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System Poles and Zeros

Consider a system with T.F. G (s) = N (s)
D (s)
Factor the numerator and G(s) = K (s-2z)(s-27,)...(s-27)
denominator polynomials (5= p)(s=p,)e(s=p,)
where p,, P,,..p, : Roots of D(s), system poles
2,2y, 2 Roots of N(s), system zeroes

Note that because the coefficient of N(s) and D(s) are real, (modeling parameters),
the system poles must be either

i) Purely real, or p.orz =o +jo,

ii) Appear as complex conjugates

System Poles and Zeros completely characterize the transfer function (therefore the
system itself) except for an overall gain of constant K-

H imzl(s— Z,)
[T .(s-p)

G(s)=K
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Pole Zero Plot

The value of system poles and zeros are shown graphically on the complex s-plane .

Ex) 552 1105 5s(s +10) 5s(s +10)

s°+5s” +11s+5 i (s+3)(s* +25+5) i (s+3)(s+ 1+ j2))(s+(1-j2))

G(s) =

zeros at s=0,s=-2 poles ats=-3,-1+j2, s=-1-j2

\
jo | Im{s]
s— plane

| | | | \Re{S}

o

You can use Sys=zpk(zeros, poles, gain) in matlab.
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Pole Zero Plot

The characteristic equation of the system:
D(s)=(s—p)(s—p,)...... (s—p,)

Poles are the system eigenvalues.
Form of the homogeneous solution:

yh (t) — Z Ciepit
i=1

Ex) & (5) 12
S) =
s’ +7s+12 io T im{s)

s — plane

3t 4t

y,(t)=Ce ™ y,(t)=C,e

Re{s}

Note: The poles do not specify the amplitude. It just indicates the
natural response components.
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Complex Poles and Zeros

In general, S=o+ jo
y(t)=..+Ce " L c. eI
(o;+ jo; )t (o;—jo;)t H i joot H ot |~ ot
Ce +C, e =(a+ jb)e'e”" +(a— jb)e e
_ aeait (e Jo;t + efja)it) + jbeoit (e Jo;t _ 7Ja)it)

(t) = 2ae”" cos(a)it) ~2ae”" sin(w,t)

—2*% b%et L (@ t) - ——=
a + S k\/ﬁCOSCD ﬁ

AX(D)

| i+1

sin(w;t) |

= Ae”"sin(ot+¢,)

_ > e _ooafd) o ﬁAe{"sin(af)
A zﬁ ¢. = tan LbJ /\/\\/\\ﬁ\ .
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<— stable region

unstable region —>

1) Poles in the left-half plane - decays with time

2

Poles in the right-half plane 2 grow with time

)
)

3) Pole on the imaginary axis - purely oscillatory
)

4) Pole at the origin - constant

R
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Ajo increasing
frequency

NS

NS

NS

increasing

<—— increasing decay rate frequency

5) the oscillatory frequency and decay rate is determined by the distance of the
poles from the origin.

6)The rate of decay/growth is determined by the real part of the pole, and
poles deep in the |hp generate rapidly decaying components

7) For complex conjugate pole pairs, the oscillatory frequency is determined by
the imaginary part of the pole pair.
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System Stability

A system is defined to be unstable if its response from any finite initial
conditions increases without bound.

y,(t)=> Ce™
i=1

1) System is unstable if any pole has a positive real part

2) For a system to be stabel, all poles must lie in the Ihp.
3) System with poles on the imaginary axis is defined to be marginally stable.
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First Order Systems

VL di
v, =L— v, = Ri
+ L dt
) R SV L —+ Ri=e(t)
e(t) /D dt
1 X=1, X=—-——x+—e(t)
X(s) 1(s) 1 1 1
jo'] 1m{s) == = — -
s plane U (s) E(s) Ls+ R R RS+1
L u()=e(t)=1, i(0)=0
L1 I__ \Re{s} . 1( B
— T T 1 /o- I(t)=—|1—e L |
1 R{ )

e
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First Order Systems

-.I/HP

Y(S): L U(s):l u(t) =1 1
S 0 :

U(s) Ts+1

T :time constant 0.0520, I

1 1 1
—_Z_71.

Ts+1s S Ts+1
1 1
-—t

y(t)y=1-e 7, y(t)=—e T
T

90 3Y%

Y (s) =

—

-~ Y

3T

1) Settling Time: The time taken for the response to reach 98% of its final value

T, =4T

2) Rise Time: Commonly taken as time taken for the step response to rise from 10%

to 90% of the steady-state response to a step input.
T, =22T
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First Order Systems

0(1) A R(t) =rt
1
R(s)=r-—
S
rT
1 (1 T T )
rt = Y (s) = .r.—2:r — -t
Ts+1 S Ls S s+(1/T)J
b
y@)=r(t-T +Te 7)
b
e()=R(t)-y(t)=rT@1-¢e T)
‘ : e(0)=1r1T
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Second Order Systems

R(s) C (s)
" G(s) >
2
a)n
G(s)=— -
S"+20w S+ o,
1 _ o 1
R(s) = — (step input), C(s)=—; —. —
S sS"+2w s+w. s

> 1w

n

SZ+2§a)nS+a)nZ:O, S=-gw T4/C

DUEIND
N TR
:N\,,
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Second Order Systems

Underdamped case s=—Co, t1-¢"o,i, (0, = 0,\1-¢7)
2
0<¢ <1 1) 1 1 S+ 2w
: C(s) = 2 : 2 N é/zn 2
(s+¢m. ) +o (1-¢7) s s (s+¢w, ) +o,
1 S+clw, co,
S (S+§a)n)2+a)dz (S+\§a)n)2+a)d2
é, —-gw,t
. -Gt -go,t . -
LC()=1-e¢ coswdt——ze 5|na)dt:1——23|n(a)dt+n)
1-¢ V1-¢
-1 1_€V2
n =tan  ——
¢
Critically damped case
¢ =1 1 a)n2
R(s)=—, C(s) = >
S (s+lw_ )"s
ct)=1-e " (1+ wt)
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Second Order Systems

Overdamped case ¢ >1

C(s) = @
(s+¢o +w ¢ ~1)(s+lw, —w ¢ —1)s
c(t) =1+ L T 1 AT
2467 -1+ -D) 24P -1(¢ - <P 1)
( —(§+\//,Ti—l)a)nt _(g_ﬁ)wnt \

) | e e |

zﬁ((mﬁ)wn AT )

Approximation (After the faster term disappeared)

C(s) ~ g’a)n—a)nafgz—l
R(s) S+g“a)n—a)no\f§2—1

(-1 ot

=1+

Lc(t)y=1-e "
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Damping ratio and Pole placement

;) Z>1 :poles are real and distinct

ii)  ¢.=1: poles are real and coincident

i) 0 < <1:poleare complex conjugates

iv) ¢ = 0:The pole are purely imaginar

conjugate poles

™

AJo

s-plane

imaginary poles

%

real pole
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