers instead of Java
references

� Simulated pointers are represented by integers rather than by
Java references

� To use simulated pointers
� Must implement our own memory management scheme: a

scheme to keep track of the free nodes in our memory (i.e., array
of nodes)

58
SNU

IDB Lab.Data Structures

Summary (2)

� Simulated Pointers

� Memory Management

� Comparison with Garbage Collection

� Simulated Chains

� Memory Managed Chains

� Application: Union-Find Problem

