!'_ Ch.13 Priority Queues

© copyright 2006 SNU IDB Lab.

SNU
IDB Lab.

‘_L BIRD'S-EYE VIEW (0)

= Chapter 12: Binary Tree

s Chapter 13: Priority Queue
» Heap and Leftiest Tree

= Chapter 14: Tournament Trees
= Winner Tree and Loser Tree

Data Structures 2

SNU
IDB Lab.

i BIRD'S-EYE VIEW (1)

= A priority queue is efficiently implemented with the heap data structure

= Priority data structure
= Heap
= Leftist tree

= Priority Queue Applications
= Heap sort
= Use heap for an O(n*logn) sorting method
= Machine scheduling
= Use the heap data structure to obtain an efficient implementation
= The generation of Huffman codes

SNU
Data Structures 3 IDB Lab.

i Table of Contents

s Definition

_inear Lists for Priority Queue
Heaps for Priority Queue
_eftist Trees for Priority Queue

Priority Queue Applications
= Heap Sort

= Machine Scheduling

« Huffman code

Data Structures 4

SNU
IDB Lab.

Definition

o priority queue is

= Collection of zero or more elements with priority
= A min priority queue is

= Find the element with minimum priority

= Then, Remove the element
= A max priority queue is

= Find the element with maximum priority

= Then, Remove the element

= Priority queue is a conceptual queue where the output element has a
certain property (i.e., priority)

15 35 65 20 17 80 12 45 2 4

Data Structures 5 IDB Lab.

SNU

Priority Queue Applications

= Priority queues in the machine shop simulation
= Min priority queue
= One machine, many jobs with priority (time requirement of each job),
a fixed rate of payment

= TO maximize the earning from the machine
When a machine is ready for a new job, it selects the waiting job with
minimum priority (time requirement)

= getMin() & removeMin()

= Max priority queue
= Same duration jobs with priority (the amount of payment)

= To maximize the earning from the machine

When a machine is ready for a new job, it selects the waiting job with
maximum priority (the amount of payment)

= getMax() & removeMax()
SNU
Data Structures 6 IDB Lab.

i The ADT MaxPriorityQueue

AbstractDataType MaxPriorityQueue {

instances
finite collection of elements, each has a priority
operations
iISEmpty() : return true if the queue is empty
size() : return number of elements in the queue
getMax() : return element with maximum priority
put(x) : insert the element x into the queue

removeMax() : remove the element with largest priority
from the queue and return this element;

SNU
Data Structures 7 IDB Lab.

i Table of Contents

Definition
= Linear Lists for Priority Queue
= Heaps for Priority Queue
= Leftist Trees for Priority Queue

= Priority Queue Applications
= Heap Sort
= Machine Scheduling
=« Huffman code

SNU
Data Structures 8 IDB Lab.

Linear Lists for Priority Queue (1)

= Suppose Linear List for max priority queue with n elements

= Unordered linear list for a max queue

= Array
= Insert() or Put() : ©6(1) // put the new element the right end of the array
= RemoveMax(): ©(n) // find the max among n elements

1535652017801245 2 4

= Linked List
= Insert() or Put() : ©(1) // put the new element at the front of the chain
= RemoveMax(): ©(n) // find the max among n elements

firstNode ~

—_—

NN
SNU

Data Structures 9 IDB Lab.

Linear Lists for Priority Queue (2)

= Ordered linear list for a max queue

= Array

= location(i) =i (i.e., array-based) where the max element is located in the last
address (i.e., the nondecreasing order)

= Insert() or Put() : 6(n)
= RemoveMax() :6(1)

2 4 13 20 80 90

= Linked List

= chain (i.e., linked) where the max element is located in the head of chain (i.e., the
nonincreasing order)

= Insert() or Put() : ©(n)
= RemoveMax() :6(1)

firstNode ~

10

IDB Lab.

Data Structures

el

i Why HEA

= O(logN) for Insert() or Put()
= 0(logN) for RemoveMax()

s Simple Array Implementation!

Data Structures

SNU
IDB Lab.

i Table of Contents

= Definition

= Linear Lists for Priority Queue
s Heaps for Priority Queue

= Leftist Trees for Priority Queue

= Priority Queue Applications
= Heap Sort
=« Machine Scheduling
« Huffman code

Data Structures 12

SNU
IDB Lab.

i Max Tree & Max Heap

= A max tree is a tree in which the value in each node is greater than
or equal to those in its children

)@ ﬁ) (30)
& w88
10 (8) (6) (5)

(a) (b) (c)

Figure 13.1 Max trees

= Amax heapis
= A max tree that is also a complete binary tree
= Figure 13.1(b) : not CBT, so not max heap

SNU
Data Structures 13 IDB Lab.

i Min Tree & Min Heap

= A min tree is a tree in which the value in each node is less than or
equal to those in its children

7 o (20) 21)
ROIRCHE- A

(a) (b) (c)
Figure 13.2 Min trees

= A min heap is
= A min tree that is also a complete binary tree
= Figure 13.2(b) : not CBT, so not min heap

SNU
Data Structures 14 IDB Lab.

i Heap Height

= Heap is a complete binary tree
= A heap with n elements has height | log,(n+1) |

= put(): O(height) = 0(log n)
= |ncrease array size if necessary

= Find place for the new element
= The new element is located as a leaf
= Then moves up the tree for finding home

= removeMax(): 0(height) = 0(log n)
= Remove heap[1], so the root is empty
= Move the last element in the heap to the root
= Reheapify

SNU
Data Structures 15 IDB Lab.

* Put into Max Heap (1)

= Max heap with five elements
f< ‘\0
W 0
SNU

Data Structures 16 IDB Lab.

Put into Max Heap (2)

When an element is added to this = Suppose the element to be inserted has
heap, the location for a new element value 1, the following placement is fine

is the red zone

SNU
Data Structures 17 IDB Lab.

* Put into Max Heap (3)

= Suppose the element to be = The elements 2 and 5 must be swapped
inserted has value 5 for maintaining the heap property

SNU
Data Structures 18 IDB Lab.

Put into Max Heap (4)

Suppose the elementto ® The new element 21 will find its * Finally the new element 21 goes

be inserted has value 21 position by continuous swapping ~ t© the top
with the existing elements for

maintaining the heap property

SNU

Data Structures 19 IDB Lab.

put() in MaxHeap

public void put (Comparable theElement) {
If (size == heap.length — 1/))increase array size if necessary
heap=(Comparable []) ChangeArrayLength.changelLébdtmeap, 2 * heap.length);

// find the place for theElement. currentNode statrtsew leaf and moves up tree
int currentNode = ++size;
while (currentNode = 1 && heap[currentNode / 2].caan@T o(theElement) < 0) {
/[cannot put theElement in heap[currentNode], Seem@ement down
heap[currentNode] = heap[currentNode / 2];
currentNode /= 2; // move to parent

}

heap[currentNode] = theElement;

}
= Ateach level :6(1) So, Total complexity: O(height) = O(Iogj?

Data Structures 20

SNU
IDB Lab.

i removeMax() from a MaxHeap (1)

= The Max element “21” is in the = After the max element "21”
root is removed

A

Data Structures 21 IDB Lab.

removeMax() from a MaxHeap (2)

= The element 15 will go to the top * The element 14 is also * Even the element 10 needs to

. swapped to one level up elocated for maintaining the
by swapping PP P complete binary tree property

A O

SNU
Data Structures 22 IDB Lab.

removeMax() in MaxHeap

omparable removeMax() {
if (size == 0) return null}/ if heap is empty return null
Comparable maxElement = heap[1];max element
Comparable lastElement = heap[size4-Jeheapify
/Il find place for lastElement starting at root
int currentNode = 1, child = 2; // child of currentNode
while (child <= size) {// heap|child] should be larger child of currenti¢od
if (child < size && heap]child].compareTo(heap[aht+ 1]) < 0) child++;
// can we put lastElement in heap[currentNode]?
if (lastElement.compareTo(heap[child]) >=0) Iked/ yes
heap[currentNode] = heap|[child];no // move child up
currentNode = child; // move down a level
child *= 2; }
heap[currentNode] = lastElement;
return maxElement;

pu

}
** At each levels(1), So complexityO(height) = O(logn) SNU

Data Structures 23 IDB Lab.

i MaxHeap Initialization

= Steps
= Allocatethe elementsin an array
= Form acompletebinary tree
= Inthearray, start with therightmost node having a child
= node number - n/2
= Fixtheheap in the node
= Reverseback tothefirst nodeinthearray

SNU
Data Structures 24 IDB Lab.

* MaxHeap Initialization (1)

= Input array = [20, 12, 35, 15, 10, 80, 30, 17, 2, 1]
= Just make a complete binary tree

-

SNU

Data Structures 25 IDB Lab.

80, \0

i MaxHeap Initialization (2)

= Start at rightmost array position that has a child.
= Indexiis (n/2)" of the array.

/\//‘ N
QAQK‘ ‘m

Data Structures 26 IDB Lab.

* MaxHeap Initialization (3)

= Move to next lower array position.

20
\

N

e

Data Structures 27 IDB Lab.

* MaxHeap Initialization (4)

ind @ home for 15

A/.‘; 80, \0

SNU
Data Structures 28 J IDB Lab.

MaxHeap Initialization (5)

= Move to next lower array position.

Data Structures 29 IDB Lab.

* MaxHeap Initialization (6)

ind @ home for 35

A/‘} 35 \0

SNU
Data Structures 30 J IDB Lab.

* MaxHeap Initialization (7)

= Move to next lower array position.

e .
QAQJ') ‘sw

Data Structures 31 IDB Lab.

i MaxHeap Initialization (8)

= Find a home for 12

A/‘} 35 \0

SNU
Data Structures 32 J IDB Lab.

MaxHeap Initialization (9)

= Find a home for 12

A/.‘; 35 \0

J SNU
Data Structures 33 IDB Lab.

MaxHeap Initialization (10)

= Move to next lower array position.

0

Data Structures 34 IDB Lab.

i MaxHeap Initialization (11)

= Find a home for 20

A/‘z/' 35 \0

J SNU
Data Structures 35 IDB Lab.

MaxHeap Initialization (12)

= Result the max heap

/.\/‘; o ®

J SNU
Data Structures 36 IDB Lab.

initialize() in MaxHeap

public void initialize(Comparable [] theHeap, int 8ieze) {
heap = theHeap;
size = theSize;
for (int root = size / 2; root >= 1; root--)/{ heapify

Comparable rootElement = heap[root];

// find place to put rootElement

int child = 2 * root;// parent of child is target location for rootElemhe

while (child <= size) {// heap|child] should be larger sibling

if (child < size && heap]child].compareTo(heap[aiht+ 1]) < 0) child++;

// can we put rootElement in heap[child/2]?

if (rootElement.compareTo(heap[child]) >= 0) breakyes

heapl[child / 2] = heap[child } no // move child up

child *= 2; // move down a level

}
heap[child / 2] = rootElement;

} SNU
bata Structures 37 IDB Lab.

Complexity of Heap Initialization

= Rough Analysis
= for each element n/2, for-loop 0(log n) = 0(n * log n)

= Careful Analysis
= Height of heap = h
= Height of each subtree atlevelj=h"=h-j+ 1
= Num of nodes at level j < 271
= Time for each subtree at level j = O(h") = O(h-j+1)
= Time for all nodes at level j < 21 * (h-j+1) = t(j)
« Total time for all level is t(1) + t(2) + ... + t(h-1) = O(n)

= No more than n swappings!

SNU

Data Structures 38 IDB Lab.

i Table of Contents

= Definition

= Linear Lists for Priority Queue

= Heaps for Priority Queue Jump To HeapSort
m Leftist Trees for Priority Queue

= Priority Queue Applications
= Heap Sort
= Machine Scheduling
=« Huffman code

SNU
Data Structures 39 IDB Lab.

Merging Two Priority Queues

= Heap is efficient for priority queue

= Some applications require merging two or more priority queues
= Heap is not suitable for merging two or more priority queues

= Leftiest tree is powerful in merging two or more priority queues

AT /\OR /\
\ '

SNU
Data Structures 40 IDB Lab.

Height-Biased Leftist Tree (HBLT)

= Extended Binary Tree: Add an external node replaces each
empty subtree.

. «—— Internal node
D .
Ea - QO £]« External node
[B] [=] [<1] [=]

= Let s(x) be the length of a shortest path from node x to an external
node in its subtree.

=
S .
EE 1D S Lo
(& (o] (O] [O]

= walues

SNU
Data Structures 41 IDB Lab.

Height-Biased Leftist Tree (HBLT)

= A binary tree is a height-biased leftist tree (HBLT)
iff at every internal node, the s value of the left child is greater than or equal to
the s value of the right child.
= A max HBLT is an HBLT that is also a max tree.
= A min HBLT is an HBLT that is also a min tree.

< w

= S values in HBLT contributes to make complete binary tree!!!!!!

= [Theorem] Let x be any internal node of an HBLT
= The number of nodes in the subtree with root x is at least 25 — 1
= If the subtree with root x has m nodes, s(x) is at most log,(m+1)

= The length of the right-most path from x to an external node is s(x) SNU

Data Structures 42 IDB Lab.

Weight Biased Leftist Tree (WBLT)

= Let w(x) be the weight from node x to be the number of internal
nodes in the subtree with root x

T

> A

w values

= A binary tree is weight-biased leftist tree (WBLT)
iff at every internal node the w value of the left child is greater than or
equal to the w value of the right child
= A max WBLT is a max tree that is also a WBLT

= A min WBLT is a min tree that is also a WBLT

SNU
Data Structures 43 IDB Lab.

i Put a Max Element into a HBLT

= Create a new max HBLT
= Meld this max HBLT and the original

public void put (Comparable theElement) {
HbltNode g = new HbltNode (theElement, 1);
// meld g and original tree
root = meld (root, q);
size++;

}

SNU
Data Structures 44 IDB Lab.

Remove a Max element from a HBLT

s Delete the root
= Meld its two subtrees

public Comparable removeMax() {
if (size == 0) return null; // tree is empty

// tree not empty

Comparable x = root.element; // save max element
root = meld (root.leftChild, root.rightChild);

size--;
return Xx;
SNU
Data Structures 45 IDB Lab.

i Meld Two HBLTS

= Let A & B be the two HBLTs
= Compare theroot of A& B

= The bigger value Is the new root for the melded tre
= Assume the root of A is bigger & A has left subtkee

= Meld the right subtree and #& result C

= A has the left subtree L and the right subtree C
= Compare the Svaluesof L & C

= Swap If necessary

SNU
Data Structures 46 IDB Lab.

‘_L Melding 2 HBLTSs: Ex 1

Consider the two max HBLTs

value 1‘ 1‘

= 9>7, so 9is root.

= The s value of the left subtree of 9 is 0 while the s value of the right
subtree is 1 =» Swap the left subtree and the right subtree

1(9)
1‘\ 1 —_—
@ i
SNU

Data Structures 47 IDB Lab.

Melding 2 HBLTs: Ex 2

s Consider the two max HBLTs
10 '@

o

= 10> 7,sorootis 10
10\

= Comparing the s values of the left and right children of 10, a swap is not
necessary .

Data Structures 48 IDB Lab.

Melding 2 HBLTSs: Ex 3 (1)

= Consider the two max HBLTs

e

Data Structures

Melding 2 HBLTs: Ex 3 (2)

= 18 > 10, rootis 18
= Meld the right subtree of 18
= S(left) < s(right), swap left and right subtree

2

1‘% AN
') : 1‘/ \.1

SNU
Data Structures 50 IDB Lab.

Melding 2 HBLTSs: Ex 4 (1)

g sider the two max HBLTs

A A
b o o

J SNU
Data Structures 51 IDB Lab.

Melding 2 HBLTs: Ex 4 (2)

= 40 > 18, root is 40
= Meld the right subtree of 40
= S(left) < s(right), swap left and right subtree

&= T

]0 01
SNU

Data Structures 52 IDB Lab.

i meld() in HBLT

private static HbltNode meld (HbltNode x, HbltNode{y)
if (y ==null) returnx; //'yis empty
if (x ==null) returny; // xis empty
/I neither is empty, swap x and y if necessary
if (x.element.compareTo(y.element) < 0)/ fwap x and y
HbltNode t=x; x=vy; y=t; }/ now x.element >=y.element
X.rightChild = meld (x.rightChild, y);
if (x.IeftChild == null) { // left subtree is empty, swap the subtrees
X.leftChild = x.rightChild; x.rightChild = null; x.s 1; }
else {// swap only if left subtree has a smaller s value
iIf (x.leftChild.s < x.rightChild.s) {// swap subtrees
HbltNode t = x.leftChild; x.leftChild = x.rightChildx.rightChild = t; }
X.s = X.rightChild.s + 1}/ update s value

}

return x;

SNU
Data Structures 53 IDB Lab.

Initializing a Max HBLT (1)

= Create a max HBLT with the five elements 7, 1, 9, 11, and 2
= Five single-element max HBLTSs are created and placed in a FIFO queue

= The max HBLTs 7 and 1 are deleted from the queue and melded into (a)

— 2.11,9,1,7 —>

/&1 => @
(a) — (a),2,11,9 —>

= The result (a) is added to the queue

SNU
Data Structures 54 IDB Lab.

‘_L Initializing a Max HBLT (2)

= The max HBLTs 9 and 11 are deleted from the queue and melded into (b)

—_— (@), 2 —
O&k11l =>

(9 — (), @),2 —>
(b)

= The result (b) is added to the queue

SNU
Data Structures 55 IDB Lab.

Initializing @ Max HBLT (3)

= The max HBLTs 2 and (a) are deleted from the queue and melded into (c)

(b) —

—
2&(a) 2>
‘ —> ©), (b)) —
()

= Theresult (c)is added to the queue

SNU
Data Structures 56 IDB Lab.

‘_L Initializing a Max HBLT (4)

= The max HBLTs (b) and (c) are deleted from the queue and melded
into the result

‘ — result —p
result

= The result is added to the queue
= The queue now has just one max HBLT, and we are done with the
initialization SNU
Data Structures 57 IDB Lab.

initialize() in HBLT

public void initialize(Comparable [] theElementst theSize) {
size = theSize,
ArrayQueue g = new ArrayQueue(size);
I/ initialize queue of trees
for (inti=1;1<=size; i++)/ create trees with one node each
g.put(new HbltNode(theElements]i], 1));
I/ repeatedly meld from queue g
for (inti=1;1<=size - 1, i++) {{/ remove and meld two trees from the queue
HbltNode b = (HbltNode) g.remove();
HbltNode ¢ = (HbltNode) g.remove();

b = meld(b, c);
// put melded tree on queue
q.put(b);
}
if (size > 0) root = (HbltNode) g.remove();
}
SNU
Data Structures 58 IDB Lab.

i Complexity Analysis of HBLT

= getMax
= 0(1)
= The complexity of put() and removeMax() is the same as that
of = meld()
= put() and removeMax() are used for meld()
= meld()
= Root xandy

s O(s(x)+ s(y)) where s(x) and s(y) are at most log(m+1) and log(n+1)
= m and n are the number of elements in the max HBLTs with root x and y

= O(log(m) + log(n)) = O(log(m*n))

SNU
Data Structures 59 IDB Lab.

i Complexity of Initialize HBLT

= N = size of a power of 2

= The first n/2 melds involve max HBLTs with one element each

= The next n/4 melds involve max HBLTs with two elements each
= The next n/8 melds involve max HBLTs with four elements each
= And so on

= Meld two trees with 2! elements each
= O(i+1)
= Total time
= O(n/2 + 2*(n/4) + 3*(n/8) + ***) = O(n)

SNU
Data Structures 60 IDB Lab.

i Table of Contents

s Definition

_inear Lists for Priority Queue
Heaps for Priority Queue
_eftist Trees for Priority Queue

Priority Queue Applications
= Heap Sort

= Machine Scheduling

« Huffman code

Data Structures 61

SNU
IDB Lab.

i Heap Sort

public static void heapSort (Comparable []a) {

//create a max heap of the elements
MaxHeap h = new MaxHeap();
h.initialize(a, a.length — 1);

//extract one by one from the max heap
for (inti = a.length—2;i>=1; i--)
ali + 1] = h.removeMax() ;

}

MaxHeap class: initialize(), removeMax()

SNU
Data Structures 62 IDB Lab.

Heap Sort Ex (1)

= This sorting loop begins with the max heap

PO

Data Structures 63 IDB Lab.

i Heap Sort Ex (2)

= Remove Max & move the last element “1” to the root

A ?7'\
‘/‘\‘ [’ ’

Data Structures 64 IDB Lab.

* Heap Sort Ex (3)

eheapify: Meld root.leftChild and root.rightChild

e

SNU
Data Structures 65 IDB Lab.

i Heap Sort Ex (4)

= Remove Max & move the last element “2" to the root

\C 20 \Q

12 \C

80 35

Data Structures 66 IDB Lab.

SNU

i Heap Sort Ex (5)

= Reheapify: Meld root.leftChild and root.rightChild

P

80 35

Data Structures 67 IDB Lab.

SNU

i Heap Sort (6)

= Remove Max & move the last element “12" to the root

80 35 30

Data Structures 68 IDB Lab.

SNU

i Heap Sort Ex (7)

= Reheapify: Meld root.leftChild and root.rightChild

80 35 30

Data Structures 69 IDB Lab.

SNU

i Heap Sort Ex (8)

= Remove Max & move the last element 1" to the root

80 35 30 20

Data Structures 70 IDB Lab.

SNU

i Heap Sort Ex (9)

= Reheapify: Meld root.leftChild and root.rightChild

7

80 35 30 20

Data Structures 71 IDB Lab.

SNU

Heap Sort Ex (10)

0 move Max & move the last element “2" to the root

80 35 30 20 17/

Data Structures 72 IDB Lab.

SNU

& Heap Sort Ex (11)

= Reheapify: Meld root.leftChild and root.rightChild

o

80 35 30 20 17

Data Structures 73 IDB Lab.

SNU

i Heap Sort Ex (12)

= Remove Max & move the last element “1” to the root

/.\
/‘\/
2 €y

Data Structures 74 IDB Lab.

i Heap Sort Ex (13)

= Reheapify: Meld root.leftChild and root.rightChild

s

80 35 30 20 17 15

Data Structures 75 IDB Lab.

SNU

& Heap Sort Ex (14)

= Remove Max & move the last element “2" to the root

o "

80 35 30 20 17 15 12

Data Structures 76 IDB Lab.

SNU

i Heap Sort Ex (15)

= Reheapify: Meld root.leftChild and root.rightChild

80 35 30 20 17 15 12

Data Structures 77 IDB Lab.

i Heap Sort Ex (16)

= Remove Max & move the last element 1" to the root

e
e e

80 35 30 20 17 15 12 10

Data Structures 78 IDB Lab.

SNU

‘L Heap Sort Ex (17)

= Reheapify: Meld root.leftChild and root.rightChild

o

80 35 30 20 17 15 12 10

Data Structures 79 IDB Lab.

‘L Heap Sort Ex (18)

= Remove Max & move the last element “1” to the root

o

80 35 30 20 17 15 12 10 2

Data Structures 80 IDB Lab.

‘_L Heap Sort Ex (19)

= Reheapify: Meld root.leftChild and root.rightChild

80 35 30 20 17 15 12 10 2

Data Structures 81 IDB Lab.

‘L Heap Sort Ex (20)

= Remove Max & we are done!

80 35 30 20 17 15 12 10 2 1

= Complexity of Heap Sort : O(n * logn)
= Initialization : O(n)
= Deletion : O(logn)
= Sort = deletion n times =» o(n * logn)

Data Structures 82

SNU
IDB Lab.

i Table of Contents

= Definition

= Linear Lists for Priority Queue
= Heaps for Priority Queue

= Leftist Trees for Priority Queue

= Priority Queue Applications
= Heap Sort
=« Machine Scheduling
=« Huffman code

SNU
Data Structures 83 IDB Lab.

i Machine Scheduling

= A schedule is an assignment of jobs to time intervals on machines
= No machine processes more than one job at any time.
= No job is processed by more than one machine at any time.
= Each job i is assigned for a total of t, units of processing.

= The finish time or length is
= The time at which all jobs have completed
= Strat time : s,
= Completion time : s, + t

SNU
Data Structures 84 IDB Lab.

* Three-machine schedule

= Seven jobs with processing requirements (2, 14, 4, 16, 6, 5, 3)

Machine A

Machine B

Machine C
L _ >
0 2 10 15 18

= Finish time : 18
= Objective: Find schedules with minimum finish time

SNU
Data Structures 85 IDB Lab.

& LPT Schedule (1)

= Longest Processing Time first.
= Jobs are scheduled in the order: 16, 14, 6, 5, 4, 3, 2
= Each job is scheduled on the machine on which it finishes earliest.

= Use MaxHeap for LPT Schedule
= Construct a MaxHeap for (2, 14, 4, 16, 6, 5, 3)

S

Data Structures 86 IDB Lab.

LPT Schedule (2)

= MaxHeap for LPT Schedule

= First, place a job with priority 16 in Machine A which is free
= ReHeapify

./l\/ ? - ./l\/ ?
SNU
Data Structures 87 IDB Lab.

LPT Schedule (3)

= MaxHeap for LPT Schedule

= Place a job with priority 14 in Machine B which is free
= ReHeapify

./l\/ ? — ./(\
SNU
Data Structures 88 IDB Lab.

LPT Schedule (4)

0 XHeap for LPT Schedule

= Place a job with priority 6 in Machine C which will finish this job in
the earliest time

= ReHeapify

Ao

Data Structures 89 IDB Lab.

i LPT Schedule (5)

= MaxHeap for LPT Schedule

= Place a job with priority 5 in Machine C which will finish this job in
the earliest time

= ReHeapify

/’\ ~

** Keep Going until No element is left in the Heap

SNU
Data Structures 90 IDB Lab.

LPT Schedule (6)

= The generated schedule by LPT algorithm

Machine A

Machine B

Machine C

= Finish time : 17

SNU
Data Structures 91 IDB Lab.

i Analysis on LPT

= Minimum finish time scheduling is NP-hard
= Finding optimal solutions are generally NP

m LPT is an Approximation Algorithm
= much closer to minimum finish time

= Proved By Graham

= (LPT Finish Time) / (Minimum Finish Time) <= 4/3 - 1/(3m) where m is number of
machines.

= Sort jobs into decreasing order of task time
= O(n*logn) time (n is number of jobs)

= Schedule jobs in this order
= assign job to machine that becomes available first
= must find minimum of m (m is humber of machines) finish times

SNU
Data Structures 92 IDB Lab.

i Table of Contents

= Definition

= Linear Lists for Priority Queue
= Heaps for Priority Queue

= Leftist Trees for Priority Queue

= Priority Queue Applications
= Heap Sort
= Machine Scheduling
« Huffman code

SNU
Data Structures 93 IDB Lab.

i Huffman code

= Text compression: Suppose the codes for the paths to the nodes (a, b, ¢, d,
e, f) are (00, 010, 011, 100, 101, 11)

= Use extended binary trees to derive a special class of variable-length codes

00

/ “""\ﬁ
0%2 210

010 011 100 101

11

= Let F(x) be the frequency of the symbol x € {a, b, ¢, d, e, f}
= Length of the original string (by the number of bytes): 4 X number of chars
= Length of encoded string (by the number of bits)

= 2*F(a)+3*F(b)+3*F(c)+3*F(d)+3*F(e)+2*F(f) SNU

Data Structures

IDB Lab.

i Huffman code encoding

= To Encode a string using Huffman codes,

= 1. Determine the different symbols in the string and their frequencies

= 2. Construct a binary tree with minimum WEP (Weighted External Path
length)

= The external nodes of this tree are labeled by the symbols in the string

= The weight of each external node is the frequency of the symbol that is its
label

= 3. Traverse the root-to-external-node paths and obtain the codes
= 4. Replace the symbols in the string by their codes

« 2t MEZ22 bit codeZ HEE [f, BIBIG| £ 5ts A=Y
== X|Ust B2 bit codeE JFHOF SHCY.
SNU
Data Structures 95

IDB Lab.

i Constructing a Huffman tree (1)

Extended Binary Tree: A binary tree with external nodes added
MinHeap: complete binary tree & the value in each node is less than or equal

to those in its children

(1

b

C

d

e

f

6 2 3 3 4 9
(a) Imtial collection of trees

=

ot

b

o

el

&

f

6

Data Structures

2

3

3

A

o

Each element has weight which is frequency
Build a MinHeap (6,2,3,3,4,9)

2.
(b) After first combining 3

Remove two elements of lowest
weight from a MinHeap (6,2,3,3,4,9)

Insert 5 & Reheapify (6,5,3,4,9)

Build a tree in the left

SNU
96 IDB Lab.

i Constructing a Huffman tree (2)

1. Remove two elements of lowest

@ @ weight from a MinHeap (6,5,3,4,9)
- 5 - - - 7 2. Insert 7 & Reheapify (6,5,7,9)
6 2 3 3 4 o 3. Build a tree in the left

(c) After second combining

@ 1. Remove two subelements of lowest
weight from a MinHeap (6,5,7,9
5 9 P (6:5/7,2)
S 2. Insert 11 & Reheapify (11,7,9)

& [=] (=] [=] [7] _ |
> 3 3 =1 o 3. Build a tree in the left
(d)) After third combining

SNU
Data Structures 97 IDB Lab.

i Constructing a Huffman tree (3)

(1 1) (16) 1. Remove two elements of lowest
= 7 weight from a MinHeap (11,7,9)
S %] =] == [=] = 2. Insert 16 & Reheap (11,16)
=2 >3 =3 e B

(e After fTourthh combining 3. Build a tree in the left

A T 1. Remove two elements of lowest

= = o weight from a MinHeap (11,16)
< i L ~ 2. Insert 27 & Reheapify (27)
(f) After fifth combining 3. Build a tree in the left

Then, Assign huffman code from root to leaf nodes SNU
Data Structures 98 IDB Lab.

huffmanTree ()

[* urn Huffman tree with weights w[0:a.length-1] */
public static LinkedBinaryTree huffmanTree(Operable [] w) { // create an array of single-node trees
HuffmanNode[] hNode = new HuffmanNode[w.length+1];
LinkedBinaryTree emptyTree = new LinkedBinaryTree();
for (inti=0;i < w.length; i++) {
LinkedBinaryTree x = new LinkedBinaryTree();
x.makeTree(new Mylnteger(i), emptyTree, emptyTree);
hNode[i + 1] = new HuffmanNode(x, w[i]); }
MinHeap h = new MinHeap(); // make node array into a min heap
h.initialize(hNode, w.length);
// repeatedly combine pairs of trees from min heap until only one tree remains
for (inti = 1; i < w.length; i++) { // remove two lightest trees from the min heap
HuffmanNode x = (HuffmanNode) h.removeMin();
HuffmanNode y = (HuffmanNode) h.removeMin();
LinkedBinaryTree z = new LinkedBinaryTree(); //combine them into a single tree t
z.makeTree(null, x.tree, y.tree);
HuffmanNode t = new HuffmanNode(z, (Operable) x.weight.add(y.weight));
h.put(t); // put new tree into the min heap }
return ((HuffmanNode) h.removeMin()).tree; // final tree SNU

Dz}ta Structures 99 IDB Lab.

i Summary

= A priority queues efficiently implemented with the heap data strrestu

= Priority data structure
= Heap
= Leftist tree: HBLT, WBLT

= Priority Queue Applications
= Heap sort: Use heap to develop an O(nlogn) sort

= Machine scheduling
= Use the heap data structure to obtain an effiecreptementation

= The generation of Huffman codes

SNU
Data Structures 100 IDB Lab.

Sahni class:
dataStructures.MaxPriorityQueue (p.504)

public interface MaxPriorityQueue {
methods
boolean isEmpty(): Returns true if empty, false otherwise
public int size(): Returns the number of elements in the queue
public Comparable getMax(): Returns element with maximum priority
public void put(Comparable obj): Inserts obj into the queue
public Comparable removeMax(): Removes and returns element with
maximum priority

SNU
Data Structures 101 IDB Lab.

Sahni class:
dataStructures.MinPriorityQueue (p.503)

public interface MinPriorityQueue {

methods
boolean isEmpty(): Returns true if empty, false otherwise
public int size(): Returns the number of elements in the queue
public Comparable getMin(): Returns element with minimum priority
public void put(Comparable obj): Inserts obj into the queue
public Comparable removeMin(): Removes and returns element with

minimum priority

SNU
Data Structures 102 IDB Lab.

