!'_ Ch.12 BINARY and OTHER TREES

© copyright 2006 SNU IDB Lab.

i BIRD'S-EYE VIEW (0)

s Chapter 12: Binary Tree

= Chapter 13: Priority Queue
=« Heap and Leftiest Tree

= Chapter 14: Tournament Trees
= Winner Tree and Loser Tree

Data Structures 2

SNU
IDB Lab.

i BIRD'S-EYE VIEW

Can obtain improved run-time performanceusyng treeso representhe sets
Tree and binary tree terminology
= Height, Depth, Level
= Root, Leaf
= Child, Parent, Sibling
Representation of binary trees
= Array-based
= Linked
The four common ways to traverse a binary tree
= Preorder
= |norder
= Postorder
= Level-order

SNU
Data Structures 3 IDB Lab.

i Table of Contents

m [rees

= Binary Tree
= Properties of Binary Trees
= Representation of Binary Trees
= Common Binary Tree Operations
« Binary Tree Traversal
= ADT Binary Tree

= [ree Applications

SNU
Data Structures 4 IDB Lab.

i Trees (1)

= A tree consists of finite nonempty set of elements
= One of elements is called theot

= Remaining elements are partitioned into trees, Wwhie
called thesubtrees

= Terminology
= Children, Grand Children, Descendent
= Sibling
= Parent, Grand Parent, Ancestor
= Leaves
= Level, Height, Degree

SNU
Data Structures 5 IDB Lab.

/su btree

SNU

Data Structures IDB Lab.

i Trees (3)

Joe root
m
Ann Mary John\ Children of root
Maﬁ Eue Chriy Grandchildren

of root
Descendent of M

SNU
Data Structures 7 IDB Lab.

\ /sibling

Mk S Cho

Data Structures 8 IDB Lab.

Grandparent of
Chris

Parent of

Chris
Ann |
/\ ; Ancestor of
Mark Sue Chris hric

SNU
Data Structures 9 IDB Lab.

‘L Trees (6)
Joe

M\

Ann

Mary

John

leaves

S
Mark

N\

e

Chris

Data Structures

10

SNU
IDB Lab.

‘L Trees (7)

Joe Levell
A Mél'}’ John Level?
Mark Sue Chrig Level3

= Height = the number of levels = 3

SNU
Data Structures 11 IDB Lab.

Trees (8)

= Degree of an element
= he number of children of an element

= Degree of a tree
= The maximum of its element degrees

Joe 3
Ann O Mary 2 John 1
MarkO Sue 0 Chris 0

SNU
Data Structures 12 IDB Lab.

i Table of Contents

m [rees

= Binary Trees
« Properties of Binary Trees
= Representation of Binary Trees
= Common Binary Tree Operations
« Binary Tree Traversal
= ADT BinaryTree

= [ree Applications

SNU
Data Structures 13 IDB Lab.

‘_L Binary Trees

= A Tree hasany number of subtre&ghich areunordered

= A binary tree haswvo subtreesvhich areordered
= the left subtree and the right subtree
= The subtrees am@so binary tree

= Full Binary Tree
= Complete Binary Tree

SNU
Data Structures 14 IDB Lab.

‘L Binary Trees for Arithmetic Expression

9 9

9 0 (+) (&
ORORONOENOIO
(a) (a*b) +(c/d) o o

b)Y((a+b)+c)+d
Data Structures 15 J IsDNBULab.

i BT Property 12.1 & 12.2

[12.1] The drawing of every binary tree with n etts, n > 0, has
exactlyn - 1edges

Proof
= Every element in the binary tree(except the roos)d¥aactly one parent
= One edge between each child and its parent
= S0 the number of edges is n-1

[12.2] A binary tree of height, h >= 0, hasleash andat most2h -1
elements in it

Proof
= Since each level has one element, the number okaksns h
= Since each element has two children, the numbeleafents is 2-1

SNU
Data Structures 16 IDB Lab.

i BT Property 12.3

= [12.3] Theheightof a binary tree that contains n, n >= 0, elements
at mostn andat least [log,(n+1) |

s Proof

Since there must be at least one element at eaeh tlee height
cannot exceed n

From property 12.2, a binary tree of height h camehno more
than 2 -1 elements

Son< 2h-1.
Hence h= log,(n+1)
Since his an integer,& | log,(n+1) |

SNU

Data Structures 17 IDB Lab.

Full Binary tree
= FBT of height h that contains exactly 2" —1 elements

Figure 12.6 Full binary tree of height 4

Data Structures 18 ;r |||||||

i Complete Binary Tree

= All resulting trees by deleting the k elements numbered 2" — |,
1<i<sk<?2" from a full BT

s 20—1,20-2,2"-3,..... 2>8-1,8-2,8-3, 27,6,5, ...

p o é

Figure 12.7 Complete binary trees
I

C Lab.

BT Property 12.4

4] Letl, 1 <=1<=n, be the number assigtedn element
of a complete binary tree.

The followings are true:
« Ifi=1, then element ighe root of the binary tree
= Ifi>1, then the parent of this element has bessignedhe
number | i/2 |

= |f1>n/2, then this element has left child Otherwise (I <=
n/2), its left child has been assigned the number 2

= Ifi>(n-1)/2, then this element has right child Otherwise (i
<= (n-1)/2), its right child has been assignedrtamber 2i+1

See Figure 12.7
SNU

Data Structures 20 IDB Lab.

i Table of Contents

m [rees

= Binary Trees
= Properties of Binary Trees
= Representation of Binary Trees
= Common Binary Tree Operations
« Binary Tree Traversal
= ADT BinaryTree

= [ree Applications

Data Structures 21

SNU
IDB Lab.

‘L Array Based Binary Tree (1)

LN B C
2 B L 1> =
<Binary tree> <Array representation>

= The location of an element is calculated by theyamdex

= Useful only when the number of missing elementsnall

SNU
Data Structures 22 IDB Lab.

‘_L Array-Based Binary Tree (2)

(a) Right-skewed tree

A B L 1>

(b)) Agrav representation

= Pitfalls

= Quite wasteful of spacghen many elements are missing in some cases like a
right-skewed binary tree

= A right-skewed binary tree that has n elements raguire an array of size
up to 2- 1 for its representation

SNU
Data Structures 23 IDB Lab.

i Linked Binary Tree (1)

= Two link fields represents each element
= leftChild
= rightChild

= Field-name: element

= Access all nodes in a binary tree by starting @atrdot and
following leftChild and rightChild links recursively

= INOrder

« preOrder
= postOrder
= levelOrder

SNU
Data Structures 24 IDB Lab.

‘L Linked Binary Tree (2)

<Binary tree>

Data Structures

t

|

null

A

null

B

null

C

0

<Linked representation>

25

SNU
IDB Lab.

‘L Linked Binary Tree (3)
|

2 3 A
e / \
4_ 5 6 7 nulll B malll C
SRUIS o]
lll D | 0 nlll E | 0
<Binary tree> <Linked representation>

SNU
Data Structures 26 IDB Lab.

i Linked Binary Tree (4)

public class BinaryTreeNode {
// package visible data members
Object element;
BinaryTreeNode leftChild; // left subtree
BinaryTreeNode rightChild; // right subtree
// constructors
public BinaryTreeNode () {}
public BinaryTreeNode (Object theElement) {element = theElement;}
public BinaryTreeNode
(Object theElement, BinaryTreeNode theleftChild, BinaryTreeNode therightChild)
{ element = theElement;
leftChild = theleftChild;
rightChild = therightChild;

¥

SNU
Data Structures 27 IDB Lab.

i Table of Contents

m [rees

= Binary Trees
= Properties of Binary Trees
= Representation of Binary Trees
= Traversal-based Operations in BT
= ADT BinaryTree

= [ree Applications

SNU
Data Structures 28 IDB Lab.

Traversal-based Operations in BT

= These operations are performed by traversing thenBir
systematic manner

= Determineits height of BT

= Determinethe number of elements in a BT

= Make a copy of BT

= Display the binary tree on a screen or on paper
= Determinewhether two binary trees are identical
= Make the tree empty

SNU
Data Structures 29 IDB Lab.

i Binary Tree Traversals

= In a BT traversal, each element is visited exautiye
= Preorder traversal (depth first search)
= Inorder traversal
= Postorder traversal
= Level-order traversal (breadth first search)

= When an expression tree is outpupreorder, inorder, and
postordeywe get therefix, infix, andpostfix forms of the
expression, respectively
= EXxpression: A +B
= Preorder tarversat® Prefix form: + AB
= Inorder traversal = Infix form: A+ B
= Postorder traversa® Postfix form: AB +

SNU
Data Structures 30 IDB Lab.

i Preorder BT traversal (1)

public static void preOrder (BinaryTreeNode t) {
if (t!= null)
{
visit(t); //visit tree root
preOrder(t.leftChild); //do left subtree
preOrder(t.rightChild); //do right subtree

¥
¥

SNU
Data Structures 31 IDB Lab.

i Preorder BT traversal (2)

./.\.

abc

+*ab/cd

Data Structures 32 IDB Lab.

‘L Preorder BT traversal (3)

S gn R

+++abcd [+-a+xy*+b*cd

SNU
Data Structures 33 IDB Lab.

i Inorder BT traversal (1)

public static void inOrder (BinaryTreeNode t) {
if (t!= null)
{
inOrder(t.leftChild); //do left subtree
visit(t); //Vvisit tree root
inOrder(t.rightChild); //do right subtree

¥
¥

SNU
Data Structures 34 IDB Lab.

i Inorder BT traversal (2)

¢ o L

bac a*b+c/d

SNU
Data Structures 35 IDB Lab.

‘L Inorder BT traversal (3)

@

o > 5 T

SNU
Data Structures 36 IDB Lab.

i Postorder BT traversal (1)

public static void postOrder (BinaryTreeNode t) {
if (t!= null)
{
postOrder(t.leftChild); //do left subtree
postOrder(t.rightChild); //do right subtree
visit(t); //Vvisit tree root

SNU
Data Structures 37 IDB Lab.

i Postorder BT traversal (2)

()
< D
(o) &) (o) (D
bca ab*cd/ +

SNU
Data Structures 38 IDB Lab.

‘L Postorder BT traversal (3)

SR LR

SNU
Data Structures 39 IDB Lab.

i Level-order BT traversal (1)

= Visit by level from top to bottom
= Within levels, elements are visitémm left to right.

public static void levelOrder (BinaryTreeNode t) {

ArrayQueue g = new ArrayQueue();need array queue
while (t !'= null) {

visit(t); // visit t

// put t's children on queue

iIf (t.leftChild !'= null) q.put(t.leftChild);

if (t.rightChild !'= null) g.put(t.rightChild);

I/l get next node to visit
t = (BinaryTreeNode)q.remove();

}

} SNU
Data Structures 40 IDB Lab.

& Level-order BT traversal (2)

(4 —
(1)
0000
+*/abcd

SNU
Data Structures 41 IDB Lab.

‘L Level-order BT traversal (3)

‘— L bVl

ST R G BT

X o %k
++d+cab | + + +*axybca

SNU
Data Structures 4?2 IDB Lab.

i Table of Contents

m [rees

= Binary Trees
= Properties of Binary Trees
= Representation of Binary Trees
= Traversal-based Operations in BT
= ADT BinaryTree

= [ree Applications

SNU
Data Structures 43 IDB Lab.

The ADT BinaryTree

ADStractDataType BinaryTree {

// instances

collection of elements;

if not empty, the collection is partitioned into a root, left subtree, and right subtree;
each subtree is also a binary tree;

// operations

iIsEmpty() : return true if empty, return false otherwise;

root() : return the root element; return null if the tree is empty;

makeTree(root, left, right) : create a binary tree with root, left subtree, right subtree
removeleftSubtree() : remove the left subtree and return it;

removeRightSubtree() : remove the right subtree and return it;

preOrder(visit) : preorder traversal of binary tree
inOrder(visit) : inorder traversal of binary tree
postOrder(visit) : postorder traversal of binary tree
levelOrder(visit) : level-order traversal of binary tree
)

SNU
Data Structures 44 IDB Lab.

Data Members in LinkedBinaryTree

I ce data member
BinaryTreeNode root} root node
/Il class data members
Static Method visit;
Static Object [] visitArgs = new Object [1]
Static int count;
Static Class [] paramType = {BinaryTreeNode.class}
Static Method the Add1;
Static Method theOutput;
// method to initialize class data members
Static {
try {
class Ibt = LinkedBinaryTree.class;
theAddl = Ibt.getMethod(“addl1”,paramType);
theOutput = Ibt.getMethod(“output”, paramType);
}

catch (Exception e) {}/ exception not possible

é SNU
ata Structures 45 IDB Lab.

Visit methods in LinkedBinaryTree

// only default constructor available

Il class methods
[** visit method that outputs element
public static void output (BinaryTreeNode t) {Systent.print(t.element + “ *);}

[** visit method to count nodes */
public static void addl1 (BinaryTreeNode t) {count}+;

SNU
Data Structures 46 IDB Lab.

makeTree() & removelLeftSubtree()
methods of LinkedBinaryTree

public voidmakeTregObject root, Object left, Object right) {

This.root = new BinaryTreeNode(root, ((LinkedBinarge) left).root,
((LinkedBinaryTree) right).roor);
}

public BinaryTreegemoveleftSubtreé) {

If(root==null) throw new illegalArgumentExceptiorn(ee is empty”);
// detach left subtree and save in leftSubtree

LinkedBinaryTree leftSubtree = new LinkedBinaryTree()
leftSubtree.root = root.leftChild;

Root.leftChild = null;

Return (BinaryTree) leftSubtree;

}

SNU
Data Structures 47 IDB Lab.

Preorder Methods of LinkedBinaryTree

public voidpreOrderMethod visit) {
this.visit = visit;
thePreOrder(root);
}
Static voidthePreOrde(BianryTreeNode t) {
if (t!=null) {
VISItArgs[O] = t;
try { visit.invoke(null, visitArgs); };
catch (Exception e) { System.out.printin(e) };
thePreOrder (t.leftChild);
thePreOrder (t.rightChild);

}
}

public voidpreOrderOutput(§ preOrder (theOutput); } SNU

Data Structures 48 IDB Lab.

i Table of Contents

m [rees

= Binary Trees
= Properties of Binary Trees
= Representation of Binary Trees
= Common Binary Tree Operations
= Binary Tree Traversal
= ADT BinaryTree

= Tree Applications

= Placement of Signal Boosters (PSB)
= Union-Find Problem (UFP)

SNU
Data Structures 49 IDB Lab.

Placement of Signal Booster

= Signal p—> v degrades the signal strength by 5 becauerp> v
= Signal g2 x degrades the signal strength by 3 becaugesg> x

1
%
Ficure 12.12 Tree distributi on network

= If a signal boostds placed at node r which is a descendant of p

= The strength of the signal that arrives at r igpegpd to be 3 units less than that of the
signal that leaves source p without the signal tasos

= But the signal that leaves r hae same strengts the signal that leavesurce p

SNU
Data Structures 50 IDB Lab.

PSB Solution (1)

o radeFromParent(i)
= degradation between node i and its parent
= The value of incoming edge of a node
= degradeFromParent(w) = 3
= degradeFromParent(p) =0
= degradeFromParent(r) =3

s degradeTolLeaf(i)

= maximum signal degradation from node i to any leaf in the subtree rooted at i
« Ifiis aleaf node, then degradeTolLeaf(i) = 0
« For the remaining nodes

= degradeToleaf(i) =

max {degradeToleaf(j) + degradeFromParent(j)}, j is a child of i
= degradeTolLeaf(s) = 3
= degradeTolLeaf(q) =5

SNU
Data Structures 51 IDB Lab.

i PSB Solution (2)

= Consider degradeTolLeaf(q) whenP(1) g =2 (2) s> (3) w

= degradeTolLeaf(q) = degradeTolLeaf(s) + degradeFroenKa) = 5
= Suppose tolerance =3

= Placing a booster at g or p does not help becauaanbt tolerate signal
degradation between g and its descendents

= If a booster is placed at s, then degradeToLeaf(q) = 3

= From the root, checkvery path by node traversal

= SumdegradeFromPareanddegradeTolLeabf the nodes in the path
« Ifthe sum= tolerance, putthe booster there

SNU
Data Structures 52 IDB Lab.

PSB Solution (3)

degradeToLeaf (i) = 0;
for (each child j of)
if (degradeToLeaf(j) + degrade FromParent(j)) > tolerance)

{
place a booster at j;
degradel oLeaf(i) = max{degradeToLeaf (i),
degrade FromParent(j)};
}
else

degradeToLeaf (i) = max{degradeToLeaf (i),
degradeToLeaf(j) + degrade FromParent(j)};

Figure 12.13 Pseudocode to place boosters and compute degradeTolLea f

SNU
Data Structures 53 IDB Lab.

S PSB Solution (4)

SNU
Data Structures 54 IDB Lab.

‘_L PSB Solution (5)

signal boosters are at shaded nodes

Numbers inside nodes are degradeToLeaf values
Figure 12.14 Distribution network with signal boosters

SNU
Data Structures 55 IDB Lab.

i Union-Find Problem

= Given asefl, 2, ..., n} of nelements
= Initially each element is in a different set
« {1}, {2}, ..., {n}
= An intermixed sequence of union & find operationperformed

= A unionoperation combines two sets into one set
= Each of then elements is in exactly one set at any time

= A find operation identifies the set that contains a paldicelement

SNU
Data Structures 56 IDB Lab.

i UFP Tree Representation

(c) (d)
Figure 12.16 Tree representation of disjoint sets
Data Structures 57 Ar IDB Lab.

* Representing a Set as a Tree

oClassA: 16, 11,25,28
eClassB: 26,32

gow o

Data Structures 58 IDB Lab.

i UFP Tree Solution

= Represent each setasree
= Find operation

Usethe element in the roais the set identifier
find(3) returns the value 20

find(1) returns the value 20

find(26) returns the value 26

find(i) = find(j) iff i and j are in the same set

= Union operation: Union(classA, classB)

To unite the two trees, make one teesubtre®f the other

= If classA = 16 and classB = 26

= classA is made a subtree of classB
= classB is made a subtree of classA

Data Structures 59

SNU
IDB Lab.

Union(classA, classB):
i classA is made a subtree of classB

oClassA: 16, 11,25,28
*ClassB: 26,32

260 @
(A1) (2@s) (28

Data Structures 60 IDB Lab.

classB is made a subtree of classA

i Union(classA, classB):

oClassA: 16, 11,25,28
oClassB: 26,32

16

16
11 25 28 26

Data Structures 61 IDB Lab.

UnionFindWithTrees

public class UnionFindWithTrees {
int [] parent; // pointer to parent in tree
/** initialize n trees, one element per tree/class/set */
public UnionFindWithTrees (int n) {
parent = new int [n + 1];
for (inte =1; e <=n; e++) parent[e] = 0;

}

[** @return root of the tree that contains theElement */
public int find (int theElement) {
while (parent[theElement] !'=0) // move up one level
theElement = parent[theElement];
return theElement;
by
/** combine trees with distinct roots rootA and rootB */
public void union (int rootA, int rootB) { parent[rootB] = rootA; }

by
SNU
Data Structures 62 IDB Lab.

i Summary

Can obtain improved run-time performance by usiegdro represent the sets

= Tree terminology

= Height, Depth, Level

= Root, Leaf

= Child, Parent, Sibling
= Representation of BT: array-based vs linked
= The 4 common ways to traverse a BT

= Preorder/Inorder/Postorder/Level-order

= Tree Applications
= Placement of Signal Boosters (PSB)
= Union-Find Problem (UFP)

SNU
Data Structures 63 IDB Lab.

Sahni class:
dataStructures.BinaryTree(p.474)

p Interface BinaryTree {
methods
boolean iIsEmpty(): Returns true if empty, false otherwise
Object root(): Returns the root element
void makeTree(Object root, Object left, Object right): Creates a binary
tree with root as the root element, left as the left subtree,
right as the right subtree
BinaryTree removelLeftSubtree(): Removes the left subtree and returns it
BinaryTree removeRightSubtree(): Removes the right subtree and
returns it
void preOrder(Method visit): Carries out preorder traversal
void inOrder(Method visit): Carries out inorder traversal
void postOrder(Method visit): Carries out postorder traversal

void levelOrder(Method visit): Carries out level-order traversal

3 SNU
Data Structures 64 IDB Lab.

