N Ch 17/. Graphs

© copyright 2006 SNU IDB Lab.

i Bird’s-Eye View (0)

hapter 5-8: Linear List
= Chapter 9-11: Stack & Queue
= Chapter 12-16: Tree

s Chapter 17: Graph

Data Structures 2

SNU
IDB Lab.

i Bird’s eye review (1)

= Graphs

= Used to model and solve many real-world problems

= In this chapter
= Graph terminology
= Different types of graphs
= Common graph representations
« Standard graph search methods
= Algorithms to find a path in a graph
= Specifying an abstract data type as an abstract class

SNU
Data Structures 3 IDB Lab.

i Table of Contents

Definition and Application

The ADT Graph

Representation of Unweighted Graphs
Representation of Weighted Graphs
Class Implementations

Graph Search Methods

Application Revisited
« Find a path in a Digraph
= Connected Graph in a Graph
=« Component Labeling Problem in a Graph
= Spanning Tree in a Graph

SNU
Data Structures 4 IDB Lab.

i Graph Definition (1)

Graph G = (V, E)
= Finite set V (=vertices, nodes, points)
= Finite set E (=edges, arcs, lines)

= Directed edge: orientation
= Undirected edge: no orientation

= Vertices i and j are adjacent vertices iff (i,j) is an edge in the graph
= Edge(i,j) is incident on the vertices i and j

SNU
Data Structures 5 IDB Lab.

i Graph Definition (2)

= Vertex 2 is adjacent from vertex 1, while vertex 1 is
adjacent to vertex 2

= Edge(1,2) is incident from vertex 1 and incident to
vertex 2

= Vertex 4 is both adjacent to and from vertex 3

= Edge(3,4) is incident from vertex 3 and incident to
vertex 4

{ C } 6 Is:BuLab.

‘L Graph Definition (3)

(b)

i

- Gl = (Vll El) V - {1 2 3 4}1 E - {(1 2)/ (1 3)/ (2 3)/ (1 4)/ (3 4)}
= G, =(V, E):

V;={1,23,456,7} E ={(1,2), (1,3), (4,5), (506), (5,7),(6,7)}
= G5 = (V3, E.):

={1,2,3,4,5, E={1.2),(23), (34), 423), (3:%,3{,%4)}
7

Data Structures IDB Lab.

i Graph Definition (4)

= Directed Graph
= All the edge are directed (=digraph)
= Self-edges (loop) are not allowed: (i, i), (j, j)
= Directed Acyclic Graph (DAG): No cycle in digraph

= Weights can be assigned to edges
= Weighted undirected graph
= Weighted directed graph (digraph)

= Graph == Network (synonym)

SNU
Data Structures 8 IDB Lab.

Graph Definition (5)

= Definition: Degree d. of vertex i of an undirected graph is
the number of edges incident on vertex i

= Example:

Il
N W N W

O O O O
AW N -

SNU
Data Structures 9 IDB Lab.

Edges in Undirected Graph

0 et G=(V,E) be an undirected graph and
Letnn=|V| and e=|E|
A, Zld' = 2e

. 0=<e=<n(n-1)/2
= A complete undirected graph has n*(n-1) / 2 edges

. L2

=

@ (2

(ar K (b & cl A5 rdy Ay

Edges in Directed Graph

= Let G=(V,E) be a directed graph

a4 K

A.

Let n = |V| and e = |E]|

0 <e=<n(nl)
anim — aniout =e

=1

A co_mplete directed graph has n* (n-1) edges

i Graph Terms

G=(V,E)

= A graph G is a connected graph IFF there is a path between every pair
of vertices

= A graph H is a subgraph of another graph G IFF vertex and edge sets of
H are subsets of those of graph G respectively

= Simple path is a path in which all vertices, except possibly the first and
last, are different

= A cycle is a simple path with same start and end vertex in a graph

= A spanni I_g tree is a tree and a subgraph of G that contains all the
vertices o

SNU
Data Structures 12 IDB Lab.

Graph Application:
Path Problems

one
Il Ave. I 2 3 S
way
_ one
2Ave, 4 5 6 — =
13""“"‘}:. I m -'?I
one way one way
(a) Street map (b) Digraph

Figure 17.2 Street map and corresponding digraph

= Simple path: Path in which all vertices, except possibly the first and last,
are different =» 5,2,1 (yes) 2,5,2,1 (no)

= Length: Each edge in a graph may have an associated length

SNU
Data Structures 13 IDB Lab.

Graph Application:
‘L Spanning Trees

= A spanning tree ia treeanda subgraplof G that contains all the
vertices of G

YN /g
e‘ o @‘»‘o L eeo
) e'
@ / - \ @)
ee'o eeo y

Data Structures - 14 - IDB Lab.

Graph Application:
Weighted Graph and its Spanning Trees

cost 1 1¢) cost |29

{a) Giraph (h) Spanning tree (c) Spanning tree

SNU
Data Structures 15 IDB Lab.

Graph Application:
Bipartite Graphs

Interpreters Languages

Bipartite graphs
= Partition the vertex set into two

Q subsets, A (the interpreter vertices)
and B (the language vertices), so

that every edge has one endpoint in
. ‘ () A and the other in B.

.'

Figure 17.5 Interpreters and languages SNU
16 IDB Lab.

i Table of Contents

Definition and Applications

The ADT Graph

Representation of Unweighted Graphs
Representation of Weighted Graphs
Class Implementations

Graph Search Methods

Application Revisited

« Find a path in a Digraph

= Connected Graph in a Graph

=« Component Labeling Problem in a Graph
= Spanning Tree in a Graph

Data Structures 17 IDB Lab.

i The ADT Graph

AbstractDataType Graph {

instances

a set V of vertices and a set E of edges
operations

vertices(), edges(), existskdge(i, j),

putEdge(i, j), removeEdge(i, j), degree(i),
inDegree(i), outDegree(i)

}

= ADT graph refers to all varieties of graphs
whether directed, undirected, weighted, or unweigted

Data Structures 18

SNU
IDB Lab.

The abstract class Graph

public abstract class Graph {

//ADT method

public abstract int vertices();

public abstract int edges();

public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);

public abstract int inDegree(int i);

public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

}

SNU
Data Structures 19

IDB Lab.

lass derivation hierarchy for Graph

* side: array-based vs Right-side: linked-dxhs

(rreph

_— =

__————'___:7_:'!____""-—-________-

AajacencyWhigrapl,

AdjacercyDigraph

|

LinkedDigraph

AdjacencyWGraph

AdjacencyGraph ||| Livked WDigraph Linked Graph

Data Structures

L

Linked Wiraph

20

SNU
IDB Lab.

:h Table of Contents

efinition and Applications
= The ADT Graph
n Representation of Unweighted Graphs
= Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

Application Revisited

« Find a path in a Digraph

= Connected Graph in a Graph

= Component Labeling Problem in a Graph
= Spanning Tree in a Graph

SNU
Data Structures 21 IDB Lab.

Adjacency Matrix for Unweighted Graph (1)

= Theadjacency matriof an n-vertex graph G=(V,E) is arxn matrix A

= Each element of Ais eitherOor 1
o V:{l, 2, ..., n}

= G is an undirected Graph

= Al j) = { 1 If(i,jjEEor(,)=E
O otherwise

= G is adirected graph

. Al j) = LIt@,) = E
0O otherwise

SNU
Data Structures 22 IDB Lab.

Adjacency Matrix for Unweighted Graph (2)

(a) (b

DR
_

1 1 234567

I 1 1000 F
2lioooooon 1 23 4 5
1234 3llooooool 1Mi1o000
m1110 4looooir1oa0l 2loo01 oo
fto1o0|] slooo1o011] 3looo 1
iflt 1 01| sloooo1o01] aloo1l oo
alio1o0l 7looooi110 slooo 1o

SNU
Data) b el IDB Lab.

Adjacency Matrix for Unweighted Graph (3)

= An nXn adjacency matrix can be mapped into array
= (n+1l)x(n+1) array: (n+B=n?+ 2n + 1 bits
= NXn array: A bits
= The diagonal may be eliminated
= (n-1)x nmatrix: (#-n)/2 bits
= But, potential mismatch in coding

= Array-based AM is simple

= But you have to check every item in a row if younver do something with
adjacent nodes

= 0(n) to determine the set of vertices adjacent toomn any given vertex

= Later we use the irregular array instead!

SNU
Data Structures 24 IDB Lab.

Adjacency Matrix for Unweighted Graph (4)

| 2 3 4 5 6 7
L0 1 1 o 0 0 (0]
211 a9 o 0 o0 0 0 | 2 4 5
1 2 3 4 S I N T I T I L [0 1 O o 0]
I I 1 410 0 o 0 1 0 O 210 01 O 0
211 O 1 0 Slo O o 1 o 1 1 Ao 0 a1 1
111 o1 Gl o oo o0 1 a1 41 O 1 0 0
411 O 1 0 TIoag oo 11 o 510 00 1 0
[a) (b)
1 2 = 4 5 & 7
1] 1 1 o o O 0]
21 Ly ey o O £ £3 1 =2 3 4 5
1 =2 = 4 C LN DR LU i Ry B R N R L (] 1 @)
1 11 1 1 Aoy jea]l 1 0 0 Z2ajajl a 0
ZTrJr]1 o =[O r]r 1 Ao r]tr 1
T T1]1 SO oo Trr]L A [T o
e (b L

Figure 17.100 Aadjacency malrices .0 Figure 1 7.
willhy diagonmnals clirminataed

JiINw

Data Structures 25 | IDB Lab.

Linked Adjacency Lists for Unweighted Graph (1)

= An adjacency list for vertex i is a linear list that includes all vertices
adjacent from the vertex i

= alist[i].firstNode pointer is pointing to the first node

« If X points to a node in the chain aList[i], (i, x.element.vertex) is an edge of
the graph

= Space requirement for n vertex graph
4*(n+1) : for the array aList
+ 4*n : for the n firstNode pointers

+ 4*3*m : for m chain nodes (next, element, vertex of element))
= 4(2n+3m+1)

=« Undirected graph : m = 2e & Digraph graph : m = e where e is the
number of edges

SNU

Data Structures 26 IDB Lab.

Linked Adjacency Lists for Unweighted Graph (2)

1 =] (=
=L d =1 e — [e el — - | g Nl ooy
[| —_—— -1 = = —_— L] I [
[Z2] SN E— . =, = — 1 [|
3] =2 E I
(=N | —_— e | == L [|
=S =1 =S =1

1| 4+—=1T 34— =71 —1—t =11

=1 [=gy ——f = 1]

21 [1 o g 2 M= S N EEN

41 | =1 =T1=1 ——F = T =]

=1 [T T 3= T~ T] o e 3 0 W

=1 ——3=] 5 | ——a =] 3 |

171 | [T 3 [+ [+]

s b=

2D Irregular Array

for Adjacency Lists of Unweighted Graph

2D'irregular array-based linear list representation rather than a chain

Space requirement

= 4*m bytes less than that of linked adjacency lists because we do not have m
“next” pointers

11
=1
-
=1
41

P it

] T 1T =717

L1 T1

——a]

=]2 11]

= [el |

iDTabIe of Contents

efinition and Applications
= The ADT Graph
= Representation of Unweighted Graphs
n Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

Application Revisited

« Find a path in a Digraph

= Connected Graph in a Graph

=« Component Labeling Problem in a Graph
= Spanning Tree in a Graph

SNU
Data Structures 29 IDB Lab.

Representation of Weighted Graphs

s Cost-adjacency-matrix
= Use a matrix C
= A(i, j)is 1 =» C(i, j) is cost (weight)
= A(i, j) is 0 = C(i, j) is null

= Linked Adjacency-list representation
= Chain (see the next page)
= Elements have the two fields vertex and weight

= Array Adjacency-list representation
= Easily derived from that of unweighted graph
= But determining the adjacent nodes is 0(n)

SNU
Data Structures 30 IDB Lab.

Cost-adjacency matrices for Weighted Graph

| 2 3 4 5 6 7

1~ 90 5 - _ _ T
219 - - - - - - 1 2 3 4 5
| 2 3 4 Ay - - - - - - I[- 8 - - -7
1 [- 4 7 &] 4(- - - - 3 - - 21- - 3 - -
214 - 2 - 3- - - 3 - 6 4 - - - 27
T 2 -6 Hl- - - - 6 - | 41- - 6 - -
418 - 6 - Tl- - - - 4 1 - 51- - - &5 -

(a) (b} (c) SNU

Data Structures - denotes anull value IDB Lab.

Linked adjacency list for weighted graph

aList
[1] —1 el 4 |B| ———= 2|4 ——:.-?-li'hl
2] ——== 3|1 ——=={ 4| W
[3] af 2|2 ad 4| 2 7| M
[4] — = 3| 6| N
| 2 3 4 :
1 - 4 7 &] M denotes a null link
214 2 -
AT 2 - 6
48 -6 -
(a)

SNU
Data Structures 32 IDB Lab.

Table of Contents

= Definition and Applications

= The ADT Graph

= Representation of Unweighted Graphs
Representation of Weighted Graphs
Class Implementations

Graph Search Methods

Application Revisited

« Find a path in a Digraph

= Connected Graph in a Graph

=« Component Labeling Problem in a Graph
= Spanning Tree in a Graph

Data Structures 33 IDB Lab.

The Different Classes for Graph

= Four graph types
= unweighted undirected graph
= weighted undirected graph
= unweighted directed graph
= weighted directed graph

= Three representations
= Mmatrix
= Array
= linked list

= Several pairs of 4 graph types have “IsA” relationship

SNU
Data Structures 34 IDB Lab.

lass derivation hierarchy for Graph

* side:array-basedvs Right-sidelinked-based

(rraapl

e

—

AijacencyWhigrapl,

AdjacercyDigraph

|

|

LinkedDigraph

AdjaeencyWGraph

AdjacercyGraph

Linked Whigraph

Linked Graph

Data Structures

L

Linked Wiraph

35

SNU
IDB Lab.

Array-based Adjacency-Matrix Classes for Graph

= Weighted-edge classes: 2D array of tyjigect
= The clas®AdjacencyWDigrapl& AdjacencyWGraph

= Unweighted-edge classes: 2D array of tigpelean
= The class\djacencyDigrapl& AdjacencyGraph

= We describe only AdjacencyWDigraph and AdjacencyW@Giagre

SNU
Data Structures 36 IDB Lab.

Remember: The abstract class Graph

pubhc abstract class Graph

{
//ADT method
public abstract int vertices();
public abstract int edges();
public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

SNU

Data Structures 37 IDB Lab.

iThe Class AdjacencyWDigraph (1)

public class AdjacencyWDigraph extends Graph {
// data members
int n; // hnumber of vertices
int e; // number of edges
Object [][] a; // adjacency array

// constructors
public AdjacencyWDigraph(int theVertices) {
// validate theVertices
if (theVertices < 0)
throw new IllegalArgumentException (“no of vertices must be >= 0");
n = theVertices;
a = new Object [n + 1] [n + 1];
// default values are e = 0 and a[i][j] = null

// default is a 0 vertex graph
public AdjacencyWDigraph() { this(0); }

SNU
Data Structures 38 IDB Lab.

The Class AdjacencyWDigraph (2)

[*F dge e into the digraph; if already there, update its weight e.weight

* @throws IllegalArgumentException when theEdge is invalid */
public void putEdge(Object theEdge) {
WeightedEdge edge = (WeightedEdge) theEdge;
int vl = edge.vertexi;
int v2 = edge.vertex2;
if(vi<1l]|lv2<1l]||vl>n]||v2>n]||Vvl==v2) throw new
IllegalArgumentException ("(" + v1 + "," + v2 + ") is not a permissible edge");
if (a[v1l][v2] == null) e++; // new edge
y a[vl][v2] = edge.weight;

/** remove the edge (i,j) */
public void removeEdge (int i, intj) {
if((>=1&& j>=18&Xi<=n&&j<=n&& a[i][j] '= null) {
alil[j] = null;
e--;)

}

SNU

Data Structures 39 IDB Lab.

The Class AdjacencyWDigraph (3)

/** this method is undefined for directed graphs */
public int degree (inti) { throw new NoSuchMethodError();}

/** @return out-degree of vertex i
* @throws IllegalArgumentException when i is not a valid vertex */
public int outDegree(int i) {
if(i<1|]i>n)
throw new IllegalArgumentException("no vertex " + i);
// count out edges from vertex i
int sum = 0;
for (intj=1;j <=n; j++)
if (a[ii[j] l="null) sum++;
return sum;

}

SNU
Data Structures 40 IDB Lab.

The Class AdjacencyWDigraph (4)

[** create and return an iterator for vertex i
* @throws IllegalArgumentException when i is an invalid vertex */
public Iterator iterator(int i) {
if i<1]|i>n) throw new IllegalArgumentException("no vertex " + i);
return new VertexIterator(i);

}

private class VertexIterator implements Iterator {
// data members
private int v; // the vertex being iterated
private int nextVertex;
// constructor
public VertexIterator(int i) {

v=i; // ﬂnd first adjacent vertex
for §|nt 1;j <=n; j++)
(a V][J] 1= null) {

nextVertex = j;
return;
// no edge out of vertex i
nextVertex = n + 1;

; SNU
Data Structures 41 IDB Lab.

The Class AdjacencyWDigraph (5)

// it r methods
public boolean hasNext() { return nextVertex <= n; } //true if there is next vertex
[** @return next adjacent vertex and edge weight */
public Object next() {
if (nextVertex <= n) {
int u = nextVertex; // find next adjacent vertex

for §int] =Uu+ 1;{ <=n; j++)
if (a[v][j] = null) {
nextVertex = j;
return new WeightedEdgeNode(u, a[v][u]); }

// no next adjacent vertex for v
nextVertex = n + 1;
return new WeightedEdgeNode(u, a[v][u]);
} else throw new NoSuchElementException("no next vertex");
} // end of next()

public void remove() { throw new UnsupportedOperationException(); } //unsupported
} // end of the class VertexIterator

} // end of the class AdjacencyWDigraph SNU
Data Structures 42 IDB Lab.

The Class AdjacencyWGraph
(for undirected graph)

public class AdjacencyWGraph extends AdjacencyWDigraph {
public void removeEdge(int i, int j) { /** remove the edge (i,j) */

if (i >= 1 && | >=188&i<=n&&j<=n&&a[i[j] '= null) {

e--; }

}
/** put edge e into the graph; if already there, update its weight to e.weight

* @throws IllegalArgumentException when theEdge cannot be an edge*/
public void putEdge(Object theEdge) {

WeightedEdge edge = (WeightedEdge) theEdge;

int vl = edge.vertex1;

int v2 = edge.vertex2;

if(vi<1 |||v2 <1 |{v1 >n || v2>n||vl==v2)throw new o
IllegalArgumentException ("(" + vl +"," + vZ + ") is not a permissible edge");
if (a[vl][v2] == null) e++; // new edge

vZ2] = edge.weight;
}
}

Data Structures 43

SNU
IDB Lab.

Linked-list classes for Graph

= Linked-list representation of a graph

= each object is represented as an array elemehtoi
= |n array-based grap® removeEdge()
= Here, removeElement(vertex)

= first search the chain

= If matching element is foun® delete it from the chain

s Extension to the clagshainthat includes the new methods is called the class
GraphChain

= The clasd.inkedDigraphis a subclass of the claSsaph

SNU
Data Structures 44 IDB Lab.

lass derivation hierarchy for Graph

* side:array-basedvs Right-sidelinked-based

(rrapl

dedjacency Whigraphl | AdjacercyDigraph LinkedDigraph

| |

AdjaeeneyWGraph | | AdjigeereyGrapk ||| Livked WDigraph Livked Graph

!

Linked Wraph

SNU
Data Structures 45 IDB Lab.

Remember: The abstract class Graph

public abstract class Graph {
//ADT method
public abstract int vertices();
public abstract int edges();
public abstract boolean existEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);

//create an iterator for vertex i
public abstract iterator iterator(int i);

SNU
Data Structures 46 IDB Lab.

The class LinkedDigraph (1)

pu lass LinkedDigraph extends Graph {
// data members
int n; // number of vertices
int e; // number of edges
GraphChain [] aList; // adjacency lists

/[constructors
public LinkedDigraph(int theVertices) {
// validate theVertices
if (theVertices < 0)
throw new IllegalArgumentException ("number of vertices must be >= 0");
n = theVertices;
aList = new GraphChain [n + 1];
for (inti =1;i<=n;i++) aList[i] = new GraphChain();
// default value of e is O

// default is a 0-vertex graph
public LinkedDigraph() { this(0); }
SNU

Data Structures 47 IDB Lab.

The class LinkedDigraph (2)

// methods
public int vertices() { returnn; } /** @return number of vertices */
publicint edges() { returne; } [** @return number of edges */
public boolean existsEdge(int i, int j) { /** @return true iff (i,j) is an edge */
ifi<1|]j<1]|]li>n]||j>n
|| aList[i].indexOf(new EdgeNode(j)) == -1) return false;
else return true;

}

// put theEdge into the digraph & throws IllegalArgumentException when theEdge is invalid
public void putEdge (Object theEdge) {

Edge edge = (Edge) theEdge;

int vl = edge.vertex1i;

int v2 = edge.vertex2;

if(vi<1l]||v2<1||vl>n]||Vv2>n]||vl==vV2)throw new
illegalArgumentException ("("+ vl + "," + v2 + ") is not a permissible edge");

if (aList[v1].indexOf(new EdgeNode(v2)) == -1) { // new edge
aList[v1l].add(0, new EdgeNode(v2)); // put v2 at front of chain aList[v1]
e++; }

b
SNU
Data Structures 48 IDB Lab.

i The class LinkedDigraph (3)

/** remove the edge (|,8
public void removeEdge(int i, int j) {
if(i>=1&&j>= 1 && i <= n&&j<=n){
Object v = aLlst[l] removeElement(j);
if (v!=null) e--; //edge (i,j) did exist

}

/** @return in-degree of vertex i
* @throws IllegalArgumentException when i is an invalid vertex */

public int inDegree(int i) {
if i< 1][]i>n) throw new IllegalArgumentException("no vertex " + i);
// count in edges at vertex i
int sum = 0;
for (intj=1;j<=n;j++)
if (aList[j].indexOf(new EdgeNode(i)) '=-1) sum++;
return sum;

}

} // end of the class LinkedDigraph SNU
Data Structures 49 IDB Lab.

i Complexity of LinkedDGraph

= First Constructor:

= Second Constructor:
= ExistsEdge(i, j):

= Put():

= removeEdge():

= outDegree():

= inDegree():

Data Structures

O(n)
o(1)
0(de*)
0(d,;**)
O(d™)
o(1)
O(n+e)

50

SNU
IDB Lab.

i Table of Contents

= Definition and Applications

= The ADT Graph

= Representation of Unweighted Graphs
= Representation of Weighted Graphs

= Class Implementations

s Graph Search Methods

= Application Revisited

Find a path in a Digraph

Connected Graph in a Graph
Component Labeling Problem in a Graph
Spanning Tree in a Graph

SNU
Data Structures 51 IDB Lab.

i Graph Search Methods

= Two standard ways
= Breadth-first search (BFS)
= Depth-first search (DFS)

= The DFS method is used more frequently to obtain efficient graph
algorithms than the BFS method

= Here BFS & DFS examples are on directed graphs, but graph types do no
matter

s Search a node = Visit a node = Put a label into a node

SNU
Data Structures 52 IDB Lab.

Breadth-First Search (1)

= To determine all the vertices reachable from vertex 1
= {1} first determine
= {2,3,4} is set of vertices adjacent from 1
= {5,6,7} is set of vertices adjacent from {2,3,4}
= {8,9} is set of vertices adjacent from {5,6,7}
= {10} is set of vertices adjacent from {8,9}
« {1,2,3,4,5,6,7,8,9} is the set of vertices reachable from vertex 1

m We need QUEUE! SNU

Data Structures 53 IDB Lab.

Breadth-First Search (2)

0 ding reachable vertices from a given vertex V
= BFS can be implemented using a queue
= BFS = Level-order traversal of a binary tree

= The pseudo-code labels all vertices that are reachable from v
breadthFirstSearch(v) {
Label vertex v as reached
Initialize Q to be a queue with only v in it
while (Q is not empty) {
Delete a vertex w from the queue;
Let u be a vertex (if any) adjacent from w;
while (u) {
if (u has not been labeled) {
Add u to the queue;
Label u as reached; }
= next vertex that is adjacent from w

u
b
¥
SNU
Data %tructures 54 IDB Lab.

i Implementations of BFS

= BSF can be performed

=« independently of graph types
= undirected graph, digraph, weighted undirected graph, or weighted digraph
= independently of the particular representation

= BFS codes
« Graph.java, AdjacenyDigraph.java, LinkedDigraph.java

= Next program assumes
= reach[i]=0 initially for all vertices i
= label 0

SNU
Data Structures 55 IDB Lab.

BFS code in Graph.java

/* reach[i] is set to label for all vertices reachable from vertex v ;
bfs(1, reach, 1): set “1” to all nodes in reach[] reachable from vertex 1 */
public void bfs(int v, int [] reach, int label) <
ArrayQueue g = new ArrayQueue(10);
reach[v] = label;
g.put(new Integer(v));
while (!q.isEmpty()) { // remove a labeled vertex from the queue
int w = ((Integer) g.remove()).intValue();
// mark all unreached vertices adjacent from w
Iterator iw = iterator(w);
while (iw.hasNext()) { // visit an adjacent vertex of w
int u = ((EdgeNode) iw.next()).vertex;
if (reach[u] == 0) { // uis an unreached vertex
g.put(new Integer(u));
reach[u] = label; // mark reached }

b
Data Struct i
atg prlctures, e 56 IDB Lab.

BFS code in AdjacencyDigraph.java

* Array-based implementation

public void bfs (int v, int [] reach, int label) {
Arra Queue % new ArrayQueue(lO),
reac {v = label;
g.put(new Integer(v))
while (!q.isEmpty()) ' {
int w = ((Integer) g.remove()).intValue();
for (intu=1;, u<=n; u++){
if (a[w][u] && reach[u] = 0){ // uis an unreached vertex
g.put(new Integer(u))
reach|u] = label; }

} //} end of bfs

SNU
Data Structures 57 IDB Lab.

BFS code in LinkedDigraph.java

* Link-based implementation

public void bfs (int v, int [] reach, int label) {
ArrayQueue g = new ArrayQueue(10);
reach[v] = label;
g.put(new Integer(v));
while (!g.isEmpty()) {
int w = ((Integer) g.remove()).intValue();
for (ChainNode p = aList[w].firstNode; p !'= null; p = p.next) {
int u = ((EdgeNode) p.element).vertex;
if (reach[u] == 0){ // uis an unreached vertex
g.put(new Integer(u));
reach[u] = label; }

¥
} // end of while
} // end of bfs

Data Structures 58 IDB Lab.

i Complexity Analysis of BFS

= BFS steps
= Add the adjacent vertices to the queue exactly once
= Delete the vertices from queue exactly once
= Traverse the adjacent vertices exactly once

= Time for these operations

= If s vertices are labeled and there are n vertices in a graph
= O(s*n) : if array-based adjacency matrix is used
= O(2deut) :if linked adjacency list is used

SNU
Data Structures 59 IDB Lab.

* Depth-First Search (1)

D) 4Ly e 6

(a) ()
= 10 determine all the vertices reachable from vertex 1

= v=1, candidate of u: 2, 3, 4 /] 2 is selected
= v=2, candidate of u : 5 // 5 is selected
« v=5, candidate of u : 8 /] 8 is selected

= V=8, no unreached adjacent node // back up vertex 5.
= V=5, no unreached adjacent node // back up vertex 2
= V=2, no unreached adjacent noide // back up vertex 1
= v=1, candidate of u: 3, 4 //3 is selected

Keep going.......

Data é#ﬁcﬂﬁ%g STACK! 60 IsI;lBULab.

i Depth-First Search (2)

depthFirstSearch(v) {
Label vertex v as reached.

for(each unreached vertex u adjacent from v)
depthFirstSearch(u);

= DFS can be implemented using a stack

= Theorem 17.2: Let G be an arbitrary graph and let v be any vertex of
G. The pseudo-code depthFirstSearch labels all vertices that are
reachable from v (including vertex v)

SNU
Data Structures 61 IDB Lab.

i DFS in Graph.java

/* reach[i] is set to label for all vertices reachable from vertex v
dfs(1, reach, 1): set “1” to all nodes in reach[] rechable from vertex 1 */
public void dfs (int v, int [] reach, int label) {
Graph.reach = reach;
Graph.label = label;
rDfs(v);
by
[** recursive dfs method */
private void rDfs(int v) {
reach[v] = label;
Iterator iv = iterator(v);
while (iv.hasNext()) { // visit an adjacent vertex of v
int u = ((EdgeNode) iv.next()).vertex;
if (reach[u] == 0) rDfs(u); // uis an unreached vertex
by
by

Data Structures 62

SNU
IDB Lab.

Other DFS codes

= DFS in AdjacencyDigraph.java
= DFS in LinkedDigraph.java

= Yes, it is your job!

SNU
Data Structures 63 IDB Lab.

Complexity Comparison of DFS vs BFS

= We can prove DFS & BFS have the same time & space complexities
= DFS =» stack space for the recursion
= BFS =» queue space

OO O—=®

(a) Worst case for dfs {1} bestcase forbf=s (1)

(b} Best case for Afs (1) ; worst case forbfe (1)

Figure 17.19 Worst-case and best-case space- -.:-:-n'ul"-l-:};i by graphs
Data Structures 64 Al 1DB Lab.

i Table of Contents

Definition and Applications
= The ADT Graph
= Representation of Unweighted Graphs
= Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

s Application Revisited
« Find a path in a Digraph (using DFS)
= Connected Graph in a Graph (using DFS)
= Component Labeling Problem in a Graph (using BFS)
= Spanning Tree in a Graph (using DFS & BFS)

SNU
Data Structures 65 IDB Lab.

i Finding a Path in a Digraph

To actually construct the path in a directed graph, we need to
remember the edges used to move from one vertex to the next

= findpath()
= Return null if no path

= Return an array p[length] from s to d if find a path where p[0] = s
and p[p.length -1] =

= findPath() calls rFindPath() which is a modified DFS

SNU
Data Structures 66 IDB Lab.

Code for findPath()

[* a path fromstod
* @return the path in an array using positions Qpn
* @return null if there is no path */
public int [] findPath(int s, int d) {// initialize for recursive path finder
int n = vertices();
path = new int [n];
path[0] = s; /] first vertex is always s
length = 0; /l current path length
destination = d;
reach = new int [n + 1]// by default reach]i] = O initially
// search for path
if (s ==d || rFindPath(s)) 4 a path was found, trim array to path size
int [] newPath = new int [length + 1];
System.arraycopy(path, 0, newPath, 0O, length # tjpy from old space to new space
return newPath; }
else return null;
} Il end of findPath

SNU
Data Structures 67 IDB Lab.

Code for rFindPath()

private boolean rFindPath(int s); {
reach[s] = 1,
Iterator is = iterator(s);
while (is.hashNext()) {/ visit an adjacent vertex of s
int u = ((EdgeNode) is.next()).vertex;
if (reach[u] == 0) {/* u is an unreached vertex & move to vertex u
length++;
path[length] = uj/ add u to path
If (u == destination) return true;
if (rFindPath(u)) return true;
// no path from u to destination
length--; }// remove u from path
}
return false
} /I end of rFindPath

SNU
Data Structures 68 IDB Lab.

i An Example: findPath() (1)

= Source = 1, Destination =7: length=1, path={1,2}
. .
Ot
N E ANAO
(@) (@)

SNU
Data Structures 69 J |||||||

i An Example: findPath() (2)

ource = 1, Destination =7: length=3, path={1,2,5,6}

@ @

SNU
Data Structures 70 J |||||||

i An Example: findPath() (3)

= Source = 1, Destination = 7: length = 4, path={1,2,5,6,7}

@...

o 3/@=7

@ Find!!
\@

SNU
Data Structures 71 IDB Lab.

i Table of Contents

Definition and Applications
= The ADT Graph
= Representation of Unweighted Graphs
= Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

s Application Revisited

Find a path in a Digraph

Connected Graph

Component Labeling Problem in a Graph
Spanning Tree in a Graph

SNU
Data Structures 72 IDB Lab.

i Connected Graph

= Determine whether an undirected graph G is connected by performing
DFS or BFS

= Here connected() is based on DFS

= connected() return
= true :if the graph is connected
« false : if the graph is not connected

= Connected component

= Vertices that are reachable from a vertex i, together with the edges that
connect pair of vertices in a graph

SNU
Data Structures 73 IDB Lab.

Code for connected()

[** @return true iff graph is connected */
public boolean connected() {
// make sure this is an undirected graph
verifyUndirected("connected");

int n = vertices();
reach = new int [n + 1]; // by default reach[i] = 0

dfs(1, reach, 1); // mark vertices reachable from vertex 1

for (inti =1; i <=n; i++) // check if all vertices marked
if (reach[i] == 0) return false;
return true;

}

Data Structures 74

SNU
IDB Lab.

An Example: connected() (1)

= Mark vertices reachable from vertex 1
= DFS & visit the node with the smallest key first

Data Structures 75 IDB Lab.

i An Example

s From node 5: visit node 6
s From node 6: visit node 3

Data Structures

. connected() (2)

76 IDB Lab.

i An Example: connected() (3)

rom node 3: visit node 7, then finish up the first DFS
= Go back to node 1, and visit the remaining node 4. = Done!

Data Structures 77 IDB Lab.

i Table of Contents

Definition and Applications
= The ADT Graph
= Representation of Unweighted Graphs
= Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

s Application Revisited
« Find a path in a Digraph
= Connected Graph in a Graph
= Component Labeling Problem in a Graph
= Spanning Tree in a Graph

SNU
Data Structures 78 IDB Lab.

Component Labeling Problem in a Graph

= Component-labeling problem

= Wwe are to label the vertices of an undirected graph so that two vertices are
assigned the same label iff they belong to the same component

« VverifyUndirected() is needed

= Label components
= making repeated invocations of either a DFS or BFS

= Graph.labelComponent()

Different components have different labels

Here, solve the component-labeling problem using BFS

O(n?) : if adjacency matrix is used for n nodes

O(n + e) : if linked-adjacency-list representation is used for n nodes & e edges

SNU
Data Structures 79 IDB Lab.

Code for verifyUndirected()

/** verify that the graph is an undirected graph
* @exception UndefinedMethodException if graph is directed */
public void verifyUndirected(String theMethodName) {
Class ¢ = getClass(); // class of this
if (c == AdjacencyGraph.class ||
¢ == AdjacencyWGraph.class ||
c == LinkedGraph.class ||
¢ == LinkedWGraph.class)
return;

// if not an undirected graph
throw new UndefinedMethodException
("Graph." + theMethodName + " is for undirected graphs only");

SNU
Data Structures 80 IDB Lab.

Code for labelComponents()

/ el the components of an undirected graph

* @return the number of components

* set c[i] to be the component number of vertex i */

public int labelComponents(int [] ¢) { // make sure this is an undirected graph
verifyUndirected("labelComponents");
int n = vertices();
// assign all vertices to no component
for(inti=1;i<=n;i++) [i]=0;
label = 0; // ID of last component
// identify components
for (inti=1;i<=n;i++)

if (c[i]==0){ // vertex i is unreached // vertex i is in a new component

label++; // new label for new component
bfs(i, c, label); // mark new component
}
return label;
} SNU

Data Structures 81 IDB Lab.

iExampIe: labelComponents() (1)

* label = 1 execute bfs(1, c, label) from node 1

QO
o
H

Data Structures 82 IDB Lab.

iExample: labelComponents() (2)

* Now label = 2 execute bfs(3, c, label) from node 3

SNU
Data Structures 83 IDB Lab.

*Example: labelComponents() (3)

slabel = 2 bfs(3, c, label)
From node 3, visit node 6 & 7
From node 6, visit node 5

SNU
Data Structures 84 IDB Lab.

i Table of Contents

Definition and Applications
= The ADT Graph
= Representation of Unweighted Graphs
= Representation of Weighted Graphs
= Class Implementations
= Graph Search Methods

s Application Revisited
« Find a path in a Digraph
= Connected Graph in a Graph
= Component Labeling Problem in a Graph
= Spanning Tree in a Graph

SNU
Data Structures 85 IDB Lab.

‘L Spanning Trees

= Spanning Tree
= A set of edges contains a path from v to every other vertex in the graph
= It defines a connected subgraph
= Normally applied to connected undirected graphs

= Bread-first spanning tree (BF spanning tree)
= Spanning tree obtained in the manner from BFS

= Depth-first spanning tree (DF Spanning tree)
= Spanning tree obtained in the manner from DFS

SNU
Data Structures 86 IDB Lab.

Code for BF Spanning Tree

/** SpanningTree with BFS
* reach[i] is set to label for all vertices reachable from vertex v
* sTreebfs(v, reach, 1): set "1” to the nodes in reach[] from the node v */
public void sTreebfs(int v, int [] reach, int label) {
ArrayQueue g = new ArrayQueue(10);
reach[v] = label;
g.put(new Integer(v));
while (1g.isEmpty()) {
int w = ((Integer) g.remove()).intValue(); // remove a labeled vertex from the queue
iterator iw = iterator(w); // mark all unreached vertices adjacent from w
while (iw.hasNext()) { // visit an adjacent vertex of w
int u = ((EdgeNode) iw.next()).vertex;
if (reach[u] == 0) { // uis an unreached vertex
g.put(new Integer(u));
reach[u] = label; // mark reached
for (i=1; i <=q.length(); i++) { // remove edge!!
int t = ((Integer) g.remove()).intValue();
if (existsEdge(u,t)) { removeEdge(u, t) }
g.put(new Integer(t)); }
} // end of if
} // end fo while

Pafa, StryctHres, 87

SNU
IDB Lab.

Example of BF Spanning Trees

Data Structures

SNU

Code for DF SpanningTree

/* ningTree with DFS
reachli] is set to label for all vertices reachable from vertex v*/
public void sTreedfs(int v, int [] reach, int label) {
reach[v] = label;
Iterator iv = iterator(v);
// visit an adjacent vertex of v
int ul = ((EdgeNode) iv.next()).vertex;
if (reach[u] == 0) // uis an unreached vertex
while (iv.hasNext()) {
// remove edge
int u2 = ((EdgeNode) iv.next()).vertex;
if (existsEdge(v,u2)) { removeEdge(v,u2) }

}
sTreedfs(ul);

SNU
Data Structures 89 IDB Lab.

Example of DF Spanning Trees

Data Structures 90 IDB Lab.

Summary

= Graphs
=« Used to model many real-world problems

= In this chapter
= Graph terminology
= Different types of graphs
= Common graph representations
= Standard graph search methods
= Algorithms to find a path in a graph
= Specifying an abstract data type as an abstract class

SNU
Data Structures 91 IDB Lab.

Sahni class:
dataStructures.LinkedDigraph (p.672)

public class LinkedDigraph extends Graph{

constructors
LinkedDigraph(): Constructs an empty directed graph

methods
int inDegree(int i): Returns the in-degree of vertex i
Int outDegree(int i): Returns the out-degree of vertex |
int putEdge(theEdge): Puts theEdge into the digraph
int removeEdge(int i, int j): Removes the edge (i, j) from the digraph
int existsEdge(int i, int j): Returns true iff the graph contains (i, j)

SNU
Data Structures 92 IDB Lab.

Sahni class:
dataStructures.LinkedGraph (p.672)

public class LinkedGraph extends LinkedDigraph{

constructors
LinkedGraph(): Constructs an empty undirected graph

methods
int degree(int i): Returns the degree of vertex |
int putEdge(Object theEdge): Puts theEdge into the graph
int removeEdge(int i, int j): Removes the edge (i, j) from the graph
int existsEdge(int i, int j): Returns true iff the graph contains (i, j)

SNU
Data Structures 93 IDB Lab.

i Data Structures

hapter 2-4: Complexity of algorithms
= Chapter 5-8: Linear List
= Chapter 9-11: Stack & Queue
= Chapter 12-16: Tree

= Chapter 17: Graph

Data Structures 94

SNU
IDB Lab.

