
SNU

IDB Lab.

Ch10. Queues

© copyright 2006 SNU IDB Lab.

Data Structures 2
SNU

IDB Lab.

Bird’s-Eye View (1/2)

� Chapter 9: Stack

� A kind of Linear list & LIFO(last-in-first-out) structure

� Insertion and removal from one end

� Chapter 10: Queue

� A kind of Linear list & FIFO(first-in-first-out) structure

� Insertion and deletion occur at different ends of the linear list

� Chapter 11: Skip Lists & Hashing

� Chains augmented with additional forward pointers

Data Structures 3
SNU

IDB Lab.

Bird’s-Eye View (2/2)

� Representation
� Array-based class: ArrayQueue

� Linked class: LinkedQueue

� Queue Applications
� Railroad Car Rearrangement

� The shunting track (holding tracks) are FIFO

� Wire Routing
� Find the shortest path for a wire

� Image-Component Labeling

� Machine Shop Simulation

Data Structures 4
SNU

IDB Lab.

Table of Contents

� Definition

� Array Representation

� Linked Representation

� Queue Applications

Data Structures 5
SNU

IDB Lab.

Definition
� A Queue is

� A FIFO (First In First Out) Linear list

� One end is “front” and the other end is “rear”

� Additions are done at the rear only

� Removals are made from the front only

Deletion “A” Insertion “D”

Data Structures 6
SNU

IDB Lab.

The Abstract Data Type: Queue

AbstractDataType Queues {
Instances

Ordered list of elements; front pointer; rear pointer;
Operations

isEmpty() : Return true if queue is empty,
Return false otherwise;

getFrontElement() : Return the front element of the queue;
getRearElement() : Return the rear element of the queue;

put(x) : Add element x at the rear of the queue;
remove() : Remove an element from the front of

the queue and return it;

}

Data Structures 7
SNU

IDB Lab.

The interface Queue
public interface Queue

{

public boolean isEmpty();

public Object getFrontEelement();

public Object getRearEelement();

public void put(Object theObject);

public Object remove();

}

Data Structures 8
SNU

IDB Lab.

Table of Contents

� Definition

� Array Representation

� Linked Representation

� Queue Applications

Data Structures 9
SNU

IDB Lab.

Queue by Array Representation (1)

� Mapping Function (1) : location(i) = i
� Element i is stored in queue[i], i≥≥≥≥0

� front = 0 (always) & rear = the location of the last element

� Queue size = rear + 1

� Empty queue: rear = -1

� To insert an element: θθθθ (1) time
� Increase rear by 1 and place the new element at queue[rear]

� To delete an element: θθθθ (n) time
� Must slide the elements in position 1 through rear one position

down the array

Deletion “A” Insertion “D”

Data Structures 10
SNU

IDB Lab.

Queue by Array Representation (2)

� Mapping Function (2) : location(i) = location(front) + i
� The index i for the front element is 0
� front = location(front element)
� rear = location(last element)
� Empty queue has the condition: rear < front
� Insert an element

� The worst-case time from θθθθ (1) to θθθθ (queue.length)
� Delete an element: θθθθ (1) time

� Move front to right by 1

Deletion “A” Insertion “D”

Data Structures 11
SNU

IDB Lab.

Queue by Array Representation (3)

� Mapping Function (2) : location(i) = location(front) + i

� When inserting an element

� If the rear pointer is located in the right end area

� If some space is available in the left area � move the existing
elements to the left rather

� Else doubling the array

Data Structures 12
SNU

IDB Lab.

Queue by Array Representation (4)

� Mapping Function (3) :
location(i) = (location(front element) + i) % queue.length

� Used the circular array representation of a queue

� Initial condition : front = rear = 0

� Empty queue: front = rear

� When front = rear, it is an empty queue or a full queue

� Verify whether this insertion will cause the queue to get full

If so, Double the length of the array queue

� The circular queue can have at most queue.length -1 elements

Data Structures 13
SNU

IDB Lab.

The class ArrayQueue (1)

� Uses the third mapping function to map a queue into an 1D array queue:

location(i) = (location(front element) + i) % queue.length

� Data members : front, rear, queue

� All methods are similar to those of ArrayStack

� To visualize array doubling when a circular queue is used, flatten out the
array

Data Structures 14
SNU

IDB Lab.

The class ArrayQueue (2)
� To get a proper circular queue configuration

� When the second segment is slid to the right, up to queue.length –2 “additional”
element references are copied (worst case: if there are 6 elements (G [] A B C D E F
G) in the second segment, A to G will have to be copied into the extended array)

Slide the element the right segment to
the right end of array

Data Structures 15
SNU

IDB Lab.

The class ArrayQueue (3)
� To limit the number of references copied to queue.length –1

� Create a new array newQueue of twice the length

� Copy the second segment to positions in newQueue beginning at 0

� Copy the first segment to position in newQueue beginnig at
queue.length – front – 1 (here 3)

Data Structures 16
SNU

IDB Lab.

The class ArrayQueue (4)

public voidput (Object theElement) { //increase array length if necessary
if ((rear + 1) % queue.length == front) {

Object[] newQueue = new Object[2*queue.length];
int start = (front +1) % queue.length;
if(start < 2) //no wrap around ([] A B .. G or A B .. G [])

System.arraycopy(queue,start,newQueue, 0,queue.length-1);
else { //queue wraps around

System.arraycopy(queue,start,newQueue, 0,queue.length-start);
System.arraycopy(queue,0,newQueue, queue.length-start,rear+1); }

front = newQueue.length – 1; //switch to newQueue and set front and rear
rear = queue.length – 2; //queue size is queue.length - 1

queue = newQueue; }
//put the Element at the rear of the queue
rear = (rear + 1) % queue.length;
queue[rear] = the Element;

}

Data Structures 17
SNU

IDB Lab.

The class ArrayQueue (5)

public Object remove()
{

if (isEmpty())
return null;

front = (front + 1) % queue.length;
Object frontElement = queue[front];
queue[front] = null; //enable garbage collection
returnfrontElement;

}

Data Structures 18
SNU

IDB Lab.

The class ArrayQueue (6)

� Complexity
� constructor(): O(initialCapacity)

� isEmpty(): θθθθ(1) time

� getFrontElement(): θθθθ(1) time

� getRearElement(): θθθθ(1) time

� remove(): θθθθ(1) time

� put() :

� If array doubling is done: θθθθ(queue size)

� Else: θθθθ(1) time

Data Structures 19
SNU

IDB Lab.

Table of Contents

� Definition

� Array Representation

� Linked Representation

� Queue Applications

Data Structures 20
SNU

IDB Lab.

Queue by Linked Representation (1)

� can be represented as a chain with front, rear variables
� Initial value: front = rear = null

� Empty queue: front = rear

� Two possibilities for pointers: “from front to rear” or “from rear to front”

chainNode[rear].next � NULL

chainNode[front].next � NULL

Data Structures 21
SNU

IDB Lab.

Queue by Linked Representation (2)

� Insert a node into a linked queue

(a) Insert into front-to-rear linkage: create a node & update one pointer

(b) Insert into rear-to-front linkage: create a node & update one pointer

New value

New value

Data Structures 22
SNU

IDB Lab.

Queue by Linked Representation (3)

� Remove a node from a linked queue

� Front-to-rear linkage is more efficient

(a) Remove from front-to-rear linkage: update one pointer

(b) Remove from rear-to-front linkage: update two pointers

Data Structures 23
SNU

IDB Lab.

Queue by Linked Representation (4)

� Front-to-rear linkage & The complexity of each of methods : θθθθ (1) time

public void put (Object theElement){
ChainNode p = new ChainNode(theElement, null); // create a node
//append p to the chain
if (front == null) front = p; //empty queue
else rear.next = p; //nonempty queue
rear = p;
}
public Object remove() {
if (isEmpty()) return null;

Object frontElement = front.element;
front = front.next;
if (isEmpty()) rear = null; //enable garbage collection
return frontElement;

}

Data Structures 24
SNU

IDB Lab.

Table of Contents

� Definition

� Array Representation

� Linked Representation

� Queue Applications
� Railroad Car Rearrangement

� Wire Routing

� Image-Component Labeling

� Machine Shop Simulation

Data Structures 25
SNU

IDB Lab.

Railroad Car Rearrangement (1)
� Problem: A three-track example

� Reserve track Hk (the central track) for moving cars directly from the input
track to the output track

� Only k-1 tracks are available for holding cars
� These tracks operate in a FIFO manner (QUEUE)

� If the next car is not the one that is expected to be output
� Move car c to a holding track that contains only cars with a smaller label

� If several such tracks exist, select one with the largest label at its left end
� Otherwise, select any empty track

Data Structures 26
SNU

IDB Lab.

1st Code: RRC with Queue (1)

// Can reuse the code in Program 9.9 through Program 9.12
// The method railroad() of Program 9.10 needs to be modified

// -- Decrease the number of tracks by 1
// -- Change the type of track to ArrayQueue

/* Output the smallest car from the holding tracks */
private static void outputFromHoldingTrack() {
track[itsTrack].remove(); // remove smallestCar from itsTrack’th track
// find new smallestCar and itsTrack by checking all queue fronts

smallestCar = numberOfCars + 2;
for (int i = 1; i <= numberOfTracks; i++)
if (!track[i].isEmpty() && ((Integer) track[i].getF rontElement()).intValue() < smallestCar)
{ smallestCar = ((Integer) track[i].getFrontElement()).intValue();

itsTrack = i; }
}

Data Structures 27
SNU

IDB Lab.

1st Code: RRC with Queue (2)

private static boolean putInHoldingTrack (int c) { /* put car c into a holding track */

int bestTrack = 0, bestLast = 0;

for (int i = 1; i <= numberOfTracks; i++){ // scan tracks

if (!track[i].isEmpty()) { // track i not empty

int lastCar = ((Integer) track[i].getRearElement()).intValue();

if (c > lastCar && lastCar > bestLast) { // track i has bigger car at its rear

bestLast = lastCar; bestTrack = i; }

} else // track i empty if (bestTrack == 0) bestTrack = i;
} //end of for
if (bestTrack == 0) return false; // no feasible track
track[bestTrack].put(new Integer(c)); // add c to bestTrack
if (c < smallestCar) { // update smallestCar and itsTrack if needed

smallestCar = c;
itsTrack = bestTrack; }

return true;
} // Complexity : O(numberOfCars * k)

Data Structures 28
SNU

IDB Lab.

2nd Code: RRC with Queue

� To simplify the step for outputting the sequence of moves, use below
variables and no queues

� Initially, lastCar[i] = 0, 1 ≤ i ≤ k

whichTrack[i] = 0, 1≤ i ≤ n

� If holding track i is empty, lastCar[i] = 0

Else lastCar[i] = the label no of the last car in track i

� If car i is in the input track, whichTrack[i] = 0

Else whichTrack[i] = the hold track that car i was in

� The no-queue implementation is in the website as the class
application.RailroaqdWithNoQueues

Data Structures 29
SNU

IDB Lab.

Table of Contents

� Queue Applications

� Railroad Car Rearrangement

� Wire Routing

� Image-Component Labeling

� Machine Shop Simulation

Data Structures 30
SNU

IDB Lab.

Wire Routing (1)
� Impose a grid over the wire-routing region
� The grid divides the routing region an n x m array of squares
� Grid squares that already have a wire through them are blocked
� To minimize signal delay, a shortest path is used

� The distance-labeling pass
� The path-identification pass

Data Structures 31
SNU

IDB Lab.

Wire Routing (2)
� The distance-labeling pass

� Begin at “a” and label its reachable neighbors “1”

� Next, the reachable neighbors of square labeled “1” are labeled “2”

� Continue until reach “b” or have no neighbors

� The case: a = (3,2) and b = (4,6)
� The shaded squares are blocked squares

•

Data Structures 32
SNU

IDB Lab.

Wire Routing (3)
� The path-identification pass

� Reverse traversal from “b”

� Begin at b

� Move to any one its neighbors labeled 1 less than b’s label

� The shortest path between a and b is not unique

Data Structures 33
SNU

IDB Lab.

Representation: Wire Routing

� m x m grid : 2D array grid
� 0 : an open position
� 1 : a blocked position

� To move from a position to its neighbors
� use array offsets

� To keep track of labeled grid positions whose neighbors have not been
examined
� use a queue

� Need to overload the array grid: blocking vs. distance
� Conflict the usage of the label “1”

� To resolve, increase all distance labels by 2

Data Structures 34
SNU

IDB Lab.

findPath() in WireRouter (1)
� Start(a) & finish(b) : static data members

private static boolean findPath () {
if ((start.row == finish.row) && (start.col == finish.col)) {

pathLength = 0; return true; }
Position [] offset = new Position [4]; // initialize offsets

offset[0] = new Position(0, 1); // right offset[1] = new Position(1, 0); // down
offset[2] = new Position(0, -1); // left offset[3] = new Position(-1, 0); // up
for (int i = 0; i <= size + 1; i++){ // initialize wall of blocks around the grid
grid[0][i] = grid[size + 1][i] = 1; // bottom and top
grid[i][0] = grid[i][size + 1] = 1; // left and right

}
Position here = new Position(start.row, start.col);
grid[start.row][start.col] = 2; // block
int numOfNbrs = 4; // neighbors of a grid position
// label reachable grid positions
ArrayQueue q = new ArrayQueue();
Position nbr = new Position(0, 0);

Data Structures 35
SNU

IDB Lab.

findPath() in WireRouter (2)
-- distance labeling pass

do { // label neighbors of here
for (int i = 0; i < numOfNbrs; i++){ // check out neighbors of here

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] == 0) { // unlabeled nbr, label it

grid[nbr.row][nbr.col] = grid[here.row][here.col] + 1;
if ((nbr.row == finish.row) && (nbr.col == finish.col)) break;

q.put(new Position(nbr.row, nbr.col)); // put on queue for later expansion }
}//end of for

if ((nbr.row == finish.row) && (nbr.col == finish.col)) break; // are we done?
if (q.isEmpty()) return false; // no path
here = (Position) q.remove(); // get next position

} while(true); // end of do loop
pathLength = grid[finish.row][finish.col] - 2; // construct path
path = new Position [pathLength];

Data Structures 36
SNU

IDB Lab.

findPath() in WireRouter (3)
-- path identification pass

here = finish; // trace backwards from finish
for (int j = pathLength - 1; j >= 0; j--) {

path[j] = here;
// find predecessor position
for (int i = 0; i < numOfNbrs; i++){

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] == j + 2) break;

}
here = new Position(nbr.row, nbr.col); // move to predecessor

}
return true;

} //end of function findPath()

Data Structures 37
SNU

IDB Lab.

Complexity: Wire Routing

� The distance-labeling phase
� O(m2) time (for an m x m grid)

� The path-constructing phase
� O(length of the shortest path)

� The overall complexity for findPath()
� O(m2)

Data Structures 38
SNU

IDB Lab.

Table of Contents

� Queue Applications

� Railroad Car Rearrangement

� Wire Routing

� Image-Component Labeling

� Machine Shop Simulation

Data Structures 39
SNU

IDB Lab.

Image-component Labeling (1/3)

� A digitized image: m x m matrix of pixels

� In a binary image

� 0 pixel : image background

� 1 pixel : a point on an image component

� Two pixels are adjacent

� if one is to the left, above, right, or below the other

� If two pixels are adjacent, they are called component pixels

� Component pixels get the same label

� Two pixels get the same label iff they are pixels of the same image

component

Data Structures 40
SNU

IDB Lab.

Image-Component Labeling (2/3)
� Four components

• (1,3),(2,3),(2,4)

• (3,5),(4,4),(4,5),(5,5)

• (5,2),(6,1),(6,2),(6,3),(7,1),(7,3)

• (5,7),(7,6),(7,7)

� 2,3,4,…. as component identifiers

� 1 designated an unlabeled component pixel

Data Structures 41
SNU

IDB Lab.

Image-component Labeling (3/3)

� Solution strategy

� By scanning the pixels by rows and within rows by columns

� Determine components

� If unlabeled component is encountered

� Give a component identifier/label

� By identifying and labeling all component pixels that are adjacent to
the seed

� Determine the remaining pixels in the component

Data Structures 42
SNU

IDB Lab.

Code: ICL (1)
� To move around the image easily, surround the image with a wall of blank
� To determine the pixels adjacent to a given pixel, use the offset array

private static void labelComponents() {
// initialize offsets
…….
// initialize wall of 0 pixels
……
int numOfNbrs = 4; // neighbors of a pixel position
ArrayQueue q = new ArrayQueue();
Position nbr = new Position(0, 0);
int id = 1; // component id
// scan all pixels labeling components
for (int r = 1; r <= size; r++) // row r of image
for (int c = 1; c <= size; c++) // column c of image

Data Structures 43
SNU

IDB Lab.

labelComponents() : ICL (2)

if (pixel[r][c] == 1){ // new component
pixel[r][c] = ++id; // get next id
Position here = new Position(r, c);

do{ // find rest of component
for (int i = 0; i < numOfNbrs; i++) { // check all neighbors

nbr.row = here.row + offset[i].row;
nbr.col = here.col + offset[i].col;

if (pixel[nbr.row][nbr.col] == 1){ //current component
pixel[nbr.row][nbr.col] = id;
q.put(new Position(nbr.row, nbr.col)); }

} //end of for
here = (Position) q.remove(); // a component pixel if any unexplored pixels

} while (here != null);
} // end of if, for c, and for r

} //end of function labelComponent()

Data Structures 44
SNU

IDB Lab.

Complexity: labelComponents()

� To initialize the wall : θθθθ(m) time

� To initialize offsets : θθθθ(1) time

� For each component, 0(num of pixels in component N) time
is spent for identifying and labeling where N is at most m2

� Overall time complexity : O(m2) time

Data Structures 45
SNU

IDB Lab.

Table of Contents

� Queue Applications

� Railroad Car Rearrangement

� Wire Routing

� Image-Component Labeling

� Machine Shop Simulation

Data Structures 46
SNU

IDB Lab.

Machine Shop Simulation (1)
� Problem Description

� A machine shop
� Comprises m machines
� Works on jobs
� Each job comprises several tasks

� For each task of a job
� A task time
� Machine on which it is to be performed
� Have to be performed in a specified order

� Each machine is in one of three states
� active state : working on a task
� idle state : doing nothing
� changing-over state : has completed a task and be preparing for a new task

� Assume
� Serves waiting jobs in a FIFO manner: QUEUE

Data Structures 47
SNU

IDB Lab.

Machine Shop Simulation (2)

� Finish time : the time at which a job’s last task completes

� The length of a job : the sum of its task times

� Objective : Minimize the time a job spends waiting in queues

Job of
length l

Job of
length l

Arrives at
time 0

Completes at
time f

f – l time in
waiting in queue

Data Structures 48
SNU

IDB Lab.

How the Simulation Works (1)
When has event occurred?

A task completes, then a new job enters the shop
Start-event initiates the simulation

{ Input the data;
Create the job queues at each machine;
Schedule first job in each machine queue;

While (an unfinished job remains) {// do the simulation

determine the next event;

if (the next event is the completion of a machine change over)
schedule the next job(if any) from this machine’s queue;

else { //a job task has completed
put the machine that finished the job task
into its change-over states;
move the job whose task has finished
to the machine for its next task; }

}
}

Data Structures 49
SNU

IDB Lab.

How the Simulation Works (2)

� For example, Consider a machine shop that has m=3 machines and
n=4 jobs

� Job 1 has three tasks

� (1,2) of job1 means that it is to be done on M1 and takes tow time units

Data Structures 50
SNU

IDB Lab.

How the Simulation Works (3)
� Show the machine shop simulation

� C : change over, L : large time (i.e., the finish time is undefined)

Data Structures 51
SNU

IDB Lab.

How the Simulation Works (4)

� Show the machine shop simulation

� Example, job2 : The length = 6, the finish time = 12. So, wait time = 6
� Benefit

� Can identify bottleneck machines and bottleneck stations

� Can be used to help make expansion /modernization decisions at the factory

� May be obtained an accurate estimate

Data Structures 52
SNU

IDB Lab.

High-Level Simulator Design
� Assume: All jobs are available initially

� Until all jobs are completed, keep running

� Be implemented as MachineShopSimulator class

� The data objects : tasks, jobs, machines, an event list
� Be defined in a class
� Top- level nested class of MachineShopSimulator

� 5 modules
� Input the data
� Put the jobs into the queues
� Perform the start event
� Run through all the events
� Output the Machine wait times

Data Structures 53
SNU

IDB Lab.

The main() method in MSS

� LargeTime : class data member of MachineShopSimulator

� Larger than any permissible simulated time

/** entry point for machine shop simulator */
public static void main(String [] args)
{

largeTime = Integer.MAX_VALUE;
inputData(); // get machine and job data
startShop(); // initial machine loading
simulate(); // run all jobs through shop
outputStatistics(); // output machine wait times

}

Data Structures 54
SNU

IDB Lab.

The class Task in MSS
� Assume that all times are integral

private static class Task{
// data members
private int machine;
private int time;
// constructor
private Task (int theMachine, int theTime)
{ machine = theMachine;

time = theTime;
}

}

Data Structures 55
SNU

IDB Lab.

The class Job in MSS (1)
� The class Job has a list of associated tasks that are performed in list order

which are represented as a queue

private static class Job{
// data members
private LinkedQueue taskQ; // this job's tasks
private int length; // sum of scheduled task times
private int arrivalTime; // arrival time at current queue
private int id; // job identifier
// constructor
private Job(int theId){

id = theId; //only used when outputting the total wait time
taskQ = new LinkedQueue(); // length and arrivalTime have default value 0

}

Data Structures 56
SNU

IDB Lab.

The class Job in MSS (2)

// only be used during data input
private void addTask (int theMachine, int theTime)
{ taskQ.put(new Task(theMachine, theTime));
}

/* * only be used when a job is moved from a machine
* queue to active status
* remove next task of job and return its time
* also update length */

private int removeNextTask() {
int theTime = ((Task) taskQ.remove()).time;
length += theTime;
return theTime; }

Data Structures 57
SNU

IDB Lab.

The class Machine in MSS
� By using linked queues, limit the space required for machine queues

private static class Machine {
// data members
LinkedQueue jobQ;
int changeTime; // machine change-over time
int totalWait; // total delay at this machine
// number of tasks processed on this machine
int numTasks;
Job activeJob; // job currently active on this machine
private Machine() // constructor
{ jobQ = new LinkedQueue();}

}

Data Structures 58
SNU

IDB Lab.

The class EventList in MSS (1)

/* store the finish times of all machines */

private static class EventList {

int [] finishTime; // finish time array

// constructor

private EventList(int theNumMachines, int theLargeTime)

{ // initialize finish times for m machines

if (theNumMachines < 1)

throw new IllegalArgumentException ("number of machines must be >= 1");
finishTime = new int [theNumMachines + 1];
// all machines are idle, initialize with large finish time
for (int i = 1; i <= theNumMachines; i++) finishTime[i] = theLargeTime;

} //end of constructor

Data Structures 59
SNU

IDB Lab.

The class EventList in MSS (2)
private int nextEventMachine(){ // find first machine to finish

//this is the machine with smallest finish time
int p = 1; int t = finishTime[1];
for (int i = 2; i < finishTime.length; i++) {

if (finishTime[i] < t){ // i finishes earlier
p = i;
t = finishTime[i]; }

} //end of for
return p;

} //end of nextEventMachine

private int nextEventTime(int theMachine) { return finishTime[theMachine];}

private void setFinishTime(int theMachine, int theTime) {
finishTime[theMachine] = theTime; }

}

Data Structures 60
SNU

IDB Lab.

The class EventList in MSS (3)

� The complexity
� nextEventMachine

� θθθθ(m) time with m machines

� setFinishTime
� θθθθ(1) time

� When numTracks is the total number of tasks across all jobs
� nextEventMachine() : θθθθ(numTracks * m)
� setFinishTime invocations() : θθθθ(numTracks * m)

Data Structures 61
SNU

IDB Lab.

Data Members in MSS

private static int timeNow; // current time
private static int numMachines; // number of machines
private static int numJobs; // number of jobs
private static EventList eList; // pointer to event list
private static Machine [] machine; // array of machines
private static int largeTime; // all machines finish before this

Data Structures 62
SNU

IDB Lab.

inputData() in MSS (1)
static void inputData(){ // define the input stream to be the standard input stream

MyInputStream keyboard = new MyInputStream();
System.out.println("Enter number of machines and jobs");
numMachines = keyboard.readInteger();
numJobs = keyboard.readInteger();
//Exception processing
……..
// create event and machine queues
eList = new EventList(numMachines, largeTime);
machine = new Machine [numMachines + 1];
for (int i = 1; i <= numMachines; i++) machine[i] = new Machine();
for (int j = 1; j <= numMachines; j++) { // input the change-over times

int ct = keyboard.readInteger();
if (ct < 0) throw new MyInputException("change-over time must be >= 0");
machine[j].changeTime = ct;

}

Data Structures 63
SNU

IDB Lab.

inputData() in MSS (2)
Job theJob; // input the jobs

for (int i = 1; i <= numJobs; i++){
System.out.println("Enter number of tasks for job " + i);
int tasks = keyboard.readInteger(); // number of tasks
int firstMachine = 0; // machine for first task
if (tasks < 1) throw new MyInputException("each job must have > 1 task");
theJob = new Job(i); // create the job

for (int j = 1; j <= tasks; j++) { // get tasks for job i

int theMachine = keyboard.readInteger();

int theTaskTime = keyboard.readInteger();

//InputException processing …
if (j == 1) firstMachine = theMachine; // job's first machine

theJob.addTask(theMachine, theTaskTime); // add to task queue }

machine[firstMachine].jobQ.put(theJob); } // end of for i

}

Data Structures 64
SNU

IDB Lab.

startShop() in MSS

/** load first jobs onto each machine */
static void startShop()
{

for (int p = 1; p <= numMachines; p++)
changeState(p);

}

Data Structures 65
SNU

IDB Lab.

changeState() in MSS (1)

static Job changeState(int theMachine) { // Task on theMachine has finished, schedule next one.

Job lastJob;

if (machine[theMachine].activeJob == null) { lastJob = null; // in idle or change-over state

// wait over, ready for new job

if (machine[theMachine].jobQ.isEmpty()) // no waiting job

eList.setFinishTime(theMachine, largeTime);

else{ // take job off the queue and work on it

machine[theMachine].activeJob = (Job) machine[theMachine].jobQ.remove();

machine[theMachine].totalWait += timeNow - machine[theMachine].activeJob.arrivalTime;

machine[theMachine].numTasks++;

int t = machine[theMachine].activeJob.removeNextTask();

eList.setFinishTime(theMachine, timeNow + t); } //end of else

} //end of if

Data Structures 66
SNU

IDB Lab.

changeState() in MSS (2)

else

{ // task has just finished on machine[theMachine]

// schedule change-over time

lastJob = machine[theMachine].activeJob;

machine[theMachine].activeJob = null;

eList.setFinishTime(theMachine, timeNow + machine[theMachine].changeTime);

}

return lastJob;

} //end of changeState()

Data Structures 67
SNU

IDB Lab.

simulate() in MSS
� Until the last job completes, cycles through all shop events

static void simulate() {
while (numJobs > 0) { // at least one job left

int nextToFinish = eList.nextEventMachine();
timeNow = eList.nextEventTime(nextToFinish);
// change job on machine nextToFinish
Job theJob = changeState(nextToFinish);
// move theJob to its next machine
// decrement numJobs if theJob has finished
if (theJob != null && !moveToNextMachine(theJob))

numJobs--;
}

}

Data Structures 68
SNU

IDB Lab.

moveToNextMachine() in MSS

� move theJob to machine for its next task

static boolean moveToNextMachine(Job theJob){

if (theJob.taskQ.isEmpty()) { // no next task, the job has completed and output times

System.out.println("Job " + theJob.id + " has completed at "

+ timeNow + " Total wait was " + (timeNow - theJob.length));

return false; }

else { // theJob has a next task // get machine for next task

int p = ((Task) theJob.taskQ.getFrontElement()).machine;

machine[p].jobQ.put(theJob); // put on machine p's wait queue

theJob.arrivalTime = timeNow;

// if p idle, schedule immediately

if (eList.nextEventTime(p) == largeTime) {changeState(p); } // machine is idle

return true; } //end of else

} //end of moveToNextMachine()

Data Structures 69
SNU

IDB Lab.

outputStatistics() in MSS

/* Output the finish time, total wait time and no of tasks processed */
static void outputStatistics()
{
System.out.println("Finish time = " + timeNow);
for (int p = 1; p <= numMachines; p++) {
System.out.println("Machine " + p + " completed "+ machine[p].numTasks+ " tasks");
System.out.println("The total wait time was "+ machine[p].totalWait);
System.out.println();
}

}

Data Structures 70
SNU

IDB Lab.

Summary

� A queue is
� A kind of Linear list
� Insertion and deletion occur at different ends of the linear list
� FIFO structure

� Representation
� Array-based class
� Linked class

� Queue Applications
� Railroad Car Rearrangement

� The shunting track are FIFO

� Wire Routing
� Find the shortest path for a wire

� Image-Component Labeling
� If two pixels are part of the same image component, they are the same label

� Machine Shop Simulation
� Determine the total time each job spends and the total wait at each machine

Data Structures 71
SNU

IDB Lab.

JDK class: java.util.Queue

public interface Queue extends Collection {

methods

boolean offer(Object obj): Inserts obj into the queue;
Returns true iff adding is successful

Object remove(): Removes and returns the object at the head

}

