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Bird’s-Eye View (1/2)

� Chapter 9: Stack

� A kind of Linear list & LIFO(last-in-first-out) structure 

� Insertion and removal from one end

� Chapter 10: Queue

� A kind of Linear list & FIFO(first-in-first-out) structure

� Insertion and deletion occur at different ends of the linear list

� Chapter 11: Skip Lists & Hashing

� Chains augmented with additional forward pointers
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Bird’s-Eye View (2/2)

� Representation
� Array-based class: ArrayQueue

� Linked class:         LinkedQueue

� Queue Applications
� Railroad Car Rearrangement

� The shunting track (holding tracks) are FIFO

� Wire Routing
� Find the shortest path for a wire

� Image-Component Labeling

� Machine Shop Simulation
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Definition
� A Queue is 

� A FIFO (First In First Out) Linear list

� One end is “front” and the other end is “rear”

� Additions are done at the rear only 

� Removals are made from the front only

Deletion “A” Insertion “D”
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The Abstract Data Type: Queue

AbstractDataType Queues {
Instances

Ordered list of elements; front pointer; rear pointer;
Operations

isEmpty() : Return true if queue is empty,
Return false otherwise;

getFrontElement() : Return the front element of the queue;
getRearElement() : Return the rear element of the queue;

put(x) : Add element x at the rear of the queue;
remove() : Remove an element from the front of 

the queue and return it;

}
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The interface Queue
public interface Queue

{   

public boolean isEmpty();

public Object getFrontEelement();

public Object getRearEelement();

public void put(Object theObject);

public Object remove();

}



Data Structures 8
SNU

IDB Lab.

Table of Contents

� Definition

� Array Representation

� Linked Representation

� Queue Applications



Data Structures 9
SNU

IDB Lab.

Queue by Array Representation (1)

� Mapping Function (1) : location(i) = i
� Element i is stored in queue[i], i≥≥≥≥0 

� front = 0 (always) &  rear = the location of the last element

� Queue size = rear + 1

� Empty queue: rear = -1

� To insert an element: θθθθ (1) time
� Increase rear by 1 and place the new element at queue[rear]

� To delete an element: θθθθ (n) time
� Must slide the elements in position 1 through rear one position 

down the array

Deletion “A” Insertion “D”
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Queue by Array Representation (2)

� Mapping Function (2) : location(i) = location(front) + i
� The index i for the front element is 0
� front = location(front element)
� rear = location(last element)
� Empty queue has the condition: rear < front
� Insert an element

� The worst-case time from θθθθ (1) to θθθθ (queue.length)
� Delete an element: θθθθ (1) time

� Move front to right by 1

Deletion “A” Insertion “D”
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Queue by Array Representation (3)

� Mapping Function (2) : location(i) = location(front) + i

� When inserting an element

� If the rear pointer is located in the right end area 

� If some space is available in the left area � move the existing 
elements to the left rather 

� Else doubling the array



Data Structures 12
SNU

IDB Lab.

Queue by Array Representation (4)

� Mapping Function (3) :   
location(i) = (location(front element) + i) % queue.length

� Used the circular array representation of a queue

� Initial condition : front = rear = 0

� Empty queue:     front = rear

� When front = rear, it is an empty queue or a full queue

� Verify whether this insertion will cause the queue to get full

If so, Double the length of the array queue

� The circular queue can have at most  queue.length -1 elements
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The class ArrayQueue (1)

� Uses the third mapping function to map a queue into an 1D array queue:

location(i) = (location(front element) + i) % queue.length

� Data members :   front, rear, queue

� All methods are similar to those of ArrayStack

� To visualize array doubling when a circular queue is used, flatten out the 
array
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The class ArrayQueue (2)
� To get a proper circular queue configuration 

� When the second segment is slid to the right, up to queue.length –2 “additional”
element references are copied (worst case: if there are 6 elements (G [] A B C D E F 
G)  in the second segment, A to G will have to be copied into the extended array)

Slide the element the right segment to 
the right end of array
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The class ArrayQueue (3)
� To limit the number of references copied to queue.length –1

� Create a new array newQueue of twice the length

� Copy the second segment to positions in newQueue beginning at 0

� Copy the first segment to position in newQueue beginnig at 
queue.length – front – 1  (here 3)
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The class ArrayQueue (4)

public voidput (Object theElement) { //increase array length if necessary
if ((rear + 1) % queue.length == front) {

Object[] newQueue = new Object[2*queue.length];
int start = (front +1) % queue.length;
if(start < 2)   //no wrap around ([] A B .. G   or A B .. G [])

System.arraycopy(queue,start,newQueue, 0,queue.length-1);
else { //queue wraps around

System.arraycopy(queue,start,newQueue, 0,queue.length-start);
System.arraycopy(queue,0,newQueue, queue.length-start,rear+1); }

front = newQueue.length – 1; //switch to newQueue and set front and rear
rear = queue.length – 2; //queue size is queue.length - 1

queue = newQueue; }
//put the Element at the rear of the queue
rear = (rear + 1) % queue.length;
queue[rear] = the Element;

}
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The class ArrayQueue (5)

public Object remove()
{

if (isEmpty())
return null;

front = (front + 1) % queue.length;
Object frontElement = queue[front];
queue[front] = null;   //enable garbage collection
returnfrontElement;

}
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The class ArrayQueue (6)

� Complexity
� constructor():              O(initialCapacity)

� isEmpty():                   θθθθ(1) time

� getFrontElement():       θθθθ(1) time

� getRearElement():        θθθθ(1) time

� remove():                    θθθθ(1) time

� put() : 

� If array doubling is done: θθθθ(queue size) 

� Else:                               θθθθ(1) time
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Queue by Linked Representation (1)

� can be represented as a chain with front, rear variables
� Initial value: front = rear = null

� Empty queue: front = rear

� Two possibilities for pointers: “from front to rear” or “from rear to front”

chainNode[rear].next � NULL

chainNode[front].next � NULL
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Queue by Linked Representation (2)

� Insert a node into a linked queue

(a) Insert into front-to-rear linkage: create a node & update one pointer 

(b) Insert into rear-to-front linkage: create a node & update one pointer

New value

New value
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Queue by Linked Representation (3)

� Remove a node from a linked queue

� Front-to-rear linkage is more efficient

(a) Remove from front-to-rear linkage: update one pointer

(b) Remove from rear-to-front linkage: update two pointers
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Queue by Linked Representation (4)

� Front-to-rear linkage & The complexity of each of methods : θθθθ (1) time

public void put (Object theElement){
ChainNode p = new ChainNode(theElement, null); // create a node
//append p to the chain
if (front == null)   front = p;         //empty queue
else                    rear.next = p;   //nonempty queue
rear = p;
} 
public Object remove() {  
if (isEmpty())     return null;

Object frontElement = front.element;
front = front.next;
if (isEmpty())    rear = null; //enable garbage collection
return frontElement;

}
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� Machine Shop Simulation
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Railroad Car Rearrangement (1)
� Problem: A three-track example

� Reserve track Hk (the central track) for moving cars directly from the input 
track to the output track

� Only k-1 tracks are available for holding cars 
� These tracks operate in a FIFO manner (QUEUE)

� If the next car is not the one that is expected to be output
� Move car c to a holding track that contains only cars with a smaller label

� If several such tracks exist, select one with the largest label at its left end
� Otherwise, select any empty track 
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1st Code: RRC with Queue (1)

// Can reuse the code in Program 9.9 through Program 9.12
// The method railroad() of Program 9.10 needs to be modified

//  -- Decrease the number of tracks by 1
//  -- Change the type of track to ArrayQueue

/* Output the smallest car from the holding tracks */
private static void outputFromHoldingTrack()  { 
track[itsTrack].remove(); // remove smallestCar from itsTrack’th track
// find new smallestCar and itsTrack by checking all queue fronts

smallestCar = numberOfCars + 2;
for (int i = 1; i <= numberOfTracks; i++)
if (!track[i].isEmpty() && ((Integer) track[i].getF rontElement()).intValue() < smallestCar)
{   smallestCar = ((Integer) track[i].getFrontElement()).intValue();

itsTrack = i;  }
}
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1st Code: RRC with Queue (2)

private static boolean putInHoldingTrack (int c) {  /* put car c into a holding track */

int bestTrack = 0, bestLast =  0; 

for (int i = 1; i <= numberOfTracks; i++){ // scan tracks

if  (!track[i].isEmpty())  { // track i not empty

int lastCar = ((Integer) track[i].getRearElement()).intValue();

if (c > lastCar && lastCar > bestLast) { // track i has bigger car at its rear

bestLast = lastCar; bestTrack = i; } 

}  else // track i empty if (bestTrack == 0)   bestTrack = i;
} //end of for
if (bestTrack == 0)   return false; // no feasible track 
track[bestTrack].put(new Integer(c)); // add c to bestTrack
if (c < smallestCar) { // update smallestCar and itsTrack if needed

smallestCar = c;
itsTrack = bestTrack; } 

return true;
} // Complexity : O(numberOfCars * k)
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2nd Code: RRC with Queue

� To simplify the step for outputting the sequence of moves, use below 
variables and no queues

� Initially, lastCar[i] = 0,    1 ≤ i ≤ k

whichTrack[i] = 0,  1≤ i ≤ n

� If holding track i is empty, lastCar[i] = 0

Else  lastCar[i] = the label no of the last car in track i

� If car i is in the input track, whichTrack[i] = 0

Else whichTrack[i] = the hold track that car i was in

� The no-queue implementation is in the website as the class 
application.RailroaqdWithNoQueues
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Wire Routing (1)
� Impose a grid over the wire-routing region
� The grid divides the routing region an n x m array of squares
� Grid squares that already have a wire through them are blocked
� To minimize signal delay, a shortest path is used

� The distance-labeling pass
� The path-identification pass
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Wire Routing (2)
� The distance-labeling pass

� Begin at “a” and label its reachable neighbors “1”

� Next, the reachable neighbors of square labeled “1” are labeled “2”

� Continue until reach “b” or have no neighbors

� The case: a = (3,2) and b = (4,6)
� The shaded squares are blocked squares

•
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Wire Routing (3)
� The path-identification pass

� Reverse traversal from “b”

� Begin at b 

� Move to any one its neighbors labeled 1 less than b’s label

� The shortest path between a and b is not unique
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Representation: Wire Routing

� m x m grid : 2D array grid
� 0 : an open position
� 1 : a blocked position

� To move from a position to its neighbors
� use array offsets

� To keep track of labeled grid positions whose neighbors have not been 
examined
� use a queue

� Need to overload the array grid: blocking vs. distance 
� Conflict the usage of the label “1”

� To resolve, increase all distance labels by 2
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findPath() in WireRouter (1)
� Start(a) & finish(b) : static data members

private static boolean findPath () {
if  ( (start.row == finish.row) && (start.col == finish.col) ) {

pathLength = 0;    return true; }
Position [] offset = new Position [4]; // initialize offsets

offset[0] = new Position(0, 1);   // right offset[1] = new Position(1, 0);   // down
offset[2] = new Position(0, -1);  // left offset[3] = new Position(-1, 0);  // up
for (int i = 0; i <= size + 1; i++){ // initialize wall of blocks around the grid
grid[0][i] = grid[size + 1][i] = 1; // bottom and top
grid[i][0] = grid[i][size + 1] = 1; // left and right

}
Position here = new Position(start.row, start.col);
grid[start.row][start.col] = 2;   // block
int numOfNbrs = 4;    // neighbors of a grid position
// label reachable grid positions
ArrayQueue q = new ArrayQueue();
Position nbr = new Position(0, 0);
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findPath() in WireRouter (2) 
-- distance labeling pass

do { // label neighbors of here
for (int i = 0; i < numOfNbrs; i++){  // check out neighbors of here

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] == 0) { // unlabeled nbr, label it

grid[nbr.row][nbr.col] = grid[here.row][here.col] + 1;
if ((nbr.row == finish.row) && (nbr.col == finish.col))  break;         

q.put(new Position(nbr.row, nbr.col)); // put on queue for later expansion }
}//end of for

if ((nbr.row == finish.row) && (nbr.col == finish.col))  break; // are we done?
if (q.isEmpty())  return false;     // no path
here = (Position) q.remove();  // get next position

} while(true); // end of do loop
pathLength = grid[finish.row][finish.col] - 2; // construct path
path = new Position [pathLength];
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findPath() in WireRouter (3)
-- path identification pass

here = finish; // trace backwards from finish
for (int j = pathLength - 1; j >= 0; j--) {

path[j] = here;
// find predecessor position
for (int i = 0; i < numOfNbrs; i++){

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] == j + 2) break;

}
here = new Position(nbr.row, nbr.col); // move to predecessor

}   
return true;

} //end of function findPath()
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Complexity: Wire Routing

� The distance-labeling phase
� O(m2) time  (for an m x m grid)

� The path-constructing phase
� O(length of the shortest path)

� The overall complexity for findPath()
� O(m2)
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Image-component Labeling (1/3)

� A digitized image: m x m matrix of pixels

� In a binary image 

� 0 pixel : image background

� 1 pixel : a point on an image component

� Two pixels are adjacent

� if one is to the left, above, right, or below the other

� If two pixels are adjacent, they are called component pixels

� Component pixels get the same label

� Two pixels get the same label iff they are pixels of the same image 

component
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Image-Component Labeling (2/3)
� Four components

• (1,3),(2,3),(2,4)

• (3,5),(4,4),(4,5),(5,5)

• (5,2),(6,1),(6,2),(6,3),(7,1),(7,3)

• (5,7),(7,6),(7,7)

� 2,3,4,…. as component identifiers

� 1 designated an unlabeled component pixel
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Image-component Labeling (3/3)

� Solution strategy

� By scanning the pixels by rows and within rows by columns

� Determine components

� If unlabeled component is encountered 

� Give a component identifier/label

� By identifying and labeling all component pixels that are adjacent to 
the seed

� Determine the remaining pixels in the component
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Code: ICL (1)
� To move around the image easily, surround the image with a wall of blank
� To determine the pixels adjacent to a given pixel, use the offset array

private static void labelComponents() {
// initialize offsets 
…….
// initialize wall of 0 pixels
……
int numOfNbrs = 4; // neighbors of a pixel position
ArrayQueue q = new ArrayQueue();
Position nbr = new Position(0, 0);
int id = 1;  // component id
// scan all pixels labeling components
for (int r = 1; r <= size; r++)      // row r of image
for (int c = 1; c <= size; c++)  // column c of image
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labelComponents() : ICL (2)

if (pixel[r][c] == 1){     // new component
pixel[r][c] = ++id;     // get next id
Position here = new Position(r, c);

do{ // find rest of component
for (int i = 0; i < numOfNbrs; i++) { // check all neighbors 

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;

if (pixel[nbr.row][nbr.col] == 1){ //current component
pixel[nbr.row][nbr.col] = id;
q.put(new Position(nbr.row, nbr.col)); }

} //end of for
here = (Position) q.remove(); // a component pixel if any unexplored pixels

} while (here != null);
} // end of if, for c, and for r

} //end of function labelComponent()
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Complexity: labelComponents() 

� To initialize the wall : θθθθ(m) time

� To initialize offsets : θθθθ(1) time

� For each component, 0(num of pixels in component N) time 
is spent for identifying and labeling where N is at most m2

� Overall time complexity  : O(m2) time
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Machine Shop Simulation (1)
� Problem Description

� A machine shop 
� Comprises m machines
� Works on jobs
� Each job comprises several tasks

� For each task of a job
� A task time
� Machine on which it is to be performed
� Have to be performed in a specified order

� Each machine is in one of three states
� active state : working on a task
� idle state : doing nothing
� changing-over state : has completed a task and be preparing for a new task

� Assume
� Serves waiting jobs in a FIFO manner: QUEUE
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Machine Shop Simulation (2)

� Finish time : the time at which a job’s last task completes

� The length of a job : the sum of its task times

� Objective : Minimize the time a job spends waiting in queues 

Job of 
length l

Job of 
length l

Arrives at 
time 0

Completes at 
time f

f – l time in 
waiting in queue
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How the Simulation Works (1)
When has event occurred? 

A task completes, then a new job enters the shop 
Start-event initiates the simulation

{ Input the data;
Create the job queues at each machine;
Schedule first job in each machine queue;

While (an unfinished job remains) {// do the simulation

determine the next event;

if (the next event is the completion of a machine change over)
schedule the next job(if any) from this machine’s queue;

else { //a job task has completed
put the machine that finished the job task 
into its change-over states;
move the job whose task has finished 
to the machine for its next task; }

}  
}
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How the Simulation Works (2)

� For example, Consider a machine shop that has m=3 machines and 
n=4 jobs

� Job 1 has three tasks

� (1,2) of job1 means that it is to be done on M1 and takes tow time units
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How the Simulation Works (3)
� Show the machine shop simulation

� C : change over,  L : large time (i.e., the finish time is undefined)
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How the Simulation Works (4)

� Show the machine shop simulation

� Example, job2 : The length  = 6, the finish time = 12. So, wait time = 6
� Benefit 

� Can identify bottleneck machines and bottleneck stations

� Can be used to help make expansion /modernization decisions at the factory

� May be obtained an accurate estimate
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High-Level Simulator Design
� Assume: All jobs are available initially

� Until all jobs are completed, keep running

� Be implemented as MachineShopSimulator class

� The data objects : tasks, jobs, machines, an event list
� Be defined in a class
� Top- level nested class of MachineShopSimulator

� 5 modules 
� Input the data
� Put the jobs into the queues
� Perform the start event
� Run through all the events
� Output the Machine wait times
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The main() method in MSS

� LargeTime : class data member of MachineShopSimulator

� Larger than any permissible simulated time 

/** entry point for machine shop simulator */
public static void main(String [] args)
{

largeTime = Integer.MAX_VALUE;
inputData(); // get machine and job data
startShop(); // initial machine loading
simulate();  // run all jobs through shop
outputStatistics(); // output machine wait times

}
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The class Task in MSS
� Assume that all times are integral

private static class Task{
// data members
private int machine;
private int time;
// constructor
private Task (int theMachine, int theTime)
{ machine = theMachine;

time = theTime;
}

}
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The class Job in MSS (1)
� The class Job has a list of associated tasks that are performed in list order 

which are represented as a queue

private static class Job{
// data members
private LinkedQueue taskQ;  // this job's tasks
private int length;         // sum of scheduled task times
private int arrivalTime;  // arrival time at current queue
private int id;               // job identifier
// constructor
private Job(int theId){

id = theId; //only used when outputting the total wait time
taskQ = new LinkedQueue(); // length and arrivalTime have default value 0

}
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The class Job in MSS (2)

// only be used during data input 
private void addTask (int theMachine, int theTime)
{  taskQ.put(new Task(theMachine, theTime));
}

/* * only be used when a job is moved from a machine 
* queue to active status
* remove next task of job and return its time
* also update length */

private int removeNextTask() { 
int theTime = ((Task) taskQ.remove()).time;
length += theTime;
return theTime; }
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The class Machine in MSS
� By  using linked queues, limit the space required for machine queues

private static class Machine {
// data members
LinkedQueue jobQ; 
int changeTime; // machine change-over time
int totalWait;    // total delay at this machine
// number of tasks processed on this machine
int numTasks; 
Job activeJob; // job currently active on this machine
private Machine() // constructor
{ jobQ = new LinkedQueue();}

}
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The class EventList in MSS (1)

/* store the finish times of all machines */ 

private static class EventList {

int [] finishTime; // finish time array

// constructor

private EventList(int theNumMachines, int theLargeTime)

{ // initialize finish times for m machines

if (theNumMachines < 1) 

throw new IllegalArgumentException ("number of machines must be >= 1");
finishTime = new int [theNumMachines + 1];      
// all machines are idle, initialize with large finish time
for (int i = 1; i <= theNumMachines; i++)   finishTime[i] = theLargeTime;

} //end of constructor 
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The class EventList in MSS (2)
private int nextEventMachine(){ // find first machine to finish

//this is the machine with smallest finish time
int p = 1; int t = finishTime[1];
for (int i = 2; i < finishTime.length; i++) {

if (finishTime[i] < t){ // i finishes earlier
p = i;
t = finishTime[i]; }

} //end of for
return p;

} //end of nextEventMachine

private int nextEventTime(int theMachine) {  return finishTime[theMachine];}

private void setFinishTime(int theMachine, int theTime) { 
finishTime[theMachine] = theTime; }

}



Data Structures 60
SNU

IDB Lab.

The class EventList in MSS (3)

� The complexity 
� nextEventMachine

� θθθθ(m) time with m machines

� setFinishTime
� θθθθ(1) time

� When numTracks is the total number of tasks across all jobs
� nextEventMachine()            : θθθθ(numTracks * m)
� setFinishTime invocations()  : θθθθ(numTracks * m)
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Data Members in MSS 

private static int timeNow;        // current time
private static int numMachines;  // number of machines
private static int numJobs;        // number of jobs
private static EventList eList;    // pointer to event list
private static Machine [] machine;  // array of machines
private static int largeTime;   // all machines finish before this
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inputData() in MSS (1)
static void inputData(){ // define the input stream to be the standard input stream

MyInputStream keyboard = new MyInputStream();
System.out.println("Enter number of machines and jobs");
numMachines = keyboard.readInteger();
numJobs = keyboard.readInteger();
//Exception processing
……..
// create event and machine queues
eList = new EventList(numMachines, largeTime);
machine = new Machine [numMachines + 1];
for (int i = 1; i <= numMachines; i++)     machine[i] = new Machine();
for (int j = 1; j <= numMachines; j++) { // input the change-over times

int ct = keyboard.readInteger();
if (ct < 0) throw new MyInputException("change-over time must be >= 0");
machine[j].changeTime = ct;

}



Data Structures 63
SNU

IDB Lab.

inputData() in MSS (2)
Job theJob; // input the jobs

for (int i = 1; i <= numJobs; i++){
System.out.println("Enter number of tasks for job " + i);
int tasks = keyboard.readInteger();  // number of tasks
int firstMachine = 0;                // machine for first task
if (tasks < 1) throw new MyInputException("each job must have > 1 task");
theJob = new Job(i); // create the job

for (int j = 1; j <= tasks; j++) { // get tasks for job i

int theMachine = keyboard.readInteger();

int theTaskTime = keyboard.readInteger();

//InputException processing …
if (j == 1)  firstMachine = theMachine;         // job's first machine

theJob.addTask(theMachine, theTaskTime);  // add to task queue } 

machine[firstMachine].jobQ.put(theJob); } // end of for i

}
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startShop() in MSS 

/** load first jobs onto each machine */
static void startShop()
{

for (int p = 1; p <= numMachines; p++)
changeState(p);

}
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changeState() in MSS (1)

static Job changeState(int theMachine)  { // Task on theMachine has finished, schedule next one.

Job lastJob;

if (machine[theMachine].activeJob == null) { lastJob = null;  // in idle or change-over state     

// wait over, ready for new job

if (machine[theMachine].jobQ.isEmpty()) // no waiting job

eList.setFinishTime(theMachine, largeTime);  

else{ // take job off the queue and work on it

machine[theMachine].activeJob =  (Job) machine[theMachine].jobQ.remove();

machine[theMachine].totalWait += timeNow - machine[theMachine].activeJob.arrivalTime;

machine[theMachine].numTasks++;

int t = machine[theMachine].activeJob.removeNextTask();

eList.setFinishTime(theMachine, timeNow + t); } //end of else

} //end of if
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changeState() in MSS (2)

else

{  // task has just finished on machine[theMachine]

// schedule change-over time

lastJob = machine[theMachine].activeJob;

machine[theMachine].activeJob = null;

eList.setFinishTime(theMachine, timeNow +  machine[theMachine].changeTime);

}

return lastJob;

} //end of changeState()
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simulate() in MSS 
� Until the last job completes, cycles through all shop events

static void simulate()  {
while (numJobs > 0) { // at least one job left

int nextToFinish = eList.nextEventMachine();
timeNow = eList.nextEventTime(nextToFinish);
// change job on machine nextToFinish
Job theJob = changeState(nextToFinish);
// move theJob to its next machine
// decrement numJobs if theJob has finished
if (theJob != null && !moveToNextMachine(theJob))  

numJobs--;
}

}
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moveToNextMachine() in  MSS

� move theJob to machine for its next task

static boolean moveToNextMachine(Job theJob){ 

if (theJob.taskQ.isEmpty()) { // no next task, the job has completed and output times

System.out.println("Job " + theJob.id + " has completed at "

+ timeNow + " Total wait was "  + (timeNow - theJob.length));

return false; }

else { // theJob has a next task    // get machine for next task

int p = ((Task) theJob.taskQ.getFrontElement()).machine;

machine[p].jobQ.put(theJob); // put on machine p's wait queue

theJob.arrivalTime = timeNow;

// if p idle, schedule immediately

if (eList.nextEventTime(p) == largeTime) {changeState(p); } // machine is idle

return true; } //end of else

} //end of moveToNextMachine()
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outputStatistics() in MSS 

/* Output the finish time, total wait time and no of tasks processed */
static void outputStatistics()
{
System.out.println("Finish time = " + timeNow);
for (int p = 1; p <= numMachines; p++) {
System.out.println("Machine " + p + " completed "+ machine[p].numTasks+ " tasks");
System.out.println("The total wait time was "+ machine[p].totalWait);
System.out.println();
}

}
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Summary

� A queue is
� A kind of Linear list
� Insertion and deletion occur at different ends of the linear list
� FIFO structure

� Representation
� Array-based class
� Linked class

� Queue Applications
� Railroad Car Rearrangement

� The shunting track are FIFO

� Wire Routing
� Find the shortest path for a wire

� Image-Component Labeling
� If two pixels are part of the same image component, they are the same label

� Machine Shop Simulation
� Determine the total time each job spends and the total wait at each machine
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JDK  class: java.util.Queue

public interface Queue extends Collection {

methods

boolean offer(Object obj): Inserts obj into the queue;
Returns true iff adding is successful

Object remove(): Removes and returns the object at the head

}


