
SNU

IDB Lab.

Ch 17. Graphs
© copyright 2006 SNU IDB Lab.

2
SNU

IDB Lab.Data Structures

Bird’s-Eye View (0)
� Chapter 5-8: Linear List

� Chapter 9-11: Stack & Queue

� Chapter 12-16: Tree

� Chapter 17: Graph

3
SNU

IDB Lab.Data Structures

Bird’s eye review (1)

� Graphs
� Used to model and solve many real-world problems

� In this chapter
� Graph terminology

� Different types of graphs

� Common graph representations

� Standard graph search methods

� Algorithms to find a path in a graph

� Specifying an abstract data type as an abstract class

4
SNU

IDB Lab.Data Structures

Table of Contents

� Definition and Application
� The ADT Graph
� Representation of Unweighted Graphs
� Representation of Weighted Graphs
� Class Implementations
� Graph Search Methods
� Application Revisited

� Find a path in a Digraph
� Connected Graph in a Graph
� Component Labeling Problem in a Graph
� Spanning Tree in a Graph

5
SNU

IDB Lab.Data Structures

Graph Definition (1)
� Graph G = (V, E)

� Finite set V (=vertices, nodes, points)

� Finite set E (=edges, arcs, lines)

� Directed edge: orientation

� Undirected edge: no orientation

� Vertices i and j are adjacent vertices iff (i,j) is an edge in the graph

� Edge(i,j) is incident on the vertices i and j

6
SNU

IDB Lab.Data Structures

Graph Definition (2)
� Vertex 2 is adjacent from vertex 1, while vertex 1 is

adjacent to vertex 2

� Edge(1,2) is incident from vertex 1 and incident to
vertex 2

� Vertex 4 is both adjacent to and from vertex 3

� Edge(3,4) is incident from vertex 3 and incident to
vertex 4

7
SNU

IDB Lab.Data Structures

Graph Definition (3)

� G1 = (V1, E1): V1 = {1, 2, 3, 4}, E1 = {(1,2), (1,3), (2,3), (1,4), (3,4)}
� G2 = (V2, E2):

V2 = {1, 2, 3, 4, 5, 6, 7}, E2 = {(1,2), (1,3), (4,5), (5,6), (5,7),(6,7)}
� G3 = (V3, E3):

V3 = {1, 2, 3, 4, 5}, E3 = {(1,2), (2,3), (3,4), (4,3), (3,5), (5,4)}

G1 G2 G3

8
SNU

IDB Lab.Data Structures

Graph Definition (4)

� Directed Graph
� All the edge are directed (=digraph)

� Self-edges (loop) are not allowed: (i, i), (j, j)

� Directed Acyclic Graph (DAG): No cycle in digraph

� Weights can be assigned to edges
� weighted undirected graph

� weighted directed graph (digraph)

� Graph == Network (synonym)

9
SNU

IDB Lab.Data Structures

Graph Definition (5)
� Definition: Degree di of vertex i of an undirected graph is

the number of edges incident on vertex i

� Example:
� d1 = 3

� d2 = 2

� d3 = 3

� d4 = 2

10
SNU

IDB Lab.Data Structures

Edges in Undirected Graph
� Let G=(V,E) be an undirected graph and

Let n=|V| and e=|E|

A. ∑di = 2e

B. 0 ≤ e ≤ n(n-1)/2

� A complete undirected graph has n*(n-1) / 2 edges

i=1

n

11
SNU

IDB Lab.Data Structures

Edges in Directed Graph
� Let G=(V,E) be a directed graph

Let n = |V| and e = |E|

A. 0 ≤ e ≤ n(n-1)

B. ∑di
in= ∑di

out = e

� A complete directed graph has n* (n-1) edges
i=1

n

i=1

n

12
SNU

IDB Lab.Data Structures

Graph Terms
� G=(V,E)

� A graph G is a connected graph IFF there is a path between every pair
of vertices

� A graph H is a subgraph of another graph G IFF vertex and edge sets of
H are subsets of those of graph G respectively

� Simple path is a path in which all vertices, except possibly the first and
last, are different
� A cycle is a simple path with same start and end vertex in a graph

� A spanning tree is a tree and a subgraph of G that contains all the
vertices of G

13
SNU

IDB Lab.Data Structures

Graph Application:
Path Problems

� Simple path: Path in which all vertices, except possibly the first and last,
are different � 5,2,1 (yes) 2,5,2,1 (no)

� Length: Each edge in a graph may have an associated length

14
SNU

IDB Lab.Data Structures

Graph Application:
Spanning Trees

� A spanning tree is a treeanda subgraphof G that contains all the
vertices of G

15
SNU

IDB Lab.Data Structures

Graph Application:
Weighted Graph and its Spanning Trees

16
SNU

IDB Lab.Data Structures

Graph Application:
Bipartite Graphs

� Bipartite graphs
� Partition the vertex set into two

subsets, A (the interpreter vertices)
and B (the language vertices), so
that every edge has one endpoint in
A and the other in B.

17
SNU

IDB Lab.Data Structures

Table of Contents

� Definition and Applications
� The ADT Graph
� Representation of Unweighted Graphs
� Representation of Weighted Graphs
� Class Implementations
� Graph Search Methods
� Application Revisited

� Find a path in a Digraph
� Connected Graph in a Graph
� Component Labeling Problem in a Graph
� Spanning Tree in a Graph

18
SNU

IDB Lab.Data Structures

The ADT Graph
AbstractDataType Graph {

instances

a set V of vertices and a set E of edges

operations

vertices(), edges(), existsEdge(i, j),

putEdge(i, j), removeEdge(i, j), degree(i),

inDegree(i), outDegree(i)

}

� ADT graph refers to all varieties of graphs

whether directed, undirected, weighted, or unweigted

19
SNU

IDB Lab.Data Structures

The abstract class Graph
public abstract class Graph {

//ADT method
public abstract int vertices();
public abstract int edges();
public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

}

20
SNU

IDB Lab.Data Structures

Class derivation hierarchy for Graph

* Left side: array-based vs Right-side: linked-based

21
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications
� The ADT Graph
� Representation of Unweighted Graphs
� Representation of Weighted Graphs
� Class Implementations
� Graph Search Methods
� Application Revisited

� Find a path in a Digraph
� Connected Graph in a Graph
� Component Labeling Problem in a Graph
� Spanning Tree in a Graph

22
SNU

IDB Lab.Data Structures

Adjacency Matrix for Unweighted Graph (1)

� The adjacency matrixof an n-vertex graph G=(V,E) is an n×n matrix A
� Each element of A is either 0 or 1

� V={1, 2, …, n}

� G is an undirected Graph

� A(i, j) =

� G is a directed graph

� A(i, j) =

1 If (i, j) ∈ E or (j, i) ∈ E
0 otherwise

1 If (i, j) ∈ E
0 otherwise

23
SNU

IDB Lab.Data Structures

Adjacency Matrix for Unweighted Graph (2)

24
SNU

IDB Lab.Data Structures

Adjacency Matrix for Unweighted Graph (3)

� An n×n adjacency matrix can be mapped into array
� (n+1)×(n+1) array: (n+1)2 = n2 + 2n + 1 bits

� n×n array: n2 bits

� The diagonal may be eliminated

� (n - 1) × n matrix: (n2-n)/2 bits

� But, potential mismatch in coding

� Array-based AM is simple

� But you have to check every item in a row if you want to do something with
adjacent nodes

� 0(n) to determine the set of vertices adjacent to or from any given vertex

� Later we use the irregular array instead!

25
SNU

IDB Lab.Data Structures

Adjacency Matrix for Unweighted Graph (4)

26
SNU

IDB Lab.Data Structures

Linked Adjacency Lists for Unweighted Graph (1)

� An adjacency list for vertex i is a linear list that includes all vertices
adjacent from the vertex i
� aList[i].firstNode pointer is pointing to the first node

� If x points to a node in the chain aList[i], (i, x.element.vertex) is an edge of
the graph

� Space requirement for n vertex graph

4*(n+1) : for the array aList

+ 4*n : for the n firstNode pointers

+ 4*3*m : for m chain nodes (next, element, vertex of element))

� 4(2n+3m+1)

� Undirected graph : m = 2e & Digraph graph : m = e where e is the
number of edges

27
SNU

IDB Lab.Data Structures

Linked Adjacency Lists for Unweighted Graph (2)

28
SNU

IDB Lab.Data Structures

2D Irregular Array
for Adjacency Lists of Unweighted Graph

� 2D irregular array-based linear list representation rather than a chain

� Space requirement
� 4*m bytes less than that of linked adjacency lists because we do not have m

“next” pointers

29
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications
� The ADT Graph
� Representation of Unweighted Graphs
� Representation of Weighted Graphs
� Class Implementations
� Graph Search Methods
� Application Revisited

� Find a path in a Digraph
� Connected Graph in a Graph
� Component Labeling Problem in a Graph
� Spanning Tree in a Graph

30
SNU

IDB Lab.Data Structures

� Cost-adjacency-matrix
� Use a matrix C
� A(i, j) is 1 � C(i, j) is cost (weight)
� A(i, j) is 0 � C(i, j) is null

� Linked Adjacency-list representation
� Chain (see the next page)
� Elements have the two fields vertex and weight

� Array Adjacency-list representation
� Easily derived from that of unweighted graph
� But determining the adjacent nodes is 0(n)

Representation of Weighted Graphs

31
SNU

IDB Lab.Data Structures

Cost-adjacency matrices for Weighted Graph

4

2

8
7

6

9

46

35

1

8

3

6

7
5

2

32
SNU

IDB Lab.Data Structures

Linked adjacency list for weighted graph

4

2

8
7

6

33
SNU

IDB Lab.Data Structures

Table of Contents

� Definition and Applications
� The ADT Graph
� Representation of Unweighted Graphs
� Representation of Weighted Graphs
� Class Implementations
� Graph Search Methods
� Application Revisited

� Find a path in a Digraph
� Connected Graph in a Graph
� Component Labeling Problem in a Graph
� Spanning Tree in a Graph

34
SNU

IDB Lab.Data Structures

The Different Classes for Graph

� Four graph types
� unweighted undirected graph

� weighted undirected graph

� unweighted directed graph

� weighted directed graph

� Three representations
� matrix

� Array

� linked list

� Several pairs of 4 graph types have “IsA” relationship

35
SNU

IDB Lab.Data Structures

Class derivation hierarchy for Graph

* Left side: array-based vs Right-side: linked-based

36
SNU

IDB Lab.Data Structures

Array-based Adjacency-Matrix Classes for Graph

� Weighted-edge classes: 2D array of type Object
� The class AdjacencyWDigraph& AdjacencyWGraph

� Unweighted-edge classes: 2D array of type boolean
� The class AdjacencyDigraph& AdjacencyGraph

� We describe only AdjacencyWDigraph and AdjacencyWGraph here

37
SNU

IDB Lab.Data Structures

Remember: The abstract class Graph
public abstract class Graph
{

//ADT method
public abstract int vertices();
public abstract int edges();
public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

}

38
SNU

IDB Lab.Data Structures

The Class AdjacencyWDigraph (1)

public class AdjacencyWDigraph extends Graph {
// data members
int n; // number of vertices
int e; // number of edges
Object [][] a; // adjacency array

// constructors
public AdjacencyWDigraph(int theVertices) {
// validate theVertices
if (theVertices < 0)
throw new IllegalArgumentException (“no of vertices must be >= 0");

n = theVertices;
a = new Object [n + 1] [n + 1];
// default values are e = 0 and a[i][j] = null

}
// default is a 0 vertex graph
public AdjacencyWDigraph() { this(0); }

39
SNU

IDB Lab.Data Structures

The Class AdjacencyWDigraph (2)

/** put edge e into the digraph; if already there, update its weight e.weight
* @throws IllegalArgumentException when theEdge is invalid */
public void putEdge(Object theEdge) {
WeightedEdge edge = (WeightedEdge) theEdge;
int v1 = edge.vertex1;
int v2 = edge.vertex2;
if (v1 < 1 || v2 < 1 || v1 > n || v2 > n || v1 == v2) throw new

IllegalArgumentException ("(" + v1 + "," + v2 + ") is not a permissible edge");
if (a[v1][v2] == null) e++; // new edge
a[v1][v2] = edge.weight;

}

/** remove the edge (i,j) */
public void removeEdge (int i, int j) {
if (i >= 1 && j >= 1 && i <= n && j <= n && a[i][j] != null) {
a[i][j] = null;
e--; }

}

40
SNU

IDB Lab.Data Structures

The Class AdjacencyWDigraph (3)

/** this method is undefined for directed graphs */
public int degree (int i) { throw new NoSuchMethodError();}

/** @return out-degree of vertex i
* @throws IllegalArgumentException when i is not a valid vertex */

public int outDegree(int i) {
if (i < 1 || i > n)
throw new IllegalArgumentException("no vertex " + i);

// count out edges from vertex i
int sum = 0;
for (int j = 1; j <= n; j++)
if (a[i][j] != null) sum++;

return sum;
}

41
SNU

IDB Lab.Data Structures

The Class AdjacencyWDigraph (4)

/** create and return an iterator for vertex i
* @throws IllegalArgumentException when i is an invalid vertex */

public Iterator iterator(int i) {
if (i < 1 || i > n) throw new IllegalArgumentException("no vertex " + i);
return new VertexIterator(i);

}

private class VertexIterator implements Iterator {
// data members
private int v; // the vertex being iterated
private int nextVertex;
// constructor
public VertexIterator(int i) {

v = i; // find first adjacent vertex
for (int j = 1; j <= n; j++)

if (a[v][j] != null) {
nextVertex = j;
return; }

// no edge out of vertex i
nextVertex = n + 1;

}

42
SNU

IDB Lab.Data Structures

The Class AdjacencyWDigraph (5)

// iterator methods
public boolean hasNext() { return nextVertex <= n; } //true if there is next vertex
/** @return next adjacent vertex and edge weight */
public Object next() {

if (nextVertex <= n) {
int u = nextVertex; // find next adjacent vertex
for (int j = u + 1; j <= n; j++)

if (a[v][j] != null) {
nextVertex = j;
return new WeightedEdgeNode(u, a[v][u]); }

// no next adjacent vertex for v
nextVertex = n + 1;
return new WeightedEdgeNode(u, a[v][u]);

} else throw new NoSuchElementException("no next vertex");
} // end of next()

public void remove() { throw new UnsupportedOperationException();`} //unsupported
} // end of the class VertexIterator

} // end of the class AdjacencyWDigraph

43
SNU

IDB Lab.Data Structures

The Class AdjacencyWGraph
(for undirected graph)

public class AdjacencyWGraph extends AdjacencyWDigraph {
public void removeEdge(int i, int j) { /** remove the edge (i,j) */
if (i >= 1 && j >= 1 && i <= n && j <= n && a[i][j] != null) {

a[i][j] = null;
a[j][i] = null;
e--; }

}
/** put edge e into the graph; if already there, update its weight to e.weight
* @throws IllegalArgumentException when theEdge cannot be an edge*/

public void putEdge(Object theEdge) {
WeightedEdge edge = (WeightedEdge) theEdge;
int v1 = edge.vertex1;
int v2 = edge.vertex2;
if (v1 < 1 || v2 < 1 || v1 > n || v2 > n || v1 == v2) throw new

IllegalArgumentException ("(" + v1 + "," + v2 + ") is not a permissible edge");
if (a[v1][v2] == null) e++; // new edge
a[v1][v2] = edge.weight;
a[v2][v1] = edge.weight;

}
}

44
SNU

IDB Lab.Data Structures

Linked-list classes for Graph

� Linked-list representation of a graph
� each object is represented as an array element of chains

� In array-based graph � removeEdge()
� Here, removeElement(vertex)

� first search the chain
� If matching element is found � delete it from the chain

� Extension to the class Chainthat includes the new methods is called the class
GraphChain

� The class LinkedDigraphis a subclass of the class Graph

45
SNU

IDB Lab.Data Structures

Class derivation hierarchy for Graph

* Left side: array-basedvs Right-side: linked-based

46
SNU

IDB Lab.Data Structures

Remember: The abstract class Graph
public abstract class Graph {

//ADT method
public abstract int vertices();
public abstract int edges();
public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

}

47
SNU

IDB Lab.Data Structures

The class LinkedDigraph (1)
public class LinkedDigraph extends Graph {
// data members
int n; // number of vertices
int e; // number of edges
GraphChain [] aList; // adjacency lists

// constructors
public LinkedDigraph(int theVertices) {

// validate theVertices
if (theVertices < 0)
throw new IllegalArgumentException ("number of vertices must be >= 0");
n = theVertices;
aList = new GraphChain [n + 1];
for (int i = 1; i <= n; i++) aList[i] = new GraphChain();
// default value of e is 0

}

// default is a 0-vertex graph
public LinkedDigraph() { this(0); }

48
SNU

IDB Lab.Data Structures

The class LinkedDigraph (2)
// Graph methods

public int vertices() { return n; } /** @return number of vertices */
public int edges() { return e; } /** @return number of edges */
public boolean existsEdge(int i, int j) { /** @return true iff (i,j) is an edge */
if (i < 1 || j < 1 || i > n || j > n

|| aList[i].indexOf(new EdgeNode(j)) == -1) return false;
else return true;

}

// put theEdge into the digraph & throws IllegalArgumentException when theEdge is invalid
public void putEdge (Object theEdge) {

Edge edge = (Edge) theEdge;
int v1 = edge.vertex1;
int v2 = edge.vertex2;
if (v1 < 1 || v2 < 1 || v1 > n || v2 > n || v1 == v2) throw new

illegalArgumentException ("("+ v1 + "," + v2 + ") is not a permissible edge");
if (aList[v1].indexOf(new EdgeNode(v2)) == -1) { // new edge

aList[v1].add(0, new EdgeNode(v2)); // put v2 at front of chain aList[v1]
e++; }

}

49
SNU

IDB Lab.Data Structures

The class LinkedDigraph (3)

/** remove the edge (i,j) */
public void removeEdge(int i, int j) {

if (i >= 1 && j >= 1 && i <= n && j <= n) {
Object v = aList[i].removeElement(j);
if (v != null) e--; // edge (i,j) did exist

}
}

/** @return in-degree of vertex i
* @throws IllegalArgumentException when i is an invalid vertex */

public int inDegree(int i) {
if (i < 1 || i > n) throw new IllegalArgumentException("no vertex " + i);
// count in edges at vertex i
int sum = 0;
for (int j = 1; j <= n; j++)
if (aList[j].indexOf(new EdgeNode(i)) != -1) sum++;

return sum;
}

} // end of the class LinkedDigraph

50
SNU

IDB Lab.Data Structures

Complexity of LinkedDGraph

� First Constructor: O(n)

� Second Constructor: Θ(1)

� ExistsEdge(i, j): O(di
out)

� Put(): O(dv1
out)

� removeEdge(): O(di
out)

� outDegree(): Θ(1)

� inDegree(): O(n+e)

51
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications

� The ADT Graph

� Representation of Unweighted Graphs

� Representation of Weighted Graphs

� Class Implementations

� Graph Search Methods
� Application Revisited

� Find a path in a Digraph

� Connected Graph in a Graph

� Component Labeling Problem in a Graph

� Spanning Tree in a Graph

52
SNU

IDB Lab.Data Structures

Graph Search Methods
� Two standard ways

� Breadth-first search (BFS)

� Depth-first search (DFS)

� The DFS method is used more frequently to obtain efficient graph
algorithms than the BFS method

� Here BFS & DFS examples are on directed graphs, but graph types do no
matter

� Search a node � Visit a node � Put a label into a node

53
SNU

IDB Lab.Data Structures

Breadth-First Search (1)

� To determine all the vertices reachable from vertex 1
� {1} first determine

� {2,3,4} is set of vertices adjacent from 1

� {5,6,7} is set of vertices adjacent from {2,3,4}

� {8,9} is set of vertices adjacent from {5,6,7}

� {10} is set of vertices adjacent from {8,9}

� {1,2,3,4,5,6,7,8,9} is the set of vertices reachable from vertex 1

� We need QUEUE!

54
SNU

IDB Lab.Data Structures

Breadth-First Search (2)
� For finding reachable vertices from a given vertex V

� BFS can be implemented using a queue
� BFS ≒ Level-order traversal of a binary tree

� The pseudo-code labels all vertices that are reachable from v
breadthFirstSearch(v) {

Label vertex v as reached
Initialize Q to be a queue with only v in it
while (Q is not empty) {

Delete a vertex w from the queue;
Let u be a vertex (if any) adjacent from w;
while (u) {

if (u has not been labeled) {
Add u to the queue;
Label u as reached; }

u = next vertex that is adjacent from w
}

}
}

55
SNU

IDB Lab.Data Structures

Implementations of BFS

� BSF can be performed
� independently of graph types

� undirected graph, digraph, weighted undirected graph, or weighted digraph

� independently of the particular representation

� BFS codes
� Graph.java, AdjacenyDigraph.java, LinkedDigraph.java

� Next program assumes
� reach[i]=0 initially for all vertices i

� label ≠ 0

56
SNU

IDB Lab.Data Structures

BFS code in Graph.java

/* reach[i] is set to label for all vertices reachable from vertex v ;
bfs(1, reach, 1): set “1” to all nodes in reach[] reachable from vertex 1 */

public void bfs(int v, int [] reach, int label) {
ArrayQueue q = new ArrayQueue(10);
reach[v] = label;
q.put(new Integer(v));
while (!q.isEmpty()) { // remove a labeled vertex from the queue

int w = ((Integer) q.remove()).intValue();
// mark all unreached vertices adjacent from w
Iterator iw = iterator(w);
while (iw.hasNext()) { // visit an adjacent vertex of w

int u = ((EdgeNode) iw.next()).vertex;
if (reach[u] == 0) { // u is an unreached vertex
q.put(new Integer(u));
reach[u] = label; // mark reached }

}
}

} // end of bfs

57
SNU

IDB Lab.Data Structures

BFS code in AdjacencyDigraph.java

public void bfs (int v, int [] reach, int label) {
ArrayQueue q = new ArrayQueue(10);
reach[v] = label;
q.put(new Integer(v));
while (!q.isEmpty()) {
int w = ((Integer) q.remove()).intValue();
for (int u = 1; u <= n; u++) {
if (a[w][u] && reach[u] == 0){ // u is an unreached vertex

q.put(new Integer(u));
reach[u] = label; }

}
}

} // end of bfs

* Array-based implementation

58
SNU

IDB Lab.Data Structures

BFS code in LinkedDigraph.java

public void bfs (int v, int [] reach, int label) {
ArrayQueue q = new ArrayQueue(10);
reach[v] = label;
q.put(new Integer(v));
while (!q.isEmpty()) {
int w = ((Integer) q.remove()).intValue();
for (ChainNode p = aList[w].firstNode; p != null; p = p.next) {

int u = ((EdgeNode) p.element).vertex;
if (reach[u] == 0) { // u is an unreached vertex
q.put(new Integer(u));
reach[u] = label; }

}
} // end of while

} // end of bfs

* Link-based implementation

59
SNU

IDB Lab.Data Structures

Complexity Analysis of BFS

� BFS steps
� Add the adjacent vertices to the queue exactly once

� Delete the vertices from queue exactly once

� Traverse the adjacent vertices exactly once

� Time for these operations
� If s vertices are labeled and there are n vertices in a graph

� O(s*n) : if array-based adjacency matrix is used

� O(∑idi
out) : if linked adjacency list is used

60
SNU

IDB Lab.Data Structures

Depth-First Search (1)

� To determine all the vertices reachable from vertex 1
� v=1, candidate of u : 2, 3, 4 // 2 is selected

� v=2, candidate of u : 5 // 5 is selected

� v=5, candidate of u : 8 // 8 is selected

� v=8, no unreached adjacent node // back up vertex 5.

� v=5, no unreached adjacent node // back up vertex 2

� v=2, no unreached adjacent noide // back up vertex 1

� v=1, candidate of u : 3, 4 //3 is selected

� Keep going…….

� We need STACK!

61
SNU

IDB Lab.Data Structures

Depth-First Search (2)

depthFirstSearch(v) {

Label vertex v as reached.

for(each unreached vertex u adjacent from v)

depthFirstSearch(u);

}

� DFS can be implemented using a stack

� Theorem 17.2: Let G be an arbitrary graph and let v be any vertex of
G. The pseudo-code depthFirstSearch labels all vertices that are
reachable from v (including vertex v)

62
SNU

IDB Lab.Data Structures

DFS in Graph.java

/* reach[i] is set to label for all vertices reachable from vertex v
dfs(1, reach, 1): set “1” to all nodes in reach[] rechable from vertex 1 */

public void dfs (int v, int [] reach, int label) {
Graph.reach = reach;
Graph.label = label;
rDfs(v);

}
/** recursive dfs method */
private void rDfs(int v) {

reach[v] = label;
Iterator iv = iterator(v);
while (iv.hasNext()) { // visit an adjacent vertex of v
int u = ((EdgeNode) iv.next()).vertex;
if (reach[u] == 0) rDfs(u); // u is an unreached vertex

}
}

63
SNU

IDB Lab.Data Structures

Other DFS codes

� DFS in AdjacencyDigraph.java

� DFS in LinkedDigraph.java

� Yes, it is your job!

64
SNU

IDB Lab.Data Structures

Complexity Comparison of DFS vs BFS

� We can prove DFS & BFS have the same time & space complexities

� DFS � stack space for the recursion

� BFS � queue space

65
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications

� The ADT Graph

� Representation of Unweighted Graphs

� Representation of Weighted Graphs

� Class Implementations

� Graph Search Methods

� Application Revisited
� Find a path in a Digraph (using DFS)

� Connected Graph in a Graph (using DFS)

� Component Labeling Problem in a Graph (using BFS)

� Spanning Tree in a Graph (using DFS & BFS)

66
SNU

IDB Lab.Data Structures

Finding a Path in a Digraph

� To actually construct the path in a directed graph, we need to
remember the edges used to move from one vertex to the next

� findpath()

� Return null if no path

� Return an array p[length] from s to d if find a path where p[0] = s
and p[p.length -1] = d

� findPath() calls rFindPath() which is a modified DFS

67
SNU

IDB Lab.Data Structures

Code for findPath()
/** find a path from s to d

* @return the path in an array using positions 0 on up
* @return null if there is no path */

public int [] findPath(int s, int d) { // initialize for recursive path finder
int n = vertices();
path = new int [n];
path[0] = s; // first vertex is always s
length = 0; // current path length
destination = d;
reach = new int [n + 1]; // by default reach[i] = 0 initially
// search for path
if (s == d || rFindPath(s)) { // a path was found, trim array to path size

int [] newPath = new int [length + 1];
System.arraycopy(path, 0, newPath, 0, length + 1); // copy from old space to new space
return newPath; }

else return null;
} // end of findPath

68
SNU

IDB Lab.Data Structures

Code for rFindPath()
private boolean rFindPath(int s); {

reach[s] = 1;
Iterator is = iterator(s);
while (is.hashNext()) { // visit an adjacent vertex of s
int u = ((EdgeNode) is.next()).vertex;
if (reach[u] == 0) { /* u is an unreached vertex & move to vertex u
length++;
path[length] = u; // add u to path
if (u == destination) return true;
if (rFindPath(u)) return true;
// no path from u to destination
length--; } // remove u from path

}
return false

} // end of rFindPath

69
SNU

IDB Lab.Data Structures

An Example: findPath() (1)

� Source = 1, Destination =7: length=1, path={1,2}

1 3

2

4

5

6

7 1 3

2

4

5

6

7

70
SNU

IDB Lab.Data Structures

An Example: findPath() (2)
� Source = 1, Destination =7: length=3, path={1,2,5,6}

1 3

2

4

5

6

7 1 3

2

4

5

6

7

71
SNU

IDB Lab.Data Structures

An Example: findPath() (3)

� Source = 1, Destination = 7: length = 4, path={1,2,5,6,7}

1 3

2

4

5

6

7

Find!!

72
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications

� The ADT Graph

� Representation of Unweighted Graphs

� Representation of Weighted Graphs

� Class Implementations

� Graph Search Methods

� Application Revisited
� Find a path in a Digraph

� Connected Graph

� Component Labeling Problem in a Graph

� Spanning Tree in a Graph

73
SNU

IDB Lab.Data Structures

Connected Graph

� Determine whether an undirected graph G is connected by performing
DFS or BFS

� Here connected() is based on DFS

� connected() return
� true : if the graph is connected
� false : if the graph is not connected

� Connected component
� Vertices that are reachable from a vertex i, together with the edges that

connect pair of vertices in a graph

74
SNU

IDB Lab.Data Structures

Code for connected()
/** @return true iff graph is connected */
public boolean connected() {
// make sure this is an undirected graph
verifyUndirected("connected");

int n = vertices();
reach = new int [n + 1]; // by default reach[i] = 0

dfs(1, reach, 1); // mark vertices reachable from vertex 1

for (int i = 1; i <= n; i++) // check if all vertices marked
if (reach[i] == 0) return false;

return true;
}

75
SNU

IDB Lab.Data Structures

An Example: connected() (1)
� Mark vertices reachable from vertex 1

� DFS & visit the node with the smallest key first

1 3

2

4

5

6

7
1

0
0

00

0
0

1 3

2

4

5

6

7
1

1
0

00

0
0

1 3

2

4

5

6

7
1

1
1

00

0
0

76
SNU

IDB Lab.Data Structures

An Example: connected() (2)
� From node 5: visit node 6

� From node 6: visit node 3

1 3

2

4

5

6

7
1

1
1

00

0
1

1 3

2

4

5

6

7
1

1
1

1

0
1

0

77
SNU

IDB Lab.Data Structures

An Example: connected() (3)
� From node 3: visit node 7, then finish up the first DFS

� Go back to node 1, and visit the remaining node 4. � Done!

1 3

2

4

5

6

7
1

1
1

11

0
1

1 3

2

4

5

6

7
1

1
1

1

1
1

1

78
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications

� The ADT Graph

� Representation of Unweighted Graphs

� Representation of Weighted Graphs

� Class Implementations

� Graph Search Methods

� Application Revisited
� Find a path in a Digraph

� Connected Graph in a Graph

� Component Labeling Problem in a Graph

� Spanning Tree in a Graph

79
SNU

IDB Lab.Data Structures

� Component-labeling problem
� we are to label the vertices of an undirected graph so that two vertices are

assigned the same label iff they belong to the same component
� verifyUndirected() is needed

� Label components
� making repeated invocations of either a DFS or BFS

� Graph.labelComponent()
� Different components have different labels
� Here, solve the component-labeling problem using BFS
� O(n2) : if adjacency matrix is used for n nodes
� O(n + e) : if linked-adjacency-list representation is used for n nodes & e edges

Component Labeling Problem in a Graph

80
SNU

IDB Lab.Data Structures

Code for verifyUndirected()

/** verify that the graph is an undirected graph
* @exception UndefinedMethodException if graph is directed */

public void verifyUndirected(String theMethodName) {
Class c = getClass(); // class of this
if (c == AdjacencyGraph.class ||

c == AdjacencyWGraph.class ||
c == LinkedGraph.class ||
c == LinkedWGraph.class)
return;

// if not an undirected graph
throw new UndefinedMethodException

("Graph." + theMethodName + " is for undirected graphs only");
}

81
SNU

IDB Lab.Data Structures

Code for labelComponents()
/** label the components of an undirected graph
* @return the number of components
* set c[i] to be the component number of vertex i */
public int labelComponents(int [] c) { // make sure this is an undirected graph
verifyUndirected("labelComponents");
int n = vertices();
// assign all vertices to no component
for (int i = 1; i <= n; i++) c[i] = 0;
label = 0; // ID of last component
// identify components
for (int i = 1; i <= n; i++)
if (c[i] == 0) { // vertex i is unreached // vertex i is in a new component
label++; // new label for new component
bfs(i, c, label); // mark new component

}
return label;

}

82
SNU

IDB Lab.Data Structures

Example: labelComponents() (1)

1 3

2

4

5

6

7
1

0

00

0
0

0

1 3

2

4

5

6

7
1

0

00

0

0

1

1 3

2

4

5

6

7
1

0

0
0

1

0

1

* label = 1, execute bfs(1, c, label) from node 1

83
SNU

IDB Lab.Data Structures

Example: labelComponents() (2)

1 3

2

4

5

6

7
1

0

02

1

0

1

1 3

2

4

5

6

7
1

0
2

1

2

1

0

* Now label = 2, execute bfs(3, c, label) from node 3

84
SNU

IDB Lab.Data Structures

Example: labelComponents() (3)

1 3

2

4

5

6

7
1

0

22

1

2

1

1 3

2

4

5

6

7
1

2
2

1

2

1

2

•label = 2, bfs(3, c, label)
•From node 3, visit node 6 & 7
•From node 6, visit node 5

85
SNU

IDB Lab.Data Structures

Table of Contents
� Definition and Applications

� The ADT Graph

� Representation of Unweighted Graphs

� Representation of Weighted Graphs

� Class Implementations

� Graph Search Methods

� Application Revisited
� Find a path in a Digraph

� Connected Graph in a Graph

� Component Labeling Problem in a Graph

� Spanning Tree in a Graph

86
SNU

IDB Lab.Data Structures

Spanning Trees

� Spanning Tree
� A set of edges contains a path from v to every other vertex in the graph

� It defines a connected subgraph

� Normally applied to connected undirected graphs

� Bread-first spanning tree (BF spanning tree)
� Spanning tree obtained in the manner from BFS

� Depth-first spanning tree (DF Spanning tree)
� Spanning tree obtained in the manner from DFS

87
SNU

IDB Lab.Data Structures

Code for BF Spanning Tree
/** SpanningTree with BFS
* reach[i] is set to label for all vertices reachable from vertex v
* sTreebfs(v, reach, 1): set “1” to the nodes in reach[] from the node v */

public void sTreebfs(int v, int [] reach, int label) {
ArrayQueue q = new ArrayQueue(10);
reach[v] = label;
q.put(new Integer(v));
while (!q.isEmpty()) {
int w = ((Integer) q.remove()).intValue(); // remove a labeled vertex from the queue
iterator iw = iterator(w); // mark all unreached vertices adjacent from w
while (iw.hasNext()) { // visit an adjacent vertex of w

int u = ((EdgeNode) iw.next()).vertex;
if (reach[u] == 0) { // u is an unreached vertex
q.put(new Integer(u));
reach[u] = label; // mark reached
for (i=1; i <=q.length(); i++) { // remove edge!!

int t = ((Integer) q.remove()).intValue();
if (existsEdge(u,t)) { removeEdge(u, t) }
q.put(new Integer(t)); }

} // end of if
} // end fo while

}
} // end of sTreeBfs

88
SNU

IDB Lab.Data Structures

Example of BF Spanning Trees

Starting
Vertex

Starting
Vertex

Starting
Vertex

89
SNU

IDB Lab.Data Structures

Code for DF SpanningTree
/* SpanningTree with DFS

reach[i] is set to label for all vertices reachable from vertex v*/
public void sTreedfs(int v, int [] reach, int label) {

reach[v] = label;
Iterator iv = iterator(v);
// visit an adjacent vertex of v
int u1 = ((EdgeNode) iv.next()).vertex;
if (reach[u] == 0) // u is an unreached vertex
while (iv.hasNext()) {

// remove edge
int u2 = ((EdgeNode) iv.next()).vertex;
if (existsEdge(v,u2)) { removeEdge(v,u2) }

}
sTreedfs(u1);

}

90
SNU

IDB Lab.Data Structures

Example of DF Spanning Trees

Starting
Vertex

Starting
Vertex

Starting
Vertex

Starting
Vertex

91
SNU

IDB Lab.Data Structures

Summary
� Graphs

� Used to model many real-world problems

� In this chapter
� Graph terminology

� Different types of graphs

� Common graph representations

� Standard graph search methods

� Algorithms to find a path in a graph

� Specifying an abstract data type as an abstract class

92
SNU

IDB Lab.Data Structures

Sahni class:
dataStructures.LinkedDigraph (p.672)

public class LinkedDigraph extends Graph{

constructors

LinkedDigraph(): Constructs an empty directed graph

methods

int inDegree(int i): Returns the in-degree of vertex i

int outDegree(int i): Returns the out-degree of vertex i
int putEdge(theEdge): Puts theEdge into the digraph

int removeEdge(int i, int j): Removes the edge (i, j) from the digraph

int existsEdge(int i, int j): Returns true iff the graph contains (i, j)
}

93
SNU

IDB Lab.Data Structures

Sahni class:
dataStructures.LinkedGraph (p.672)

public class LinkedGraph extends LinkedDigraph{

constructors
LinkedGraph(): Constructs an empty undirected graph

methods
int degree(int i): Returns the degree of vertex i

int putEdge(Object theEdge): Puts theEdge into the graph

int removeEdge(int i, int j): Removes the edge (i, j) from the graph
int existsEdge(int i, int j): Returns true iff the graph contains (i, j)

}

94
SNU

IDB Lab.Data Structures

Data Structures
� Chapter 2-4: Complexity of algorithms

� Chapter 5-8: Linear List

� Chapter 9-11: Stack & Queue

� Chapter 12-16: Tree

� Chapter 17: Graph

