
1SNU

IDB Lab.

Ch.12 BINARY and OTHER TREES

© copyright 2006 SNU IDB Lab.

2Data Structures
SNU

IDB Lab.

BIRD’S-EYE VIEW (0)

� Chapter 12: Binary Tree

� Chapter 13: Priority Queue

� Heap and Leftiest Tree

� Chapter 14: Tournament Trees

� Winner Tree and Loser Tree

3Data Structures
SNU

IDB Lab.

BIRD’S-EYE VIEW

� Can obtain improved run-time performance by using treesto represent the sets
� Tree and binary tree terminology

� Height, Depth, Level
� Root, Leaf
� Child, Parent, Sibling

� Representation of binary trees
� Array-based
� Linked

� The four common ways to traverse a binary tree
� Preorder
� Inorder
� Postorder
� Level-order

4Data Structures
SNU

IDB Lab.

Table of Contents

� Trees

� Binary Tree
� Properties of Binary Trees

� Representation of Binary Trees

� Common Binary Tree Operations

� Binary Tree Traversal

� ADT Binary Tree

� Tree Applications

5Data Structures
SNU

IDB Lab.

Trees (1)

� A tree consists of finite nonempty set of elements
� One of elements is called the root
� Remaining elements are partitioned into trees, which are

called the subtrees

� Terminology
� Children, Grand Children, Descendent
� Sibling
� Parent, Grand Parent, Ancestor
� Leaves
� Level, Height, Degree

6Data Structures
SNU

IDB Lab.

Trees (2)

root

subtree

7Data Structures
SNU

IDB Lab.

Trees (3)

root

Children of root

Grandchildren
of root

root

Children of root

root

Grandchildren
of root

Descendent of Joe

8Data Structures
SNU

IDB Lab.

Trees (4)

sibling

sibling

9Data Structures
SNU

IDB Lab.

Trees (5)

Parent of
Chris

Grandparent of
Chris

Ancestor of
Chris

10Data Structures
SNU

IDB Lab.

Trees (6)

leaves

11Data Structures
SNU

IDB Lab.

Trees (7)

� Height = the number of levels = 3

Level1

Level2

Level3

12Data Structures
SNU

IDB Lab.

Trees (8)
� Degree of an element

� The number of children of an element

� Degree of a tree

� The maximum of its element degrees

3

20

0 0

1

0

13Data Structures
SNU

IDB Lab.

Table of Contents

� Trees

� Binary Trees
� Properties of Binary Trees

� Representation of Binary Trees

� Common Binary Tree Operations

� Binary Tree Traversal

� ADT BinaryTree

� Tree Applications

14Data Structures
SNU

IDB Lab.

Binary Trees
� A Tree has any number of subtreeswhich areunordered

� A binary tree has two subtreeswhich are ordered
� the left subtree and the right subtree
� The subtrees arealso binary tree

� Full Binary Tree
� Complete Binary Tree

15Data Structures
SNU

IDB Lab.

Binary Trees for Arithmetic Expression

16Data Structures
SNU

IDB Lab.

BT Property 12.1 & 12.2

� [12.1] The drawing of every binary tree with n elements, n > 0, has
exactly n - 1edges

� Proof
� Every element in the binary tree(except the root) has exactly one parent
� One edge between each child and its parent
� So the number of edges is n-1

� [12.2] A binary tree of height, h >= 0, has at leasth and at most2h –1
elements in it

� Proof
� Since each level has one element, the number of elements is h
� Since each element has two children, the number of elements is 2h –1

17Data Structures
SNU

IDB Lab.

BT Property 12.3

� [12.3] The height of a binary tree that contains n, n >= 0, elements is
at mostn and at least⌈⌈⌈⌈log2(n+1)⌉⌉⌉⌉

� Proof

� Since there must be at least one element at each level, the height
cannot exceed n

� From property 12.2, a binary tree of height h can have no more
than 2h –1 elements

� So n ≤ 2h –1.

� Hence h ≥ log2(n+1)

� Since h is an integer, h ≥⌈⌈⌈⌈log2(n+1)⌉⌉⌉⌉

18Data Structures
SNU

IDB Lab.

Full Binary tree

� FBT of height h that contains exactly 2h –1 elements

19Data Structures
SNU

IDB Lab.

Complete Binary Tree

� All resulting trees by deleting the k elements numbered 2h – i,
from a full BT

� 2h – 1, 2h – 2, 2h – 3,….. � 8 – 1 , 8 – 2, 8 – 3, � 7, 6, 5, ….

h2k i 1 <≤≤

20Data Structures
SNU

IDB Lab.

BT Property 12.4
� [12.4] Let i, 1 <= i <= n, be the number assigned to an element

of a complete binary tree.

The followings are true:
� If i = 1, then element is the root of the binary tree.
� If i > 1, then the parent of this element has been assigned the

number ⌊⌊⌊⌊i/2⌋⌋⌋⌋
� If i > n/2, then this element has no left child. Otherwise (i <=

n/2), its left child has been assigned the number 2i
� If i > (n-1)/2, then this element has no right child. Otherwise (i

<= (n-1)/2), its right child has been assigned the number 2i+1

� See Figure 12.7

21Data Structures
SNU

IDB Lab.

Table of Contents

� Trees

� Binary Trees
� Properties of Binary Trees

� Representation of Binary Trees

� Common Binary Tree Operations

� Binary Tree Traversal

� ADT BinaryTree

� Tree Applications

22Data Structures
SNU

IDB Lab.

Array Based Binary Tree (1)

<Binary tree> <Array representation>

� The location of an element is calculated by the array index
� Useful only when the number of missing elements is small

23Data Structures
SNU

IDB Lab.

Array-Based Binary Tree (2)

� Pitfalls
� quite wasteful of spacewhen many elements are missing in some cases like a

right-skewed binary tree
� A right-skewed binary tree that has n elements may require an array of size

up to 2n - 1 for its representation

24Data Structures
SNU

IDB Lab.

Linked Binary Tree (1)

� Two link fields represents each element

� leftChild

� rightChild

� Field-name: element

� Access all nodes in a binary tree by starting at the root and
following leftChild and rightChild links recursively

� inOrder

� preOrder

� postOrder

� levelOrder

25Data Structures
SNU

IDB Lab.

Linked Binary Tree (2)

<Binary tree> <Linked representation>

26Data Structures
SNU

IDB Lab.

Linked Binary Tree (3)

<Binary tree> <Linked representation>

27Data Structures
SNU

IDB Lab.

public class BinaryTreeNode {
// package visible data members
Object element;
BinaryTreeNode leftChild; // left subtree
BinaryTreeNode rightChild; // right subtree
// constructors
public BinaryTreeNode () {}
public BinaryTreeNode (Object theElement) {element = theElement;}
public BinaryTreeNode
(Object theElement, BinaryTreeNode theleftChild, BinaryTreeNode therightChild)
{ element = theElement;
leftChild = theleftChild;
rightChild = therightChild;
}

}

Linked Binary Tree (4)

28Data Structures
SNU

IDB Lab.

Table of Contents

� Trees

� Binary Trees
� Properties of Binary Trees

� Representation of Binary Trees

� Traversal-based Operations in BT

� ADT BinaryTree

� Tree Applications

29Data Structures
SNU

IDB Lab.

Traversal-based Operations in BT

� These operations are performed by traversing the BT in a
systematic manner

� Determine its height of BT
� Determine the number of elements in a BT
� Make a copy of BT
� Display the binary tree on a screen or on paper
� Determine whether two binary trees are identical
� Make the tree empty

30Data Structures
SNU

IDB Lab.

Binary Tree Traversals

� In a BT traversal, each element is visited exactly once
� Preorder traversal (depth first search)
� Inorder traversal
� Postorder traversal
� Level-order traversal (breadth first search)

� When an expression tree is output in preorder, inorder, and
postorder, we get the prefix, infix , and postfix forms of the
expression, respectively
� Expression: A + B

� Preorder tarversal� Prefix form: + A B
� Inorder traversal � Infix form: A + B
� Postorder traversal � Postfix form: A B +

31Data Structures
SNU

IDB Lab.

Preorder BT traversal (1)

public static void preOrder (BinaryTreeNode t) {
if (t != null)
{

visit(t); //visit tree root
preOrder(t.leftChild); //do left subtree
preOrder(t.rightChild); //do right subtree

}
}

32Data Structures
SNU

IDB Lab.

Preorder BT traversal (2)

a

b c

a b c

+ * a b / c d

33Data Structures
SNU

IDB Lab.

Preorder BT traversal (3)

+ + + a b c d / + - a + x y * + b * c d

34Data Structures
SNU

IDB Lab.

Inorder BT traversal (1)

public static void inOrder (BinaryTreeNode t) {
if (t != null)
{

inOrder(t.leftChild); //do left subtree
visit(t); //visit tree root
inOrder(t.rightChild); //do right subtree

}
}

35Data Structures
SNU

IDB Lab.

Inorder BT traversal (2)

a

b c

b a c a * b + c / d

36Data Structures
SNU

IDB Lab.

Inorder BT traversal (3)

a + b + c + d - a + x + y / + b * c * a

37Data Structures
SNU

IDB Lab.

Postorder BT traversal (1)

public static void postOrder (BinaryTreeNode t) {

if (t != null)

{

postOrder(t.leftChild); //do left subtree

postOrder(t.rightChild); //do right subtree

visit(t); //visit tree root

}

}

38Data Structures
SNU

IDB Lab.

Postorder BT traversal (2)

a

b c

b c a a b * c d / +

39Data Structures
SNU

IDB Lab.

Postorder BT traversal (3)

a b + c + d +
a – x y + + b + c d * * /

40Data Structures
SNU

IDB Lab.

Level-order BT traversal (1)
� Visit by level from top to bottom
� Within levels, elements are visited from left to right.

public static void levelOrder (BinaryTreeNode t) {
ArrayQueue q = new ArrayQueue(); // need array queue
while (t != null) {

visit(t); // visit t
// put t’s children on queue
if (t.leftChild != null) q.put(t.leftChild);
if (t.rightChild != null) q.put(t.rightChild);

// get next node to visit
t = (BinaryTreeNode)q.remove();

}
}

41Data Structures
SNU

IDB Lab.

Level-order BT traversal (2)

a

b c

a b c
+ * / a b c d

42Data Structures
SNU

IDB Lab.

Level-order BT traversal (3)

+ + d + c a b
/ + * - + + * a x y b c a

43Data Structures
SNU

IDB Lab.

Table of Contents

� Trees

� Binary Trees
� Properties of Binary Trees

� Representation of Binary Trees

� Traversal-based Operations in BT

� ADT BinaryTree

� Tree Applications

44Data Structures
SNU

IDB Lab.

The ADT BinaryTree
AbstractDataType BinaryTree {
// instances
collection of elements;
if not empty, the collection is partitioned into a root, left subtree, and right subtree;
each subtree is also a binary tree;

// operations
isEmpty() : return true if empty, return false otherwise;
root() : return the root element; return null if the tree is empty;
makeTree(root, left, right) : create a binary tree with root, left subtree, right subtree
removeLeftSubtree() : remove the left subtree and return it;
removeRightSubtree() : remove the right subtree and return it;
preOrder(visit) : preorder traversal of binary tree
inOrder(visit) : inorder traversal of binary tree
postOrder(visit) : postorder traversal of binary tree
levelOrder(visit) : level-order traversal of binary tree

}

45Data Structures
SNU

IDB Lab.

Data Members in LinkedBinaryTree
// instance data member
BinaryTreeNode root; // root node
// class data members
Static Method visit;
Static Object [] visitArgs = new Object [1]
Static int count;
Static Class [] paramType = {BinaryTreeNode.class}
Static Method the Add1;
Static Method theOutput;
// method to initialize class data members
Static {
try {
class lbt = LinkedBinaryTree.class;
theAdd1 = lbt.getMethod(“add1”,paramType);
theOutput = lbt.getMethod(“output”, paramType);

}
catch (Exception e) {} // exception not possible

}

46Data Structures
SNU

IDB Lab.

Visit methods in LinkedBinaryTree

// only default constructor available

// class methods
/** visit method that outputs element
public static void output (BinaryTreeNode t) {System.out.print(t.element + “ “);}

/** visit method to count nodes */
public static void add1 (BinaryTreeNode t) {count++;}

47Data Structures
SNU

IDB Lab.

makeTree() & removeLeftSubtree()
methods of LinkedBinaryTree

public void makeTree(Object root, Object left, Object right) {
This.root = new BinaryTreeNode(root, ((LinkedBinaryTree) left).root,

((LinkedBinaryTree) right).roor);
}

public BinaryTreeremoveLeftSubtree() {
If(root==null) throw new illegalArgumentException(“tree is empty”);
// detach left subtree and save in leftSubtree
LinkedBinaryTree leftSubtree = new LinkedBinaryTree();
leftSubtree.root = root.leftChild;
Root.leftChild = null;
Return (BinaryTree) leftSubtree;
}

48Data Structures
SNU

IDB Lab.

Preorder Methods of LinkedBinaryTree

public void preOrder(Method visit) {
this.visit = visit;
thePreOrder(root);

}
Static void thePreOrder(BianryTreeNode t) {

if (t != null) {
visitArgs[0] = t;
try { visit.invoke(null, visitArgs); };
catch (Exception e) { System.out.println(e) };
thePreOrder (t.leftChild);
thePreOrder (t.rightChild);

}
}

public void preOrderOutput(){ preOrder (theOutput); }

49Data Structures
SNU

IDB Lab.

Table of Contents

� Trees
� Binary Trees

� Properties of Binary Trees
� Representation of Binary Trees
� Common Binary Tree Operations
� Binary Tree Traversal
� ADT BinaryTree

� Tree Applications
� Placement of Signal Boosters (PSB)
� Union-Find Problem (UFP)

50Data Structures
SNU

IDB Lab.

Placement of Signal Booster
� Signal p � v degrades the signal strength by 5 because p � r � v

� Signal q � x degrades the signal strength by 3 because q � s � x

� If a signal boosteris placed at node r which is a descendant of p
� The strength of the signal that arrives at r is supposed to be 3 units less than that of the

signal that leaves source p without the signal booster

� But the signal that leaves r has the same strengthas the signal that leaves source p

51Data Structures
SNU

IDB Lab.

PSB Solution (1)
� degradeFromParent(i)

� degradation between node i and its parent
� The value of incoming edge of a node

� degradeFromParent(w) = 3
� degradeFromParent(p) = 0
� degradeFromParent(r) = 3

� degradeToLeaf(i)
� maximum signal degradation from node i to any leaf in the subtree rooted at i
� If i is a leaf node, then degradeToLeaf(i) = 0
� For the remaining nodes

� degradeToLeaf(i) =
max {degradeToLeaf(j) + degradeFromParent(j)}, j is a child of i

� degradeToLeaf(s) = 3
� degradeToLeaf(q) = 5

52Data Structures
SNU

IDB Lab.

PSB Solution (2)

� Consider degradeToLeaf(q) when P � (1) q � (2) s � (3) w
� degradeToLeaf(q) = degradeToLeaf(s) + degradeFromParent(s) = 5

� Suppose tolerance = 3

� Placing a booster at q or p does not help because it cannot tolerate signal
degradation between q and its descendents

� If a booster is placed at s, then degradeToLeaf(q) = 3

� From the root, check every path by node traversal
� Sum degradeFromParentand degradeToLeafof the nodes in the path

� If the sum tolerance, put the booster there≥

53Data Structures
SNU

IDB Lab.

PSB Solution (3)

54Data Structures
SNU

IDB Lab.

PSB Solution (4)

p

r

v

z

u

yw

t

q

s

x

7

5

0 2

0 0

4

2

0

3

0

55Data Structures
SNU

IDB Lab.

PSB Solution (5)

p

r

v

z

u

yw

t

q

s

x

56Data Structures
SNU

IDB Lab.

Union-Find Problem

� Given a set {1, 2, …, n} of n elements
� Initially each element is in a different set

� {1}, {2}, …, {n}
� An intermixed sequence of union & find operations is performed
� A union operation combines two sets into one set

� Each of the n elements is in exactly one set at any time

� A find operation identifies the set that contains a particular element

57Data Structures
SNU

IDB Lab.

UFP Tree Representation

58Data Structures
SNU

IDB Lab.

Representing a Set as a Tree
•ClassA: 16, 11,25,28

•ClassB: 26,32

0
16

16
25

16
11

16
28

0
26

26
32

59Data Structures
SNU

IDB Lab.

UFP Tree Solution
� Represent each set as a tree
� Find operation

� Use the element in the rootas the set identifier
� find(3) returns the value 20
� find(1) returns the value 20
� find(26) returns the value 26
� find(i) = find(j) iff i and j are in the same set

� Union operation: Union(classA, classB)
� To unite the two trees, make one tree a subtreeof the other
� If classA = 16 and classB = 26

� classA is made a subtree of classB
� classB is made a subtree of classA

60Data Structures
SNU

IDB Lab.

Union(classA, classB):
classA is made a subtree of classB

•ClassA: 16, 11,25,28

•ClassB: 26,32

26

61Data Structures
SNU

IDB Lab.

Union(classA, classB):
classB is made a subtree of classA

•ClassA: 16, 11,25,28

•ClassB: 26,32

16

62Data Structures
SNU

IDB Lab.

UnionFindWithTrees
public class UnionFindWithTrees {

int [] parent; // pointer to parent in tree
/** initialize n trees, one element per tree/class/set */
public UnionFindWithTrees (int n) {

parent = new int [n + 1];
for (int e = 1; e <= n; e++) parent[e] = 0;

}
/** @return root of the tree that contains theElement */
public int find (int theElement) {

while (parent[theElement] != 0) // move up one level
theElement = parent[theElement];

return theElement;
}
/** combine trees with distinct roots rootA and rootB */
public void union (int rootA, int rootB) { parent[rootB] = rootA; }

}

63Data Structures
SNU

IDB Lab.

Summary

� Can obtain improved run-time performance by using trees to represent the sets

� Tree terminology
� Height, Depth, Level
� Root, Leaf
� Child, Parent, Sibling

� Representation of BT: array-based vs linked
� The 4 common ways to traverse a BT

� Preorder/Inorder/Postorder/Level-order

� Tree Applications
� Placement of Signal Boosters (PSB)
� Union-Find Problem (UFP)

64Data Structures
SNU

IDB Lab.

Sahni class:
dataStructures.BinaryTree(p.474)

public interface BinaryTree {
methods

boolean isEmpty(): Returns true if empty, false otherwise

Object root(): Returns the root element
void makeTree(Object root, Object left, Object right): Creates a binary

tree with root as the root element, left as the left subtree,

right as the right subtree
BinaryTree removeLeftSubtree(): Removes the left subtree and returns it

BinaryTree removeRightSubtree(): Removes the right subtree and

returns it
void preOrder(Method visit): Carries out preorder traversal

void inOrder(Method visit): Carries out inorder traversal

void postOrder(Method visit): Carries out postorder traversal
void levelOrder(Method visit): Carries out level-order traversal

}

