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A Simple Problem

Consider the system equation :

u
.
\7/ Laplace transform :  (ms® +bs+Kk)Y (s) =U(s)
/ Transfer function: ~)
0 U(s)
b
. . : N b . k 1
Consider the system equationagain: y=——y——y+—U
m m m
Let’s change to multiple single order equations.
Choose variables: X =Y, X, =Y
L L b Kk 1
Thenweget: Y=X =X y=X=——X,——X +—U
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L)((l}: k b L)zl}+ 1 (U Simplify the matrix: X = Ax+ Bu

= 2 x il
m m

N

:,_L&;.go Seoul National Univ.
B School of Mechanical Spring 2009

¥, Jhi
piswzd and Aerospace Engineering



Why State Space Modeling?

Transfer function Approach Uses single, higher-order equation

Classical, Frequency Domain Approach.

Replace differential equations with algebraic equations > simplifies representation of
individual subsystems, and modeling of interconnected subsystems.

Disadvantage: Limited applicability. Only can be applied to linear, time-invariant systems.

Advantage: Rapidly provide stability and transient response information. Can immediately
see the effects of varying system parameters until an acceptable design is met.

Consist of coupled first-order differential equations.

State Space Approach Uses vector and matrix notation.

Modern, time domain approach.
Unified approach for modeling, analyzing and designing a wide range of systems.

Can be used to represent nonlinear systems that have backlash, saturation and dead zone.
Can handle systems with non-zero initial conditions and time-varying systems.

Multi input and multi output systems can be compactly represented with a complexity similar
to that of SISO system.

Numerous state space software packages available.
System analysis can be done using linear algebra. (Matrix form)
Disadvantage: It is not as intuitive as the classical approach.
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State Space Modeling

If the system is linear time-invariant system, the system can be presented as n
state variables, rinput variables, and m output variables.

State equation : X, =8, X +a,X, ++--+a, X +b,u +b,u, +---+b u,
X = Ax+Bu X, = 8, X +8,,X, +---+a, X, +b,u, +b,u, +---+b, U

2nn 2rr

X =a X +a,X +--+a X +b.u+b,u,+--+b u

Output equation : Y, =Cy X +Cp,X, +++-+C X, +dy,U +d,u, +---+d, U
y=Cx+Du Y, =Cy X +Cpp X, +-+-+C,y X+ U +d,,U, +---+d, U

2n“*n 2r-r

ym - lexl +Cm2X2 +°”+Cmnxn +dm1u1 +dmZUZ +°”+dmrur
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State Space Modeling

State of a dynamic system : The smallest set of variables such that the knowledge
of these variables at 1 =1, together with the knowledge
of the inputfor 1 =>1;, completely determines the
behavior of the system for any time t=>1;. And the
variables are called state variables.

State vector: n state variables which is needed to completely describe the behavior of
a given system can be considered the n components of a vector x. Such
a vector is called a state vector.

State space : The n-dimensional space whose coordinate axes consist of the X;
axis, X, axis, ..., X axisis called a state space.

Minimum number of state variables
= number of energy storage elements
=order of differential equation
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State Space Modeling

_ X — - E '
State space equation X=AX+Bu >tate Equation
y =Cx+Du >Output Equation
_X1_ _a11 &, - ain_ _b11 b12 blr_ _ul_
X = X, A= Ay 8y o Ay, B = b21 b22 b2r U= u,
_Xn_ _anl a'n2 ann_ _bnl bnz bnr_ _ur_
i Y1 | _C11 Cp, - G ] | d11 d12 1r ]
B A B
_ym_ _le Cm2 Cmn_ _dml dm2 dmr_

A : State matrix (System Matrix,

>, : C : State output matrix
Transition matrix)

_ D : Control output matrix
B : Input matrix

Seoul National Univ.
M School of Mechanical :
and Aerospace Engineering Sprmg 2009




A Simple Problem

u my +by +ky =u
X=AxX+BuU
y=- y =Cx+Du
b
State vector: Choice should resultin a set of 15t order eqgns.
X, = y(displacement), X, = y(speed) y=X =X,
. y— X _—EX _h _|_£u
N ST T
XZ

Output Vector: What are you interested in?

Total Force: Y, =U—KX—bX Momentum: y, =mx
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Transformation of System Models

Step Response : sys=sys(A,B,C,D)
we use 'step(sys)' or 'step(A,B,C,D)'in MATLAB

Transfer Matrix : r inputs, U, U,,---,U. and m outputs, Y:; ¥, " ¥Yn
We define those vectors.

U, Y,
u

u=| 2|, y= %
_ur_ _ym_

Then, the transfer matrix G(s) expresses the relationship between Y(s) and U(s)

Y (s) =G(s)U(s)

by Seoul National Univ.
B School of Mechanical Spring 2009

pisrd  and Aerospace Engineering




Transformation of System Models

System equation : X=Ax+Bu
y =Cx+ Du

Laplace Transformation :

Assume, x(0)=0 : X(s)= |U(s)
Y(s) = U(s)—> ..G(s)=C(sl —A)'B+D
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Vehicle Suspension Problem

4—Quarter
Car Model
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Vehicle Suspension Problem

ex1) Spring, damper, mass system ex2) Body and tire model
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Vehicle Suspension Problem

ex3) Two inputs ex4) Two inputs, Body and Tire Model
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Twoinputs: Z,,Z, Z,({t)=2z,(t-7)
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Vehicle Suspension Problem

ex1) Spring, damper, mass system - Design Considerations

1. Ride Quality

— Sprung mass acceleration : y

2. Rattle space

— Suspension Deflection : y

= Suspension Design Parameters

— Spring Stiffness : k

— Damping Ratio : b
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Vehicle Suspension Problem

* Free Body Diagram = Dynamic Equations

my +b(y—-u)+k(y—-u)=0

.
4 T my + by + ky = bu + ku

= Laplace Transform

% A (ms? +bs + k)Y (s) = (bs + k) X (s)
kE(yv—x) b(y—x)

Y(s)  bs+k

Transfer function: >
U(s) ms“+bs+k
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Vehicle Suspension Problem

= General Form of State Equation X = Ax+Bu

= The State variables (u=z)

X,=2,—2,  :Suspension Deflection

X, = Z : absolute velocity of body
Xi = Z Z.r =X, — Z.r'
X, =2, = _k X, _b X, +B 2, acceleration of body

m m m

e Seoul National Univ.
\k‘-:":‘: .
Y M School of Mechanical

Sl and Aerospace Engineering

Spring 2009



Vehicle Suspension Problem

ex2) Body and tire model = Design Considerations
1. Ride Quality
T y — Sprung mass acceleration : y
m2

2. Rattle space
k< b —> Suspension Deflection : y —x
2

3. Tire Force Vibration

— Tire Deflection : x—u

= Suspension Design Parameters

— Spring Stiffness : k,

— Damping Ratio : b

— Tire Stiffness : k;
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Vehicle Suspension Problem

* Free Body Diagram = Dynamic Equations

M =k, (y = X) +b( = X) +k, (U —x)

- P m,y =k, (y =) ~b(y - X)

k(y=x) b(y-X)

= Laplace Transform

3
>
>

ky(Y=X) b(y-X) [m,s2 +Dbs + (k, +K,)]X (s)

k1 (U - X)

= (bs+K,)Y (s) + kU (s)

[m,s* +bs+k,]Y (s) = (bs +k,) X (s)
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Vehicle Suspension Problem

= General Form of State Equation

X=Ax+Bu
y=Cx+Du

= Dynamic Equations
mZ, =k,(z,—z,)+b(z,-2,)+k (u-2z,)
m,Z, =—K,(z,—2,)-b(z,-2,)
= The State variables (X=12,, y=12,)
X, =2z,—12, :Suspension Deflection
X, =2, . absolute velocity of sprung mass

X;=2,—uU  :Tire Deflection
X, =12, - absolute velocity of unsprung mass
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