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BIRD’S-EYE VIEW (0)

� Chapter 12: Binary Tree

� Chapter 13: Priority Queue

� Heap and Leftiest Tree

� Chapter 14: Tournament Trees

� Winner Tree and Loser Tree
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BIRD’S-EYE VIEW (1)

� A priority queue is efficiently implemented with the heap data structure

� Priority data structure
� Heap
� Leftist tree

� Priority Queue Applications
� Heap sort

� Use heap for an O(n*logn) sorting method

� Machine scheduling 
� Use the heap data structure to obtain an efficient implementation

� The generation of Huffman codes
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Table of Contents

� Definition

� Linear Lists for Priority Queue

� Heaps for Priority Queue

� Leftist Trees for Priority Queue

� Priority Queue Applications
� Heap Sort

� Machine Scheduling

� Huffman code
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Definition
� A priority queue is

� Collection of zero or more elements with priority

� A min priority queue is
� Find the element with minimum priority 

� Then, Remove the element

� A max priority queue is
� Find the element with maximum priority 

� Then, Remove the element

� Priority queue is a conceptual queue where the output element has a 
certain property (i.e., priority)

15 35 172065 80 12 4245
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Priority Queue Applications

� Priority queues in the machine shop simulation
� Min priority queue

� One machine, many jobs with priority (time requirement of each job), 
a fixed rate of payment 

� To maximize the earning from the machine
� When a machine is ready for a new job, it selects the waiting job with 

minimum priority (time requirement)

� getMin() & removeMin()

� Max priority queue
� Same duration jobs with priority (the amount of payment)

� To maximize the earning from the machine
� When a machine is ready for a new job, it selects the waiting job with 

maximum priority (the amount of payment)

� getMax() & removeMax()
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The ADT MaxPriorityQueue

AbstractDataType MaxPriorityQueue {

instances

finite collection of elements, each has a priority

operations

isEmpty() : return true if the queue is empty

size()          : return number of elements in the queue

getMax() : return element with maximum priority

put(x) : insert the element x into the queue

removeMax() : remove the element with largest priority 
from the queue and return this element;

}
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Table of Contents

� Definition

� Linear Lists for Priority Queue

� Heaps for Priority Queue

� Leftist Trees for Priority Queue

� Priority Queue Applications

� Heap Sort

� Machine Scheduling

� Huffman code
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Linear Lists for Priority Queue (1)

� Suppose Linear List for max priority queue with n elements

� Unordered linear list for a max queue 

� Array

� Insert() or Put() : ƟƟƟƟ(1)   // put the new element the right end of the array

� RemoveMax():      ƟƟƟƟ(n)  // find the max among n elements

� Linked List

� Insert() or Put() : ƟƟƟƟ(1)  // put the new element at the front of the chain

� RemoveMax():      ƟƟƟƟ(n) // find the max among n elements

15 35 172065 80 12 4245
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Linear Lists for Priority Queue (2)

� Ordered linear list for a max queue
� Array

� location(i) = i (i.e., array-based) where the max element is located in the last 
address (i.e., the nondecreasing order)

� Insert() or Put() : ƟƟƟƟ(n)
� RemoveMax()    : ƟƟƟƟ(1)

� Linked List
� chain (i.e., linked) where the max element is located in the head of chain (i.e., the 

nonincreasing order)

� Insert() or Put() : ƟƟƟƟ(n)
� RemoveMax()    : ƟƟƟƟ(1)

2 4 ….2013 80 90

90 80 … 4 2
null

firstNode
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Why HEAP?

� 0(logN) for Insert() or Put()

� 0(logN) for RemoveMax()

� Simple Array Implementation!
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Table of Contents

� Definition

� Linear Lists for Priority Queue

� Heaps for Priority Queue

� Leftist Trees for Priority Queue

� Priority Queue Applications

� Heap Sort

� Machine Scheduling

� Huffman code
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Max Tree & Max Heap
� A max tree is a tree in which the value in each node is greater than 

or equal to those in its children

� A max heap is 

� A max tree that is also a complete binary tree

� Figure 13.1(b) : not CBT, so not max heap
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Min Tree & Min Heap

� A min tree is a tree in which the value in each node is less than or 
equal to those in its children

� A min heap is 
� A min tree that is also a complete binary tree
� Figure 13.2(b) : not CBT, so not min heap
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Heap Height

� Heap is a complete binary tree
� A heap with n elements has height ⌈⌈⌈⌈log2(n+1)⌉⌉⌉⌉

� put():  put():  put():  put():  0(height) � 0(log n) 
� Increase array size if necessaryIncrease array size if necessaryIncrease array size if necessaryIncrease array size if necessary

� Find place for the new elementFind place for the new elementFind place for the new elementFind place for the new element
� The new element is located as a leafThe new element is located as a leafThe new element is located as a leafThe new element is located as a leaf

� Then moves up the tree for finding homeThen moves up the tree for finding homeThen moves up the tree for finding homeThen moves up the tree for finding home

� removeMaxremoveMaxremoveMaxremoveMax(): (): (): (): 0(height) � 0(log n) 
� Remove heap[1], so the root is emptyRemove heap[1], so the root is emptyRemove heap[1], so the root is emptyRemove heap[1], so the root is empty

� Move the last element in the heap to the rootMove the last element in the heap to the rootMove the last element in the heap to the rootMove the last element in the heap to the root

� ReheapifyReheapifyReheapifyReheapify
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Put into Max Heap (1)

� Max heap with five elements

15

14 10

20

2
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Put into Max Heap (2)
� When an element is added to this 

heap, the location for a new element 
is the red zone

15

14 10

20

2

� Suppose the element to be inserted has 
value 1, the following placement is fine
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14 10
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Put into Max Heap (3)
� Suppose the element to be 

inserted has value 5

15

14 10

20

2

5

� The elements 2 and 5 must be swapped 
for maintaining the heap property

15
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Put into Max Heap (4)
� Suppose the element to 

be inserted has value 21

15

14 10

20

2

21

� The new element 21 will find its 
position by continuous swapping 
with the existing elements for 
maintaining the heap property

15

14 10

20

21

2 

� Finally the new element 21 goes 
to the top
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14 10

21
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put() in MaxHeap
public void put ( Comparable theElement ) { 
if ( size == heap.length – 1 ) // increase array size if necessary
heap=(Comparable []) ChangeArrayLength.changeLengthID (heap, 2 * heap.length);

// find the place for theElement. currentNode starts at new leaf and moves up tree
int currentNode = ++size;
while (currentNode != 1 &&  heap[currentNode / 2].compareTo(theElement) < 0) { 
// cannot put theElement in heap[currentNode], So move element down

heap[currentNode] = heap[currentNode / 2]; 
currentNode /= 2; // move to parent

}

heap[currentNode] = theElement;
}
� At each level :  Ө(1)        So, Total complexity:      O(height) = O(logn)
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removeMax() from a MaxHeap (1)

� The Max element “21” is in the 
root

15

14 10

21

20

� After the max element “21”
is removed
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14 10

20
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removeMax() from a MaxHeap (2)

� The element 15 will go to the top 
by swapping

14 10

15

20

� The element 14 is also 
swapped to one level up

14

10

15

20

� Even the element 10 needs to be 
relocated for maintaining the 
complete binary tree property

14

10

15

20
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removeMax() in MaxHeap
public Comparable removeMax()  {

if (size == 0) return null; // if heap is empty return null
Comparable maxElement = heap[1];  // max element
Comparable lastElement = heap[size--]; // reheapify
// find place for lastElement starting at root
int currentNode = 1,  child = 2;     // child of currentNode
while (child <= size) {  // heap[child] should be larger child of currentNode

if (child < size && heap[child].compareTo(heap[child + 1]) < 0)  child++;
// can we put lastElement in heap[currentNode]?
if (lastElement.compareTo(heap[child]) >= 0)   break;   // yes
heap[currentNode] = heap[child]; // no   // move child up
currentNode = child;             // move down a level
child *= 2; }

heap[currentNode] = lastElement;
return maxElement;

}  
** At each level Ө(1), So complexity: O(height) = O(logn)
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MaxHeap Initialization

� Steps
� Allocate the elements in an array
� Form a complete binary tree 
� In the array, start with the rightmost node having a child

� node number ���� n/2

� Fix the heap in the node
� Reverse back to the first node in the array
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MaxHeap Initialization (1)

� Input array = [20, 12, 35, 15, 10, 80, 30, 17, 2, 1]

� Just make a complete binary tree

20

12 35

15 10

17 2 1

80 30
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MaxHeap Initialization (2)

� Start at rightmost array position that has a child.

� Index i is (n/2)th of the array.

20

12 35

15 10

17 2 1

80 30

i
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MaxHeap Initialization (3)

� Move to next lower array position.

20

12 35

15 10

17 2 1

80 30i
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MaxHeap Initialization (4)
� Find a home for 15

20

12 35

17 10

15 2 1

80 30
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MaxHeap Initialization (5)
� Move to next lower array position.

20

12 35

17 10

15 2 1

80 30

i
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MaxHeap Initialization (6)
� Find a home for 35

20

12 80

17 10

15 2 1

35 30
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MaxHeap Initialization (7)

� Move to next lower array position.

20

12 80

17 10

15 2 1

35 30

i
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MaxHeap Initialization (8)

� Find a home for 12

20

17 80

12 10

15 2 1

35 30
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MaxHeap Initialization (9)

� Find a home for 12

20

17 80

15 10

12 2 1

35 30
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MaxHeap Initialization (10)
� Move to next lower array position.

20

17 80

15 10

12 2 1

35 30

i
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MaxHeap Initialization (11)

� Find a home for 20

80

17 20

15 10

12 2 1

35 30
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MaxHeap Initialization (12)

� Result the max heap

80

17 35

15 10

12 2 1

20 30
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initialize() in MaxHeap

public void initialize(Comparable [] theHeap, int theSize) {
heap = theHeap;
size = theSize;
for (int root = size / 2; root >= 1; root--) { // heapify

Comparable rootElement = heap[root];
// find place to put rootElement
int child = 2 * root; // parent of child is target location for rootElement

while (child <= size) { // heap[child] should be larger sibling
if (child < size && heap[child].compareTo(heap[child + 1]) < 0) child++;

// can we put rootElement in heap[child/2]?
if (rootElement.compareTo(heap[child]) >= 0)  break;  // yes
heap[ child / 2 ] = heap[ child ]; // no // move child up
child *= 2;                               // move down a level
}
heap[ child / 2 ] = rootElement;

}
}



38
SNU

IDB Lab.Data Structures

Complexity of Heap Initialization

� Rough Analysis
� for each element n/2, for-loop 0(log n) � 0(n * log n)

� Careful Analysis
� Height of heap = h

� Height of each subtree at level j = h’ = h – j + 1

� Num of nodes at level j ≤ 2j-1

� Time for each subtree at level j = O(h’) = O(h-j+1)

� Time for all nodes at level j ≤ 2j-1 * (h-j+1) = t(j)

� Total time for all level is t(1) + t(2) + … + t(h-1) = O(n)

� No more than n swappings!
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Table of Contents

� Definition

� Linear Lists for Priority Queue

� Heaps for Priority Queue

� Leftist Trees for Priority Queue

� Priority Queue Applications

� Heap Sort

� Machine Scheduling

� Huffman code

Jump To HeapSort
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Merging Two Priority Queues
� Heap is efficient for priority queue

� Some applications require merging two or more priority queues

� Heap is not suitable for merging two or more priority queues

� Leftiest tree is powerful in merging two or more priority queues

18

7 5

10

6

18

10

75

6

18

7

65

10
+ OR
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� Extended Binary Tree: Add an external node replaces each 
empty subtree.

Internal node

External node

� Let s(x) be the length of a shortest path from node x to an external 
node in its subtree.

Height-Biased Leftist Tree (HBLT)
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Height-Biased Leftist Tree (HBLT)

� A binary tree is a height-biased leftist tree (HBLT)

iff at every internal node, the s value of the left child is greater than or equal to
the s value of the right child.

� A max HBLT is an HBLT that is also a max tree. 

� A min HBLT is an HBLT that is also a min tree.

� S values in HBLT contributes to make complete binary tree!!!!!!

� [Theorem] Let x be any internal node of an HBLT

� The number of nodes in the subtree with root x is at least 2s(x) – 1

� If the subtree with root x has m nodes, s(x) is at most log2(m+1)

� The length of the right-most path from x to an external node is s(x)

18

7 5

10

6

2 1

1 1 1
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Weight Biased Leftist Tree (WBLT)
� Let w(x) be the weight from node x to be the number of internal 

nodes in the subtree with root x

� A binary tree is weight-biased leftist tree (WBLT)

iff at every internal node the w value of the left child is greater than or 
equal to the w value of the right child

� A max WBLT is a max tree that is also a WBLT

� A min WBLT is a min tree that is also a WBLT
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Put a Max Element into a HBLT

� Create a new max HBLT
� Meld this max HBLT and the original

public void put (Comparable theElement) {
HbltNode q = new HbltNode (theElement, 1);
// meld q and original tree
root = meld (root, q);
size++;

}
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Remove a Max element  from a HBLT

� Delete the root
� Meld its two subtrees

public Comparable removeMax() {
if (size == 0) return null;   // tree is empty

// tree not empty
Comparable x = root.element;  // save max element
root = meld (root.leftChild, root.rightChild);
size--;
return x;

}
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Meld Two HBLTs

� Let A & B be the two HBLTs

� Compare the root of A & B

� The bigger value is the new root for the melded tree
� Assume the root of A is bigger & A has left subtreeL

� Meld the right subtree and B � result C

� A has the left subtree L and the right subtree C

� Compare the S values of L & C

� Swap if necessary
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Melding 2 HBLTs: Ex 1

� Consider the two max HBLTs

� 9 > 7,  so  9 is root.

� The s value of the left subtree of 9 is 0 while the s value of the right 
subtree is 1  � Swap the left subtree and the right subtree

S 
value 9 71 1

9

7

1

1

9

7

1

1
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Melding 2 HBLTs: Ex 2
� Consider the two max HBLTs

� 10 > 7, so root is 10

� Comparing the s values of the left and right children of 10, a swap is not 
necessary

10

5

7
1 1

1

10

5 7

1

11
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Melding 2 HBLTs: Ex 3 (1)

� Consider the two max HBLTs

18

7 5

10

6

2 1

1 1 1

18

7 5

10

6

2 1

1 1 1
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Melding 2 HBLTs: Ex 3 (2)
� 18 > 10, root is 18

� Meld the right subtree of 18 

� s(left) < s(right), swap left and right subtree

18

10

75

6

2

1 2

1 1

18
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6
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1 1



51
SNU

IDB Lab.Data Structures

Melding 2 HBLTs: Ex 4 (1)
� Consider the two max HBLTs

40
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1 1
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6 7

2

1 1

40

30

520

10

2

11

1 1

18

6 7

2

1 1



52
SNU

IDB Lab.Data Structures

Melding 2 HBLTs: Ex 4 (2)
� 40 > 18, root is 40

� Meld the right subtree of 40

� s(left) < s(right), swap left and right subtree

18

10

75

6

2

12

1 1

40

30
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2

1

1
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10
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6

2
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1 1

40

30
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2

1

1
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meld() in HBLT
private static HbltNode meld (HbltNode x, HbltNode y) {

if (y == null)    return x;   // y is empty
if (x == null)    return y;   // x is empty
// neither is empty, swap x and y if necessary
if (x.element.compareTo(y.element) < 0)  { // swap x and y

HbltNode t = x;    x = y;  y = t; } // now x.element >= y.element
x.rightChild = meld (x.rightChild, y);
if (x.leftChild == null) { // left subtree is empty, swap the subtrees

x.leftChild = x.rightChild;  x.rightChild = null; x.s= 1; }
else { // swap only if left subtree has a smaller s value

if (x.leftChild.s < x.rightChild.s) { // swap subtrees
HbltNode t = x.leftChild; x.leftChild = x.rightChild;  x.rightChild = t; }

x.s = x.rightChild.s + 1; // update s value
}
return x;

}
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Initializing a Max HBLT (1)
� Create a max HBLT with the five elements 7, 1, 9, 11, and 2
� Five single-element max HBLTs are created and placed in a FIFO queue

� The max HBLTs 7 and 1 are deleted from the queue and melded into (a)

� The result (a) is added to the queue

7

1

(a)

2, 11, 9, 1, 7

(a), 2, 11, 9

7 & 1 �



55
SNU

IDB Lab.Data Structures

Initializing a Max HBLT (2)

� The max HBLTs 9 and 11 are deleted from the queue and melded into (b)

� The result (b) is added to the queue

11

9

(b)

(b), (a), 2

(a),  2

9 & 11 �
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Initializing a Max HBLT (3)
� The max HBLTs 2 and (a) are deleted from the queue and melded into (c)

� The result  (c) is added to the queue

7

1 2

(c)

(b)

(C),  (b)

2 & (a) �
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Initializing a Max HBLT (4)
� The max HBLTs (b) and (c) are deleted from the queue and melded 

into the result

� The result is added to the queue

� The queue now has just one max HBLT, and we are done with the 
initialization

7

1 2

11

9

result

result
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initialize()  in HBLT
public void initialize(Comparable [] theElements, int theSize) {   

size = theSize;
ArrayQueue q = new ArrayQueue(size);
// initialize queue of trees
for (int i = 1; i <= size; i++) // create trees with one node each

q.put(new HbltNode(theElements[i], 1));
// repeatedly meld from queue q
for (int i = 1; i <= size - 1; i++) { // remove and meld two trees from the queue

HbltNode b = (HbltNode) q.remove();
HbltNode c = (HbltNode) q.remove();
b = meld(b, c);
// put melded tree on queue
q.put(b);

}
if (size > 0)  root = (HbltNode) q.remove();

}
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Complexity Analysis of HBLT

� getMax
� Ө(1)

� The complexity of put() and removeMax() is the same as that 
of = meld()
� put() and removeMax() are used for meld()

� meld()
� Root x and y

� O( s(x) + s(y) )  where s(x) and s(y) are at most log(m+1) and log(n+1)
� m and n are the number of elements in the max HBLTs with root x and y

� O( log(m) + log(n) ) = O( log(m*n) )



60
SNU

IDB Lab.Data Structures

Complexity of Initialize HBLT

� n = size of a power of 2

� The first n/2 melds involve max HBLTs with one element each

� The next n/4 melds involve max HBLTs with two elements each

� The next n/8 melds involve max HBLTs with four elements each

� And so on

� Meld two trees with 2i  elements each
� O(i+1)

� Total time
� O(n/2 + 2*(n/4) + 3*(n/8) + ���) = O(n)
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Table of Contents
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Heap Sort

public static void heapSort (Comparable [] a) {

//create a max heap of the elements

MaxHeap h = new MaxHeap();

h.initialize(a, a.length – 1);

//extract one by one from the max heap

for (int i = a.length – 2; i >= 1; i--)

a[i + 1] = h.removeMax() ;

}

MaxHeap class:  initialize(),  removeMax()
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Heap Sort Ex (1)
� This sorting loop begins with the max heap

80

17 35

15 10

12 2 1

20 30
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Heap Sort Ex (2)
� Remove Max & move the last element “1” to the root 

17 35

15 10

12 2 1

20 30

80
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Heap Sort Ex (3)
� Reheapify: Meld root.leftChild and root.rightChild

35
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15 10
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Heap Sort Ex (4)
� Remove Max & move the last element “2” to the root 

17 30

15 10

12 2

20 1

80 35
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Heap Sort Ex (5)

� Reheapify: Meld root.leftChild and root.rightChild

30

17 20

15 10

12

2 1

80 35
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Heap Sort (6)
� Remove Max & move the last element “12” to the root

17 20

15 10

12

2 1

80 35 30
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Heap Sort Ex (7)
� Reheapify: Meld root.leftChild and root.rightChild

20

17 12

15 10 2 1

80 35 30
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Heap Sort Ex (8)

� Remove Max & move the last element “1” to the root

17 12

15 10 2 1

80 35 2030
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Heap Sort Ex (9)

� Reheapify: Meld root.leftChild and root.rightChild

17

15 12

1 10 2

80 35 2030
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Heap Sort Ex (10)
� Remove Max & move the last element  “2” to the root

15 12

1 10 2

80 35 172030
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Heap Sort Ex (11)

� Reheapify: Meld root.leftChild and root.rightChild

15

10 12

2 1

80 35 172030
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Heap Sort Ex (12)
� Remove Max & move the last element “1” to the root

10 12

2 1

80 35 172030 15
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Heap Sort Ex (13)

� Reheapify: Meld root.leftChild and root.rightChild

12

10 1

2

80 35 172030 15
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Heap Sort Ex (14)
� Remove Max & move the last element “2” to the root

10 1

2

80 35 172030 15 12
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Heap Sort Ex (15)

� Reheapify: Meld root.leftChild and root.rightChild

10

2 1

80 35 172030 15 12
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Heap Sort Ex (16)

� Remove Max & move the last element “1” to the root

2 1

80 35 172030 15 12 10
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Heap Sort Ex (17)

� Reheapify: Meld root.leftChild and root.rightChild

2

1

80 35 172030 15 12 10
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Heap Sort Ex (18)

� Remove Max & move the last element “1” to the root

80 35 172030 15 12 210

1
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Heap Sort Ex (19)

� Reheapify: Meld root.leftChild and root.rightChild

1

80 35 172030 15 12 210
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Heap Sort Ex (20)

� Remove Max & we are done!

� Complexity of Heap Sort : O(n * logn)
� Initialization : O(n)

� Deletion : O(logn)

� Sort � deletion n times � o(n * logn)

80 35 172030 15 12 1210
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Machine Scheduling

� A schedule is an assignment of jobs to time intervals on machines

� No machine processes more than one job at any time.

� No job is processed by more than one machine at any time.

� Each job i is assigned for a total of ti units of processing.

� The finish time or length is

� The time at which all jobs have completed

� Strat time : si
� Completion time : si+ ti



85
SNU

IDB Lab.Data Structures

Three-machine schedule

� Seven jobs with processing requirements (2, 14, 4, 16, 6, 5, 3)

� Finish time : 18

� Objective: Find schedules with minimum finish time

16

14

6 54

2

4 10 15 18

Machine A

Machine B

Machine C

0
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LPT Schedule (1)
� Longest Processing Time first.

� Jobs are scheduled in the order: 16, 14, 6, 5, 4, 3, 2

� Each job is scheduled on the machine on which it finishes earliest.

� Use MaxHeap for LPT Schedule

� Construct a MaxHeap for (2, 14, 4, 16, 6, 5, 3)

16

14 6

5 4 3 2
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LPT Schedule (2)
� MaxHeap for LPT Schedule

� First, place a job with priority 16 in Machine A which is free

� ReHeapify

16

14 6

5 4 3 2

14

5 6

2 4 3
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LPT Schedule (3)
� MaxHeap for LPT Schedule

� Place a job with priority 14 in Machine B which is free

� ReHeapify

14

5 6

2 4 3

6

5 3

2 4
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LPT Schedule (4)
� MaxHeap for LPT Schedule

� Place a job with priority 6 in Machine C which will finish this job in 
the earliest time

� ReHeapify

6

5 3

2 4

5

4 3

2
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LPT Schedule (5)
� MaxHeap for LPT Schedule

� Place a job with priority 5 in Machine C which will finish this job in 
the earliest time

� ReHeapify

** Keep Going until No element is left in the Heap

5

4 3

2

4

2 3
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LPT Schedule (6)
� The generated schedule by LPT algorithm

� Finish time : 17

16

14

6 5 4 2

6 11 15 17

Machine A

Machine B

Machine C

0

3
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Analysis on LPT

� Minimum finish time scheduling is NP-hard
� Finding optimal solutions are generally NP

� LPT is an Approximation Algorithm
� much closer to minimum finish time

� Proved By Graham
� (LPT Finish Time) / (Minimum Finish Time) <= 4/3 - 1/(3m) where m is number of 

machines.

� Sort jobs into decreasing order of task time
� O(n*logn) time (n is number of jobs)

� Schedule jobs in this order
� assign job to machine that becomes available first
� must find minimum of m (m is number of machines) finish times
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Huffman code 
� Text compression: Suppose the codes for the paths to the nodes (a, b, c, d, 

e, f) are (00, 010, 011, 100, 101, 11)
� Use extended binary trees to derive a special class of variable-length codes

� Let F(x) be the frequency of the symbol x ∊ {a, b, c, d, e, f}

� Length of the original string (by the number of bytes): 4 X number of chars

� Length of encoded string (by the number of bits)

� 2*F(a)+3*F(b)+3*F(c)+3*F(d)+3*F(e)+2*F(f)

0
1

00

01

11

10

010 100011 101
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Huffman code encoding

� To Encode a string using Huffman codes,
� 1. Determine the different symbols in the string and their frequencies

� 2. Construct a binary tree with minimum WEP (Weighted External Path 
length)

� The external nodes of this tree are labeled by the symbols in the string

� The weight of each external node is the frequency of the symbol that is its 
label

� 3. Traverse the root-to-external-node paths and obtain the codes

� 4. Replace the symbols in the string by their codes

� 각 심볼을 bit code로 변환할 때, 빈번히 출현하는 심볼일
수록 최대한 짧은 bit code를 가져야 한다. 



96
SNU

IDB Lab.Data Structures

Constructing a Huffman tree (1)

Each element has weight which is frequency

Build a MinHeap (6,2,3,3,4,9)

1. Remove two elements of lowest 
weight from a MinHeap (6,2,3,3,4,9)

2. Insert 5 & Reheapify (6,5,3,4,9)

3. Build a tree in the left

Extended Binary Tree: A binary tree with external nodes added

MinHeap: complete binary tree & the value in each node is less than or equal 
to those in its children
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Constructing a Huffman tree (2)

1. Remove two elements of lowest 
weight from a MinHeap (6,5,3,4,9)

2. Insert 7 & Reheapify (6,5,7,9)

3. Build a tree in the left

1. Remove two subelements of lowest 
weight from a MinHeap (6,5,7,9)

2. Insert 11 & Reheapify (11,7,9)

3. Build a tree in the left



98
SNU

IDB Lab.Data Structures

Constructing a Huffman tree (3)

27

(f) After fifth combining

1. Remove two elements of lowest 
weight from a MinHeap (11,7,9)

2. Insert 16 & Reheap (11,16)

3. Build a tree in the left

1. Remove two elements of lowest 
weight from a MinHeap (11,16)

2. Insert 27 & Reheapify (27)

3. Build a tree in the left

Then, Assign huffman code from root to leaf nodes
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huffmanTree ()
/** @return Huffman tree with weights w[0:a.length-1] */
public static LinkedBinaryTree huffmanTree(Operable [] w) { // create an array of single-node trees

HuffmanNode[] hNode = new HuffmanNode[w.length+1];
LinkedBinaryTree emptyTree = new LinkedBinaryTree();
for (int i = 0; i < w.length; i++) {

LinkedBinaryTree x = new LinkedBinaryTree();
x.makeTree(new MyInteger(i), emptyTree, emptyTree);
hNode[i + 1] = new HuffmanNode(x, w[i]); } 

MinHeap h = new MinHeap(); // make node array into a min heap
h.initialize(hNode, w.length);
// repeatedly combine pairs of trees from min heap until only one tree remains
for (int i = 1; i < w.length; i++) {  // remove two lightest trees from the min heap

HuffmanNode x = (HuffmanNode) h.removeMin();
HuffmanNode y = (HuffmanNode) h.removeMin();
LinkedBinaryTree z = new LinkedBinaryTree(); //combine them into a single tree t
z.makeTree(null, x.tree, y.tree);
HuffmanNode t = new HuffmanNode(z, (Operable) x.weight.add(y.weight));
h.put(t); // put new tree into the min heap }

return ((HuffmanNode) h.removeMin()).tree;  // final tree
}     
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Summary

� A priority queueis efficiently implemented with the heap data structure.
� Priority data structure

� Heap
� Leftist tree: HBLT, WBLT

� Priority Queue Applications
� Heap sort: Use heap to develop an O(nlogn) sort
� Machine scheduling 

� Use the heap data structure to obtain an efficient implementation

� The generation of Huffman codes 
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Sahni class: 
dataStructures.MaxPriorityQueue (p.504)

public interface MaxPriorityQueue {

methods
boolean isEmpty(): Returns true if empty, false otherwise

public int size(): Returns the number of elements in the queue

public Comparable getMax(): Returns element with maximum priority
public void put(Comparable obj): Inserts obj into the queue

public Comparable removeMax(): Removes and returns element with

maximum priority
}
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Sahni class: 
dataStructures.MinPriorityQueue (p.503)

public interface MinPriorityQueue {

methods
boolean isEmpty(): Returns true if empty, false otherwise

public int size(): Returns the number of elements in the queue

public Comparable getMin(): Returns element with minimum priority
public void put(Comparable obj): Inserts obj into the queue

public Comparable removeMin(): Removes and returns element with

minimum priority
}


