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BIRD’S-EYE VIEW (0)

� Chapter 12: Binary Tree

� Chapter 13: Priority Queue

� Heap and Leftiest Tree

� Chapter 14: Tournament Trees

� Winner Tree and Loser Tree
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BIRD’S-EYE VIEW

� Can obtain improved run-time performance by using treesto represent the sets
� Tree and binary tree terminology 

� Height, Depth, Level
� Root, Leaf
� Child, Parent, Sibling

� Representation of binary trees
� Array-based
� Linked

� The four common ways to traverse a binary tree
� Preorder
� Inorder
� Postorder
� Level-order
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Trees (1)

� A tree consists of finite nonempty set of elements
� One of elements is called the root
� Remaining elements are partitioned into trees, which are 

called the subtrees

� Terminology 
� Children, Grand Children, Descendent
� Sibling
� Parent, Grand Parent, Ancestor
� Leaves
� Level, Height, Degree
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Trees (2)

root

subtree
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Trees (3)

root
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Trees (4)

sibling

sibling
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Trees (5)

Parent of 
Chris

Grandparent of 
Chris

Ancestor of 
Chris
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Trees (6)

leaves
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Trees (7)

� Height = the number of levels = 3

Level1

Level2

Level3



12Data Structures
SNU

IDB Lab.

Trees (8)
� Degree of an element

� The number of children of an element

� Degree of a tree

� The maximum of its element degrees

3

20

0 0

1

0
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Binary Trees
� A Tree has any number of subtreeswhich areunordered

� A binary tree has two subtreeswhich are ordered
� the left subtree and the right subtree
� The subtrees arealso binary tree

� Full Binary Tree
� Complete Binary Tree
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Binary Trees for Arithmetic Expression
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BT Property 12.1 & 12.2

� [12.1] The drawing of every binary tree with n elements, n > 0, has 
exactly n - 1edges

� Proof
� Every element in the binary tree(except the root) has exactly one parent
� One edge between each child and its parent
� So the number of edges is n-1

� [12.2] A binary tree of height, h >= 0, has at leasth and at most2h –1 
elements in it

� Proof
� Since each level has one element, the number of elements is h
� Since each element has two children, the number of elements is 2h –1
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BT Property 12.3

� [12.3] The height of a binary tree that contains n, n >= 0, elements is 
at mostn and at least⌈⌈⌈⌈log2(n+1)⌉⌉⌉⌉

� Proof

� Since there must be at least one element at each level, the height 
cannot exceed n

� From property 12.2, a binary tree of height h can have no more 
than 2h –1 elements

� So n ≤ 2h –1.

� Hence h ≥ log2(n+1)

� Since h is an integer, h ≥⌈⌈⌈⌈log2(n+1)⌉⌉⌉⌉
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Full Binary tree

� FBT of height h that contains exactly 2h –1 elements
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Complete Binary Tree

� All resulting trees by deleting the k elements numbered 2h – i,                 
from a full BT

� 2h – 1, 2h – 2, 2h – 3,…..     � 8 – 1 ,  8 – 2, 8 – 3,  � 7, 6, 5, ….

h2k  i  1 <≤≤
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BT Property 12.4
� [12.4] Let i,  1  <= i <= n, be the number assigned to an element 

of a complete binary tree. 

The followings are true:
� If i = 1, then element is the root of the binary tree.  
� If i > 1, then the parent of this element has been assigned the 

number ⌊⌊⌊⌊i/2⌋⌋⌋⌋
� If i > n/2, then this element has no left child. Otherwise (i  <= 

n/2), its left child has been assigned the number 2i
� If i > (n-1)/2, then this element has no right child. Otherwise (i 

<= (n-1)/2), its right child has been assigned the number 2i+1

� See Figure 12.7
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Array Based Binary Tree (1)

<Binary tree> <Array representation>

� The location of an element is calculated by the array index
� Useful only when the number of missing elements is small
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Array-Based Binary Tree (2)

� Pitfalls
� quite wasteful of spacewhen many elements are missing in some cases like a 

right-skewed binary tree
� A right-skewed binary tree that has n elements may require an array of size 

up to 2n - 1 for its representation
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Linked Binary Tree (1)

� Two link fields represents each element

� leftChild

� rightChild

� Field-name: element

� Access all nodes in a binary tree by starting at the root and 
following leftChild and rightChild links recursively

� inOrder

� preOrder

� postOrder

� levelOrder
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Linked Binary Tree (2)

<Binary tree> <Linked representation>
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Linked Binary Tree (3)

<Binary tree> <Linked representation>
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public class BinaryTreeNode {
// package visible data members
Object element;
BinaryTreeNode leftChild;    // left subtree
BinaryTreeNode rightChild;   // right subtree
// constructors
public BinaryTreeNode () {}        
public BinaryTreeNode (Object theElement)   {element = theElement;}
public BinaryTreeNode
(Object theElement, BinaryTreeNode theleftChild, BinaryTreeNode therightChild)
{ element = theElement;
leftChild = theleftChild;
rightChild = therightChild;
}

}

Linked Binary Tree (4)
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Traversal-based Operations in BT 

� These operations are performed by traversing the BT in a 
systematic manner

� Determine its height of BT
� Determine the number of elements in a BT
� Make a copy of BT
� Display the binary tree on a screen or on paper
� Determine whether two binary trees are identical
� Make the tree empty
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Binary Tree Traversals

� In a BT traversal, each element is visited exactly once
� Preorder traversal     (depth first search)
� Inorder traversal
� Postorder traversal
� Level-order traversal (breadth first search)

� When an expression tree is output in preorder, inorder, and 
postorder, we get the prefix, infix , and postfix forms of the 
expression, respectively
� Expression: A + B

� Preorder tarversal� Prefix form:  + A B
� Inorder traversal    � Infix form:    A + B
� Postorder traversal � Postfix form: A B +
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Preorder BT traversal (1)

public static void preOrder (BinaryTreeNode t) {
if (t != null)
{

visit(t); //visit tree root
preOrder(t.leftChild);   //do left subtree
preOrder(t.rightChild); //do right subtree

}
}
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Preorder BT traversal (2)

a

b c

a b c

+ * a b / c d
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Preorder BT traversal (3)

+ + + a b c d / + - a + x y * + b * c d
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Inorder BT traversal (1)

public static void inOrder (BinaryTreeNode t) {
if (t != null)
{

inOrder(t.leftChild);       //do left subtree
visit(t); //visit tree root
inOrder(t.rightChild);     //do right subtree

}
}
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Inorder BT traversal (2)

a

b c

b a c a * b + c / d
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Inorder BT traversal (3)

a + b + c + d - a + x + y / + b * c * a



37Data Structures
SNU

IDB Lab.

Postorder BT traversal (1)

public static void postOrder (BinaryTreeNode t) {

if (t != null)

{

postOrder(t.leftChild); //do left subtree

postOrder(t.rightChild);      //do right subtree

visit(t); //visit tree root

}

}
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Postorder BT traversal (2)

a

b c

b c a a b * c d / +
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Postorder BT traversal (3)

a b + c + d +
a – x y + + b + c d * * /
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Level-order BT traversal (1)
� Visit by level from top to bottom
� Within levels, elements are visited from left to right.

public static void levelOrder (BinaryTreeNode t) {
ArrayQueue q = new ArrayQueue();  // need array queue
while (t != null) {

visit(t); // visit t
// put t’s children on queue
if (t.leftChild != null)    q.put(t.leftChild);
if (t.rightChild != null)  q.put(t.rightChild);

// get next node to visit
t =  (BinaryTreeNode)q.remove();

}
}
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Level-order BT traversal (2)

a

b c

a b c
+ * / a b c d
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Level-order BT traversal (3)

+ + d + c a b
/ + * - + + * a x y b c a
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The ADT BinaryTree
AbstractDataType BinaryTree {  
// instances
collection of elements; 
if not empty, the collection is partitioned into  a root, left subtree, and right subtree; 
each subtree is also a binary tree; 

// operations
isEmpty() : return true if empty, return false otherwise;
root() : return the root element; return null if the tree is empty;
makeTree(root, left, right) : create a binary tree with root, left subtree, right subtree
removeLeftSubtree() : remove the left subtree and return it;
removeRightSubtree() : remove the right subtree and return it;
preOrder(visit)            : preorder traversal of binary tree
inOrder(visit) : inorder traversal of binary tree
postOrder(visit) : postorder traversal of binary tree
levelOrder(visit) : level-order traversal of binary tree

}
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Data Members in  LinkedBinaryTree
// instance data member
BinaryTreeNode root; // root node
// class data members
Static Method visit; 
Static Object [] visitArgs = new Object [1]
Static int count;
Static Class [] paramType = {BinaryTreeNode.class}
Static Method the Add1;
Static Method theOutput;
// method to initialize class data members
Static {
try {
class lbt = LinkedBinaryTree.class;
theAdd1 = lbt.getMethod(“add1”,paramType);
theOutput = lbt.getMethod(“output”, paramType);

}
catch (Exception e) {} // exception not possible

}
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Visit methods in LinkedBinaryTree

// only default constructor available

// class methods
/** visit method that outputs element
public static void output (BinaryTreeNode t) {System.out.print(t.element + “ “);}

/** visit method to count nodes */
public static void add1 (BinaryTreeNode t) {count++;}
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makeTree() & removeLeftSubtree()  
methods of LinkedBinaryTree

public void makeTree(Object root, Object left, Object right)  {
This.root = new BinaryTreeNode(root, ((LinkedBinaryTree) left).root, 

((LinkedBinaryTree) right).roor);
}

public BinaryTreeremoveLeftSubtree( ) {
If(root==null) throw new illegalArgumentException(“tree is empty”);  
// detach left subtree and save in leftSubtree
LinkedBinaryTree leftSubtree = new LinkedBinaryTree();
leftSubtree.root = root.leftChild;
Root.leftChild = null;
Return (BinaryTree) leftSubtree;
}
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Preorder Methods of LinkedBinaryTree

public void preOrder(Method visit) {    
this.visit = visit;
thePreOrder(root);

}
Static void thePreOrder(BianryTreeNode t) { 

if (t != null)  {
visitArgs[0] = t;
try { visit.invoke(null, visitArgs); }; 
catch (Exception e) { System.out.println(e) }; 
thePreOrder (t.leftChild);
thePreOrder (t.rightChild);

}
}

public void preOrderOutput(){ preOrder (theOutput); }
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Placement of Signal Booster
� Signal p � v  degrades the signal strength by 5 because p � r � v

� Signal q � x  degrades the signal strength by 3 because q � s � x

� If a signal boosteris placed at node r which is a descendant of p
� The strength of the signal that arrives at r is supposed to be 3 units less than that of the 

signal that leaves source p without the signal booster

� But the signal that leaves r has the same strengthas the signal that leaves source p
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PSB Solution (1)
� degradeFromParent(i)

� degradation between node i and its parent
� The value of incoming edge of a node

� degradeFromParent(w) = 3
� degradeFromParent(p)  = 0
� degradeFromParent(r)   = 3

� degradeToLeaf(i)
� maximum signal degradation from node i to any leaf in the subtree rooted at i
� If i is a leaf node, then degradeToLeaf(i) = 0
� For the remaining nodes

� degradeToLeaf(i) =       
max  {degradeToLeaf(j) + degradeFromParent(j)}, j is a child of i

� degradeToLeaf(s)  = 3
� degradeToLeaf(q) = 5
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PSB Solution  (2)

� Consider degradeToLeaf(q) when P � (1) q   � (2)  s  � (3) w
� degradeToLeaf(q) = degradeToLeaf(s) + degradeFromParent(s) = 5

� Suppose tolerance = 3

� Placing a booster at q or p does not help because it cannot tolerate signal 
degradation between q and its descendents

� If a booster is placed at s, then degradeToLeaf(q) = 3

� From the root, check every path by node traversal
� Sum degradeFromParentand degradeToLeafof the nodes in the path

� If the sum      tolerance,  put the booster there≥
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PSB Solution (3)
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PSB Solution  (4)

p

r

v

z

u

yw

t

q

s

x
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PSB Solution  (5)

p
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Union-Find Problem

� Given a set {1, 2, …, n} of n elements
� Initially each element is in a different set

� {1}, {2}, …, {n}
� An intermixed sequence of union & find operations is performed
� A union operation combines two sets into one set

� Each of the n elements is in exactly one set at any time

� A find operation identifies the set that contains a particular element
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UFP  Tree Representation
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Representing a Set as  a Tree
•ClassA: 16, 11,25,28

•ClassB: 26,32

0
16

16
25

16
11

16
28

0
26

26
32
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UFP Tree Solution
� Represent each set as a tree
� Find operation

� Use the element in the rootas the set identifier
� find(3) returns the value 20
� find(1) returns the value 20
� find(26) returns the value 26
� find(i) = find(j) iff i and j are in the same set

� Union operation:  Union(classA, classB)
� To unite the two trees, make one tree a subtreeof the other
� If classA = 16 and classB = 26

� classA is made a subtree of classB
� classB is made a subtree of classA
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Union(classA, classB): 
classA is made a subtree of classB

•ClassA: 16, 11,25,28

•ClassB: 26,32

26
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Union(classA, classB): 
classB is made a subtree of classA

•ClassA: 16, 11,25,28

•ClassB: 26,32

16
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UnionFindWithTrees
public class UnionFindWithTrees {

int [] parent;   // pointer to parent in tree
/** initialize n trees, one element per tree/class/set */
public UnionFindWithTrees (int n) {

parent = new int [n + 1];
for (int e = 1; e <= n; e++)  parent[e] = 0;

}
/** @return root of the tree that contains theElement */
public int find (int theElement) {

while ( parent[theElement] != 0 )  // move up one level
theElement = parent[theElement];

return theElement;
} 
/** combine trees with distinct roots rootA and rootB */
public void union (int rootA, int rootB) { parent[rootB] = rootA; }

}
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Summary

� Can obtain improved run-time performance by using trees to represent the sets 

� Tree terminology 
� Height, Depth, Level
� Root, Leaf
� Child, Parent, Sibling

� Representation of BT: array-based vs linked
� The 4 common ways to traverse a BT

� Preorder/Inorder/Postorder/Level-order

� Tree Applications
� Placement of Signal Boosters (PSB)
� Union-Find Problem (UFP)
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Sahni class: 
dataStructures.BinaryTree(p.474)

public interface BinaryTree {
methods

boolean isEmpty(): Returns true if empty, false otherwise

Object root(): Returns the root element
void makeTree(Object root, Object left, Object right): Creates a binary

tree with root as the root element, left as the left subtree,

right as the right subtree
BinaryTree removeLeftSubtree(): Removes the left subtree and returns it

BinaryTree removeRightSubtree(): Removes the right subtree and

returns it
void preOrder(Method visit): Carries out preorder traversal

void inOrder(Method visit): Carries out inorder traversal

void postOrder(Method visit): Carries out postorder traversal
void levelOrder(Method visit): Carries out level-order traversal

}


