Mechanical Systems II

Transfer function for systems with Gears

Seoul National Univ. Department of Mechanical and Aerospace Engineering System Analysis Spring 2009

Transfer function for systems with Gears

Impedances are reflected from the output to the input, therby eliminating the gears.

$$(Js^{2} + Ds + K)\frac{N_{1}}{N_{2}}\theta_{1}(s) = T_{1}(s)\frac{N_{2}}{N_{1}}$$
$$(J\left(\frac{N_{1}}{N_{2}}\right)^{2}s^{2} + D\left(\frac{N_{1}}{N_{2}}\right)^{2}s + K\left(\frac{N_{1}}{N_{2}}\right)^{2})\theta_{1}(s) = T_{1}(s)$$

Rotational mechanical impedances can be reflected through gear trains by multiplying the mechanical impedance by the ratio,

$$\left(\frac{\theta_2}{\theta_1}\right)^2 = \left(\frac{N_1}{N_2}\right)^2 = \left(\frac{\text{Number of teeth of gear on destination shaft}}{\text{Number of teeth of gear on source shaft}\right)^2$$

Work, Energy, and Power

• Mechanical work : $W = F \cdot x$ [N·m] = [Joule]

= Force × displacement

- Energy : capacity or ability to do work. Electrical, Chemical, Mechanical, etc.
- Mechanical energy : Potential energy position

Kinetic energy – velocity

Potential Energy

Kinetic Energy

Work and Energy

Seoul National Univ. Department of Mechanical and Aerospace Engineering System Analysis Spring 2009

Power

$$1hp = 745.7 W \qquad \therefore P = 54 hp$$

Power dissipated in a damper

$$P = Fv = b\dot{x} \cdot \dot{x} = b\dot{x}^2$$

Energy Method for Deriving Equivalent Mass and Inertia

•Kinetic Energy of the total System

KE =

•Kinetic Energy represented with a single variable

$$KE =$$

•Equation of motion using equivalent mass

$$m_e = \left(m + 2m_w + 2\frac{I_w}{R^2}\right)$$

Energy Method for Deriving Equations of Motion

• Conservative system : No energy dissipation

$$E_1 + W = E_2$$
$$E_2 - E_1 = W$$

- Kinetic Energy T
- Potential Energy U

 Δ (T+U) = Δ W

(the change in the total energy)
= (the net work done on the system by the external force)

```
no external force ; \Delta W = 0
\Delta(T+U) = 0 T+U = constant
```


Examples of Energy Method

Examples of Energy Method

Seoul National Univ. Department of Mechanical and Aerospace Engineering System Analysis Spring 2009 12