
1

Ch.19 Divide and Conquer

2

BIRD’S-EYE VIEW

� Divide and conquer algorithms
� Decompose a problem instance into several smaller independent instances

� May be effectively run on a parallel computer

� Min-max problem, matrix multiplication and so on

� This chapter
� Develops the mathematicsneeded to analyze the complexity of divide and

conquer algorithms

� Proves that the divide and conquer algorithms for the min-max and sorting
problems are optimal

3

Table of contents

� The Divide and Conquer method
� Solving a small instance
� Solving a large instance

� Applications
� Divide and Conquer Sorting

� Insertion Sort

� Selection Sort

� Bubble Sort

� Merge Sort

� Quick Sort

4

Divide and Conquer (1)

� Distinguish between small and large instances

� Small instances solved differently from large ones

� All instances arenon-overlapping

Large instance
(Problem)

Small instanceSmall instanceSmall instanceSmall instance Small instanceSmall instanceSmall instanceSmall instance

SmallerSmallerSmallerSmaller smallersmallersmallersmaller smallersmallersmallersmaller smallersmallersmallersmaller

DivideDivideDivideDivide

ConquerConquerConquerConquer

5

Divide and Conquer (2)

� A small instance is solved using some direct/simple strategy
� Sort a list that has n (≤ 10) elements

� Use count, insertion, bubble, or selection sort

� Find the minimum of n (≤ 2) elements

� When n = 0, there is no minimum element

� When n = 1, the single element is the minimum

� When n = 2, compare the two elements and determine which is smaller

� A large instance is solved as follows:
� Divide the large instance into k (≥ 2) smaller instances

� Solve the smaller instances somehow

� Combine the results of the smaller instances to obtain the result for the
original large instance

6

Table of contents

� The Method
� Divide and Conquer

� Solving a small instance

� Solving a large instance

� Applications
� Divide and Conquer Sorting

� Insertion Sort
� Selection Sort
� Bubble Sort
� Merge Sort

� Quick Sort

7

Divide and Conquer Sorting (1)

� Sort n elements into nondecreasing order

� Divide-and-conquer sorting algorithm
� If n is 1,

� Terminate

� Otherwise,
� Partition the large instance of n elements into two or more small instances

� Sort each small instances

� Combine the sorted small instances into a single sorted instance

� Divide-and-conquer algorithms have best complexity when a large instance is
divided into small instances of approximately the same size
� When k = 2and n = 24, divide into two small instances of size 12each

� When k = 2and n = 25, divide into two small instances of size 13and12, respectively

8

Divide and Conquer Sorting (2)

� Partitioning Schemes
� Partitioning the n elements into two unbalanced collections

(i.e., n-1elements & 1 element)
� All three sort methods in this manner take O(n2) time

� Insertion sort
� Selection sort
� Bubble sort

� Partitioning the n elements into two balanced collections
(i.e., n/k element & the rest elements into 2 groups)
� The following methods in this manner take O(n log n)time

� Merge sort
� Quick sort

9

Insertion Sort by Divide & Conquer

� k = 2divide-and-conquer sorting method
� Complexity is O(n2)

� Divide Phase
� First n - 1 elements (a[0:n-2]) define the first small instance
� Last element (a[n-1]) defines the second small instance
� a[0: n-2] is sorted recursively

� Conquer Phase
� Combining is done by insertinga[n-1] into the sorted a[0:n-2]

� Here we show the recursive solution, but normally implemented non-
recursively

a[0] ..a[0] .. a[na[n--1]1]a[na[n--2]2]

… …

10

Example for Insertion Sort

4 3 5 1 2

4 3 5 1 2

Original Array �

Divide it into two arrays �

1 3 4 5 2Sort the 1st array recursively �

Conquer the two arrays
: Insert the 2nd array Into the 1st array � 1 3 4 5 2

1 3 4 2 5

1 3 2 4 5

1 2 3 4 5

11

Insertion Sort Example

[4, 3, 5, 1, 2]

[4, 3, 5, 1] [2]

[4, 3, 5]

[4, 3] [3, 4][5]

[1]

[4] [3]

[3, 4, 5]

[1, 3, 4, 5]

[1, 2, 3, 4, 5]

Conquer Phase:

Insert the last item into the array

Divide Phase:

Just split the array

12

Selection Sort by Divide & Conquer

� k = 2divide-and-conquer sorting method
� Complexity is O(n2)

� Divide Phase: To divide a large collection into two smaller instances
� First find the largest element & The largest element defines one small instance
� The remaining n-1 elementsdefine the second small instance
� The second small instance is sorted recursively

� Conquer Phase: Append the first smaller instance (largest element) to the
right end of the sorted second small instance

� Here we show the recursive solution, but normally implemented non-
recursively

a[0]a[0] a[na[n--1]1]a[na[n--2]2]

… …

13

Example for Selection Sort

4 3 5 1 2Original Array �

Find the largest element �

Divide it into two arrays �

Conquer the two arrays
: Just append the 2nd array to the right of
the 1st array �

4 3 5 1 2

54 3 1 2

Sort the 1st array recursively � 51 2 3 4

1 2 3 4 5

14

Selection Sort Example

[4, 3, 5, 1, 2]

[4, 3, 1, 2] [5]

[3, 1, 2]

[1, 2] [1, 2][3]

[4]

[1] [2]

[1, 2, 3]

[1, 2, 3, 4]

[1, 2, 3, 4, 5]
Divide Phase:

Move the largest item
by max process

Conquer Phase:

Merge two arrays

15

Bubble Sort by Divide & Conquer

� k = 2divide-and-conquer sorting method
� Complexity is O(n2)

� Divide Phase: To divide a large collection into two smaller instances
� First find the largest element by bubbling(a series of swapping)
� The largest element defines one small instance
� The remaining n-1 elementsdefine the second small instance

� Conquer Phase: Merge two arrays
� Here we show the recursive solution, but normally implemented non-

recursively

a[0] ..a[0] .. a[na[n--1]1]a[na[n--2]2]

… …

16

Example for Bubble Sort

4 3 5 1 2Original Array �

Move the largest element to the right
end by bubbling process �

Divide it into two arrays �

Sort the 1st array recursively �

3 4 5 1 2

3 4 5 1 2

3 4 1 5 2

3 4 1 2 5

3 4 1 2 5

51 2 3 4

Conquer the two arrays
: Just append the 2nd array to the right of
the 1st array �

1 2 3 4 5

17

Bubble Sort Example

[4, 3, 5, 1, 2]

[3, 4, 1, 2] [5]

[3, 1, 2]

[1, 2] [1, 2][3]

[4]

[1] [2]

[1, 2, 3]

[1, 2, 3, 4]

[1, 2, 3, 4, 5]
Divide phase:

Move the largest item
by Bubbling process

Conquer Phase:

Merge two arrays

18

Table of contents

� The Method
� Divide and Conquer

� Solving a small instance

� Solving a large instance

� Applications
� Divide and Conquer Sorting

� Insertion Sort

� Selection Sort

� Bubble Sort

� Merge Sort
� Quick Sort

19

Merge Sort by Divide and Conquer (1)

� k = 2divide-and-conquer sorting method

� Divide Step
� First ceil(n/2)elements define one of the smaller instances
� Remaining floor(n/2) elements define the second smaller instance

� Conquer Step
� Each of the two smaller instances is sorted recursively
� The sorted smaller instances are combined using a merge process

� The complexity of merge sort is O(n log n)
� Here we show the recursive solution, but normally implemented non-

recursively

20

Merge Sort by Divide and Conquer (2)

� An Example for Merge Process
� A large instance divided into two instances (A and B) and sort them

A = (2, 5, 6) B = (1, 3, 8, 9, 10) C = ()
� Compare smallest elements ofA andB and merge smaller intoC

A = (2, 5, 6) B = (3, 8, 9, 10) C = (1)
A = (5, 6) B = (3, 8, 9, 10) C = (1, 2)
A = (5, 6) B = (8, 9, 10) C = (1, 2, 3)
A = (6) B = (8, 9, 10) C = (1, 2, 3, 5)
A = () B = (8, 9, 10) C = (1, 2, 3, 5, 6)

� When one ofA andB becomes empty, append the other list toC

A = () B = () C = (1, 2, 3, 5, 6, 8, 9, 10)

� O(1) time needed to move an element into C
� Total time is O(n + m), where n and m are the number of elements initially in

A andB

21

Merge Sort: Example (1)

[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4]

[8, 3, 13, 6, 2, 14, 5] [9, 10, 1, 7, 12, 4]

[8, 3, 13, 6] [2, 14, 5]

[8, 3] [13, 6]

[8] [3] [13] [6]

[2, 14] [5]

[2] [14]

[9, 10, 1] [7, 12, 4]

[9, 10] [1]

[9] [10]

[7, 12] [4]

[7] [12]

� Divide Phase

22

Merge Sort: Example (2)

[3, 8] [6, 13]

[3, 6, 8, 13]

[8] [3] [13] [6]

[2, 14]

[2, 5, 14]

[2, 3, 5, 6, 8, 13, 14]

[5]

[2] [14]

[9, 10]

[1, 9, 10]

[1]

[9] [10]

[7, 12]

[4, 7, 12]

[1, 4, 7, 9, 10,12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13,14]

[4]

[7] [12]

� Conquer Phase: all sub components are sorted

23

Merge Sort Analysis

� Number of leaf nodes is n

� Number of nonleaf nodes is n-1

� Downward pass over the recursion tree
� Divide large instances into small ones

� O(1) time at each node

� O(n) total time at all nodes

� Upward pass over the recursion tree
� Merge pairs of sorted lists

� O(n) time merging at each level that has a nonleaf node

� Number of levels is O(log n)

� Total time is O(n log n)

24

Quick Sort by Divide and Conquer

� Small instance has n <= 1.
� So, Every small instance is a sorted instance

� To sort a large instance, select a pivot element from out of the n elements
� Partition the n elements into 3 groups left, middleand right

� The middlegroup contains only the pivot element
� All elements in the left group are <= pivot
� All elements in the right group are >= pivot

� Sortleft and right groups recursively
� combine left group, middlegroup and right group

6 2 8 5 11 10 4 1 9 7 3
Use 6 as the pivot

2 85 11104 1 973 6

Sort left and right groups recursively

25

Quick Sort by Divide and Conquer: Choice of Pivot

� Leftmostelement in list that is to be sorted
� When sorting a[6:20], use a[6] as the pivot
� Text implementation does this

� Randomly select one of the elements to be sorted as the pivot
� When sorting a[6:20], generate a random number r in the range [6, 20].
� Use a[r] as the pivot

� Median-of-Three rule. From the leftmost, middle, and rightmost elements of the
list to be sorted, select the one with median key as the pivot
� When sorting a[6:20], examine a[6], a[13] ((6+20)/2), anda[20].
� Select the element with median (i.e., middle) key

� If a[6].key = 30, a[13].key = 2, anda[20].key = 10, a[20] becomes the pivot
� If a[6].key = 3, a[13].key = 2, anda[20].key = 10, a[6] becomes the pivot
� If a[6].key = 30, a[13].key = 25, anda[20].key = 10, a[13] becomes the pivot

26

Quick Sort by Divide and Conquer: Partitioning

� Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3]

� Suppose the leftmost element “6” is the pivot

� When another array b is available:
� Scan a from left to right (omit the pivot in this scan), placing elements <=

pivot at the left endof b and the remaining elements at the right endof b

� The pivot is placed at the remaining position of the b

Sort left and right groups recursively

6 2 8 5 11 10 4 1 9 7 3a

b 2 85 11104 1 973 6

27

Quick Sort
Example

[6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3]

[2, 5, 4, 1, 3, 6, 7, 9, 10, 11, 8]

[2, 5, 4, 1, 3] [7, 9, 10, 11, 8]

[1, 2, 3, 4, 5] [7, 8, 11, 10, 9]

[1] [3, 4, 5]

[3, 5, 4]

[5, 4]

[4, 5]

[4]

[8, 11, 10, 9]

[8, 9, 10, 11]

[9, 10, 11]

[9, 11, 10]

[11, 10]

1 2 3 4 5 6 7 8 9 10 11

[10, 11]

[10]

28

Quick Sort
Example

[5, 3, 8, 4, 7, 1, 0, 9, 2, 10, 6, 11]

[3, 4, 1, 0, 2, 5, 11, 6, 10, 9, 7, 8]

[3, 4, 1, 0, 2] [11, 6, 10, 9, 7, 8]

[1, 0, 2, 3, 4] [6, 10, 9, 7, 8, 11]

[1, 0, 2] [4]

[0, 1, 2]

[2]

0 1 2 3 4 5 6 7 8 9 10 11

[0]

[6, 10, 9, 7, 8]

[10, 9, 7, 8]

[9, 7, 8,10]

[9, 7, 8]

[7, 8,9]

[7, 8]

[8]

29

Time Complexity of Quick Sort

� O(n) time to partition an array of n elements

� Let t(n) be the time needed to sort n elements
� t(0) = t(1) = c, where c is a constant

� When t > 1,

t(n) = t(|left|) + t(|right|) + dn, where d is a constant
� t(n) is maximum when either |left| = 0 or |right| = 0following each partitioning

� Overall Time Complexity
� The worst-case computing time for quick sort is Θ (n^2)

� When left is always empty

� The best-case computing time for quick sort is Θ (n*logn)

� When left and right are always of about the same size

� The average complexity of quick sort is also Θ (n*logn)

� Theorem 19.2 in your textbook

30

BIRD’S-EYE VIEW

� Divide and conquer algorithms
� Decompose a problem instance into several smaller independent instances

� May be effectively run on a parallel computer

� Min-max problem, matrix multiplication and so on

� This chapter
� Develops the mathematicsneeded to analyze the complexity of divide and

conquer algorithms

� Proves that the divide and conquer algorithms for the min-max and sorting
problems are optimal

31

Table of contents

� The Divide and Conquer method
� Solving a small instance
� Solving a large instance

� Applications
� Divide and Conquer Sorting

� Insertion Sort

� Selection Sort

� Bubble Sort

� Merge Sort

� Quick Sort

