Ch.19 Divide and Conquer

BIRD'S-EYE VIEW

- Divide and conquer algorithms
 - Decompose a problem instance into several smaller independent instances
 - May be effectively run on a parallel computer
 - Min-max problem, matrix multiplication and so on
- This chapter
 - Develops the mathematics needed to analyze the complexity of divide and conquer algorithms
 - Proves that the divide and conquer algorithms for the min-max and sorting problems are optimal

Table of contents

The Divide and Conquer method

- Solving a small instance
- Solving a large instance
- Applications
 - Divide and Conquer Sorting
 - Insertion Sort
 - Selection Sort
 - Bubble Sort
 - Merge Sort
 - Quick Sort

Divide and Conquer (1)

- Distinguish between small and large instances
- Small instances solved differently from large ones
- All instances are non-overlapping

Divide and Conquer (2)

- A small instance is solved using some direct/simple strategy
 - Sort a list that has $n \leq 10$ elements
 - Use count, insertion, bubble, or selection sort
 - Find the minimum of $n \leq 2$ elements
 - When n = 0, there is no minimum element
 - When n = 1, the single element is the minimum
 - When n = 2, compare the two elements and determine which is smaller
- A large instance is solved as follows:
 - Divide the large instance into $k (\geq 2)$ smaller instances
 - Solve the smaller instances somehow
 - Combine the results of the smaller instances to obtain the result for the original large instance

Table of contents

- The Method
 - Divide and Conquer
 - Solving a small instance
 - Solving a large instance
- Applications
 - Divide and Conquer Sorting
 - Insertion Sort
 - Selection Sort
 - Bubble Sort
 - Merge Sort
 - Quick Sort

Divide and Conquer Sorting (1)

- Sort n elements into nondecreasing order
- Divide-and-conquer sorting algorithm
 - If n is 1,
 - Terminate
 - Otherwise,
 - Partition the large instance of n elements into two or more small instances
 - Sort each small instances
 - Combine the sorted small instances into a single sorted instance
- Divide-and-conquer algorithms have best complexity when a large instance is divided into small instances of approximately the same size
 - When k = 2 and n = 24, divide into two small instances of size 12 each
 - When k = 2 and n = 25, divide into two small instances of size 13 and 12, respectively

Divide and Conquer Sorting (2)

- Partitioning Schemes
 - Partitioning the n elements into two unbalanced collections (i.e., n-1elements & 1 element)
 - All three sort methods in this manner take $O(n^2)$ time
 - Insertion sort
 - Selection sort
 - Bubble sort
 - Partitioning the n elements into two balanced collections (i.e., n/k element & the rest elements into 2 groups)
 - The following methods in this manner take O(n log n) time
 - Merge sort
 - Quick sort

Insertion Sort by Divide & Conquer

a[0] .. a[n-2] a[n-1]

- k = 2 divide-and-conquer sorting method
 - Complexity is O(n²)
- Divide Phase
 - First n 1 elements (a[0:n-2]) define the first small instance
 - Last element (a[n-1]) defines the second small instance
 - a[0: n-2] is sorted recursively
- Conquer Phase
 - Combining is done by inserting a[n-1] into the sorted a[0:n-2]
- Here we show the recursive solution, but normally implemented non recursively

Example for Insertion Sort

- Original Array >
- Divide it into two arrays \rightarrow
- Sort the 1st array recursively \rightarrow
- Conquer the two arrays
- : Insert the 2^{nd} array Into the 1^{st} array \rightarrow

Selection Sort by Divide & Conquer a[0] a[n-2] a[n-1]

- k = 2 divide-and-conquer sorting method
 - Complexity is O(n²)
- Divide Phase: To divide a large collection into two smaller instances
 - First find the largest element & The largest element defines one small instance
 - The remaining n-1 elements define the second small instance
 - The second small instance is sorted recursively
- Conquer Phase: Append the first smaller instance (largest element) to the right end of the sorted second small instance
- Here we show the recursive solution, but normally implemented nonrecursively

Example for Selection Sort

Conquer the two arrays : Just append the 2nd array to the right of the 1st array →

1 2 3 4	5
---------	---

- k = 2 divide-and-conquer sorting method
 - Complexity is O(n²)
- Divide Phase: To divide a large collection into two smaller instances
 - First find the largest element by bubbling (a series of swapping)
 - The largest element defines one small instance
 - The remaining n-1 elements define the second small instance
- Conquer Phase: Merge two arrays
- Here we show the recursive solution, but normally implemented nonrecursively

Example for Bubble Sort

Original Array \rightarrow Move the largest element to the right З end by bubbling process \rightarrow З З З Divide it into two arrays \rightarrow З Sort the 1st array recursively \rightarrow З

Conquer the two arrays

: Just append the 2^{nd} array to the right of the 1^{st} array \rightarrow

З

Table of contents

- The Method
 - Divide and Conquer
 - Solving a small instance
 - Solving a large instance
- Applications
 - Divide and Conquer Sorting
 - Insertion Sort
 - Selection Sort
 - Bubble Sort
 - Merge Sort
 - Quick Sort

Merge Sort by Divide and Conquer (1)

- k = 2 divide-and-conquer sorting method
- Divide Step
 - First ceil(n/2) elements define one of the smaller instances
 - Remaining floor(n/2) elements define the second smaller instance
- Conquer Step
 - Each of the two smaller instances is sorted recursively
 - The sorted smaller instances are combined using a merge process
- The complexity of merge sort is O(n log n)
- Here we show the recursive solution, but normally implemented non-recursively

Merge Sort by Divide and Conquer (2)

- An Example for Merge Process
 - A large instance divided into two instances (A and B) and sort them A = (2, 5, 6) B = (1, 3, 8, 9, 10) C = ()
 - Compare smallest elements of A and B and merge smaller into C
 - A = (2, 5, 6)B = (3, 8, 9, 10)C = (1)A = (5, 6)B = (3, 8, 9, 10)C = (1, 2)A = (5, 6)B = (8, 9, 10)C = (1, 2, 3)A = (6)B = (8, 9, 10)C = (1, 2, 3, 5)A = ()B = (8, 9, 10)C = (1, 2, 3, 5)A = ()B = (8, 9, 10)C = (1, 2, 3, 5, 6)
 - When one of A and B becomes empty, append the other list to C

A = () B = () C = (1, 2, 3, 5, 6, 8, 9, 10)

- O(1) time needed to move an element into C
- Total time is O(n + m), where n and m are the number of elements initially in A and B

Merge Sort Analysis

- Number of leaf nodes is **n**
- Number of nonleaf nodes is n-1
- Downward pass over the recursion tree
 - Divide large instances into small ones
 - O(1) time at each node
 - O(n) total time at all nodes
- Upward pass over the recursion tree
 - Merge pairs of sorted lists
 - O(n) time merging at each level that has a nonleaf node
 - Number of levels is O(log n)

Total time is O(n log n)

Quick Sort by Divide and Conquer

- Small instance has n <= 1.
 - So, Every small instance is a sorted instance
- To sort a large instance, select a pivot element from out of the **n** elements
- Partition the n elements into 3 groups left, middle and right
 - The middle group contains only the pivot element
 - All elements in the left group are <= pivot
 - All elements in the right group are >= pivot
- Sort left and right groups recursively
- combine left group, middle group and right group

Use 6 as the pivot

Sort left and right groups recursively

Quick Sort by Divide and Conquer: Choice of Pivot

- Leftmost element in list that is to be sorted
 - When sorting a[6:20], use a[6] as the pivot
 - Text implementation does this
- Randomly select one of the elements to be sorted as the pivot
 - When sorting a[6:20], generate a random number r in the range [6, 20].
 - Use a[r] as the pivot
- Median-of-Three rule. From the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot
 - When sorting a[6:20], examine a[6], a[13] ((6+20)/2), and a[20].
 - Select the element with median (i.e., middle) key
 - If a[6].key = 30, a[13].key = 2, and a[20].key = 10, a[20] becomes the pivot
 - If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6] becomes the pivot
 - If a[6].key = 30, a[13].key = 25, and a[20].key = 10, a[13] becomes the pivot

Quick Sort by Divide and Conquer: Partitioning

- Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3]
- Suppose the leftmost element "6" is the pivot
- When another array **b** is available:
 - Scan a from left to right (omit the pivot in this scan), placing elements <= pivot at the left end of b and the remaining elements at the right end of b
 - The pivot is placed at the remaining position of the **b**

Sort left and right groups recursively

Time Complexity of Quick Sort

- O(n) time to partition an array of n elements
- Let t(n) be the time needed to sort n elements
 - t(0) = t(1) = c, where c is a constant
 - When t > 1,

t(n) = t(|left|) + t(|right|) + dn, where d is a constant

- t(n) is maximum when either |left| = 0 or |right| = 0 following each partitioning
- Overall Time Complexity
 - The worst-case computing time for quick sort is Θ (n^2)
 - When left is always empty
 - The best-case computing time for quick sort is Θ (n*logn)
 - When left and right are always of about the same size
 - The average complexity of quick sort is also Θ (n*logn)
 - Theorem 19.2 in your textbook

BIRD'S-EYE VIEW

- Divide and conquer algorithms
 - Decompose a problem instance into several smaller independent instances
 - May be effectively run on a parallel computer
 - Min-max problem, matrix multiplication and so on
- This chapter
 - Develops the mathematics needed to analyze the complexity of divide and conquer algorithms
 - Proves that the divide and conquer algorithms for the min-max and sorting problems are optimal

Table of contents

The Divide and Conquer method

- Solving a small instance
- Solving a large instance
- Applications
 - Divide and Conquer Sorting
 - Insertion Sort
 - Selection Sort
 - Bubble Sort
 - Merge Sort
 - Quick Sort

