!'_ Ch.19 Divide and Conquer

w

=

c

=)

s L)
&

-

4

o '
o

W

m

o

m

o
5“'
=

wls BIRD'S-EYE VIEW

= Divide and conquer algorithms

= Decompose a problem instance istwveral smaller independent instances
= May be effectively run oa parallel computer
= Min-max problem, matrix multiplication and so on

= This chapter

= Developsthe mathematiceeeded to analyze the complexity of divide and
conquer algorithms

= Proves that the divide and conquer algorithmgHermin-max and sorting
problems are optimal

(D

SNU Internet DatzaBase Lab.

=|. Table of contents

m [heDivideand Conquer method
= Solving a small instance
= Solving alargeinstance

= Applications

= Divide and Conquer Sorting
= Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Quick Sort

w

=

[

2

(]

e

-

@
U'
]

b

m

2
n

o
rI'
w

=

Divide and Conquer (1)

= Distinguish between small and large instances
= Small instances solved differently from large ones
= All instances ar@on-overlapping

Divide

Conquer
[

(D

SNU Internet DataBase La

&

Divide and Conquer (2)

-

o mall instance is solved usisgme direct/simple strategy
Sort a list that has (= 10) elements
= Use count, insertion, bubble, or selection sort
Find the minimum ofi (= 2) elements
= Whenn = Q there is no minimum element
= Whenn =], the single element is the minimum
= Whenn = 2 compare the two elements and determine which ideamal

= A large instance is solved as follows:
Divide the large instance into(= 2) smaller instances
Solve the smaller instances somehow

Combine the results of the smaller instances to obtainesult for the
o original large instance

SNU Internet DatzaBase Lab.

=|. Table of contents

= The Method

= Divide and Conquer
= Solving a small instance
= Solving a large instance

= Applications

= Divideand Conquer Sorting
= Insertion Sort
= Selection Sort
= Bubble Sort
« Merge Sort
= Quick Sort

h
SNU Internet DatzBase Lab

| Divide and Conquer Sorting (1)

= Sort n elements into nondecreasing order

= Divide-and-conguer sorting algorithm

= Ifnisi,
= Terminate
= Otherwise,
= Partition the large instance of n elements into twamore small instances
= Sort each small instances
= Combine the sorted small instances into a singledanstance

= Divide-and-conquer algorithms have best complexingmwa large instance is
divided into small instances approximately the same size

= Whenk = 2andn = 24 divide into two small instances of si¥2 each

= Whenk = 2andn = 25 divide into two small instances of sit8and12, respectively
-

(D :

SNU Internet DatzaBase Lab.

+| . Divide and Conquer Sorting (2)

0 rtitioning Schemes

= Partitioning the n elements into twobalancedaollections
(i.e., n-lelements & 1 element)

= All three sort methods in this manner takg¥) time
= Insertion sort
= Selection sort
= Bubble sort

= Partitioning the n elements into twealancedollections
(i.e., n/k element & the rest elements into 2 groups)

= The following methods in this manner takén log n)time
= Merge sort

= Quick sort

S

SNU Internet DatzaBase Lab.

&| . Insertion Sort by Divide & Conquer

al0] .. a[r2] a[n-1]

= k = 2divide-and-conguesorting method
= Complexity isO(r¥)
= Divide Phase
= Firstn - 1elements&[0:n-2) define the first small instance
= Last elementg[n-1] defines the second small instance
= a0: n-2]is sorted recursively
= Conguer Phase
= Combining is done binsertinga[n-1]into the sorte[0:n-2]
= Here we show the recursive solution, but normafiplemented non-
s recursively

ﬁ 5
SNU Internet DatzaBase Lab.

=« Example for Insertion Sort

Original Array =

Divide it into two arrays =

Sort the 1st array recursively 2

Conquer the two arrays
. Insert the 2nd array Into the 1st array =

S

SNU Internet DatzaBase Lab.

&)

N | [WO] [G| |

wlpd| |~

R

10

‘h Insertion Sort Example

[4, 3,5, 1, 2] [1, 2, 3, 4, 5]
Divide Phase: / \ 7
Just split the array [4, 3,5, 1] [2] [1, 3, 4, 5]
\ S
4,3,5] [1] 3 4 5]
“ S
[4,3] [5] [3, 4]

3
[4{ t:g] / Conquer Phase:

Insert the last item into the array

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

11

| Selection Sort by Divide & Conquer

al a[n2] ain-1]

k = 2divide-and-conquesorting method
= Complexity isO(r¥)
Divide PhaseTo divide a large collection into two smallertiznsces
= First find the largest element & The largest elemefihds one small instance
= The remainingqi-1 elementslefine the second small instance
= The second small instance is sorted recursively

Conquer Phaséppend the first smaller instance (largest elehntnthe
right end of the sorted second small instance

Here we show the recursive solution, but normatiplemented non-
‘recursively

ﬁ 5
SNU Internet DatzaBase Lab.

=|« Example for Selection Sort

Original Array = 4135
Find the largest element =2 4135
Divide it into two arrays = 413 |1
Sort the 1st array recursively = 112 3

Conquer the two arrays

: Just append the 219 array to the right of
the 1st array 2> 1123

(D

SNU Internet DatzaBase Lab.

13

‘h Selection Sort Example

[4,3,5,1, 2]

Divide Phase: /

Move the largest item [4, 3, 1, 2]
by max process *
[3,1,2] [4]
\
[1,2] [3] [1, 2]

[1, 2, 3, 4, 5]
\ 7
5] [L 2 3,4]
/
1,2, 3]

Conquer Phase:

Merge two arrays

14

-| Bubble Sort by Divide & Conquer

al0] .. a[r2] a[n-1)

= k = 2divide-and-conquesorting method
= Complexity isO(rv)

= Divide PhaseTo divide a large collection into two smallertizsces
= First find the largest element byibbling(a series of swapping)
= The largest element defines one small instance
= The remainingqi-1 elementslefine the second small instance

= Conquer Phasderge two arrays

= Here we show the recursive solution, but normatiplemented non-
, recursively

ﬁ 5
SNU Internet DatzaBase Lab.

15

=« Example for Bubble Sort

Original Array = 413151112

Move the largest element to the right 31450112

end by bubbling process =2
34512
3141|572
3(141112]5

Divide it into two arrays = 3141112 5

Sort the 1st array recursively 2 i ToT3Tla 5

Conquer the two arrays

: Just append the 29 array to the right of 1121314l5

o the 1st array =

16

SNU Internet DatzaBase Lab.

‘h Bubble Sort Example

Divide phase:

Move the largest item
by Bubbling process

[4,3,5,1, 2] [1, 2, 3, 4, 5]
v\ /
3,4, 1, 2] [5] [1, 2, 3, 4]
\ /
3,1,2] [4] [1, 2, 3]
7
3] [1, 2]

/ Conqguer Phase:

Merge two arrays

17

=|. Table of contents

= The Method

= Divide and Conquer
= Solving a small instance
= Solving a large instance

= Applications

=« Divide and Conquer Sorting
= Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Quick Sort

w

=

[

2

(]

e

-

@
U'
]

b

m

2
n

o
rI'
w

=

18

| Merge Sort by Divide and Conquer (1)

= k = 2divide-and-conquesorting method

= Divide Step
= Firstceil(n/2)elements define one of the smaller instances
= Remainingfloor(n/2) elements define the second smaller instance

= Conqguer Step
= Each of the two smaller instances is sorted recursively
= The sorted smaller instances are combined wsimgrge process

= The complexity of merge sort @3(nlog n)

= Here we show the recursive solution, but normaiiplemented non-
recursively

h
SNU Internet DatzaBase Lab.

| Merge Sort by Divide and Conquer (2)

= An Example for Merge Process
= A large instance divided into two instancésandB) and sort them
A=(2,5,6) B=(1,3,8,09,10) C=()
= Compare smallest elementsfoindB and merge smaller into

A=(2,5 6) B=(3 8,9, 10) C=(1)
A=(56) B=(3,8,09,10) Cs0)
A=(56) B=(8,09,10) CEQ, 3)

A = (6) B =(8, 9, 10) dE 2, 3, 5)
A=() B=(8, 9, 10) 1, 2, 3, 5, 6)

= When one ofA andB becomes empty, append the other listto
A=() B=() C=(1,2,3,5,6,8,H)

= O(1)time needed to move an element iito

= Total time isO(n + m) wheren andm are the number of elements initially in
s A andB

ﬁ 5
SNU Internet DatzaBase Lab.

| Merge Sort: Example (1)

s Divide Phase

[8,3,13,6,2,14.5,9,10, 1,7, 12, 4]

8,3,13. 6 9, 10, 1,7, 12, 4]

N

3 13 6] [2,14,5] [9,10,1] [7,12, 4]
53‘?1 13 6][2‘i#;ﬁﬂ [9‘i;£T1] [7 I;? [4]
x’ VAEVAN "\ A/
8] [3]113][6] [2] [14] [9] [10] [7] [12]

(/DB g

8,

‘* Merge Sort: Example (2)

guer Phase: all sub components are sorted

1,2, 3, 4,5, 7,%13,14]

9, 10,12]

NG

. b, 8, ,5,14] [1, 9, 10] 4, 7, 12]
{[6\13] 2 /1'4]\[5] 9 /1101\[1] 7. 12] [4]
X SN IN SN /N
[13][6] [2] [14] [9] [10] [7] [12]

ﬁ 5
SNU Internet DatzaBase Lab.

N
w
o
o
o0
x
S

-

Merge Sort Analysis

Number of leaf nodes 1
Number of nonleaf nodes iis1

Downward pass over the recursion tree

Divide large instances into small ones
O(1)time at each node
O(n) total time at all nodes

Upward pass over the recursion tree

Merge pairs of sorted lists

O(n) time merging at each level that has a nonleaf node
Number of levels i©(log n)

Total time isO(n log n)

23

Quick Sort by Divide and Conquer

= Small instance has<= 1
= So, Every small instance is a sorted instance

To sort a large instance, selegtiaot element from out of the elements
= Partition then elements int® groupsleft, middleandright

= Themiddlegroup contains only thegivot element
= All elements in theeft group are<= pivot

= All elements in theight group are>= pivot
= Sortleft andright groups recursively

= combineleft group,middlegroup andight group

Use6 as the pivot

21514]11|3|6|7]9]|10(11]| 8

E:.

_ Sort left and right groups recursively o4

Quick Sort by Divide and Conguer: Choice of Pivot

= Leftmostelement in list that is to be sorted
When sortinga[6:20] usea[6] as the pivot
Text implementation does this

= Randomlyselect one of the elements to be sorted as the pivot

When sortinga[6:20] generate a random numlsen the range6, 20].
Usea]r] as the pivot

= Median-of-Three ruleFrom the leftmost, middle, and rightmost elementhef
list to be sorted, select the one with median kehhapivot

When sortinga[6:20] examinea[6], a[13] ((6+20)/2) anda[20].
Select the element with median (i.e., middle) key

If a[6].key = 3Qa[13].key =2 anda[20].key = 10a[20]becomes the pivot
If a[6].key = 3 a[l13].key =2 anda[20].key = 10a[6] becomes the pivot
If a[6].key = 3Qa[13].key = 25anda[20].key = 10a[13]becomes the pivot

25

SNU Internet DatzaBase Lab.

Quick Sort by Divide and Conquer: Partitioning

o rra=1[6, 2, 8,5,11,10,4,1,9, 7, 3]
= Suppose the leftmost elemeft ts the pivot

= When another arrayis available:

Scanafrom left to right (omit the pivot in this scan), piag elements:=
pivot atthe left endof b and the remaining elementstia¢ right endof b

- The pivot is placed at the remaining position &flih

a [[2]8]5[11104[1]9[7]3]

b 12]5/4[1[3]|6]7/9[1011 8

o Sort left and right groups recursively

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

26

QUICk Sort [6, 2, 8,5,11, 10,4,1,9, 7, 3]
" Example 2,5, 4,1, 35,*7, 9, 10, 11, 8]
/ \

[2,5,4,1, 3] 7.9,10,11, 8]
[1,2,3,4, 3] 7, 8, fl, 10, 9]
pd \ N\
[1] [3,4,5 [8, 11, 10, 9]
R
[3, 5, 4] 8, 9, 1% 11]
\ [9, 10, 11]
o X
\ 4 [9, 11, 10]
[4, 9] W
v/ [11, 10]
4 [10*, 11]

QUICK SOTt (5 3 5 4. 7.1,0,9.2 10, 6, 11

- Example [3,4,1,0, 25,*11, 6, 10, 9, 7, 8]
/ \

(3,41, 0, 2] 116, 10,9, 7, 8]
1, o,‘2,3, 4] [6, 10, 9, 7, 811]
(1, %g] (4] [6, 10, 9, 7, 8]
0,1, 2] mg, 7, 8]
/| 9 7;8 0
[O] [2] [k, ,10]
[9, 7, 8]
R/
7, 8,9]
o
[7,§
3]
- ¥
é’ﬁlﬂo 1 2 3 4 56 7 8 9 10 2]

R Time Complexity of Quick Sort

= O(n)time to partition an array of elements

= Lett(n) be the time needed to sorelements
= t(0) =t(1) = ¢ wherec is a constant
= Whent > 1,
t(n) = t(|left) + t(|right|) + dn whered is a constant
= {(n) is maximum when eithgleft| = Oor |right| = Ofollowing each partitioning
= Overall Time Complexity
= The worst-case computing time for quick sordgn”2)
= When left is always empty
= The best-caseomputing time for quick sort i© (n*logn)
= When left and right are always of about the same si
= The average complexity of quick sort is ats@gn*logn)

= Theorem 19.2 in your textbook
-

(D .

SNU Internet DatzaBase Lab.

wls BIRD'S-EYE VIEW

= Divide and conquer algorithms

= Decompose a problem instance istwveral smaller independent instances
= May be effectively run oa parallel computer
= Min-max problem, matrix multiplication and so on

= This chapter

= Developsthe mathematiceeeded to analyze the complexity of divide and
conquer algorithms

= Proves that the divide and conquer algorithmgHermin-max and sorting
problems are optimal

(D

SNU Internet DatzaBase Lab.

30

=|. Table of contents

m [heDivideand Conquer method
= Solving a small instance
= Solving alargeinstance

= Applications

= Divide and Conquer Sorting
= Insertion Sort

Selection Sort

Bubble Sort

Merge Sort

Quick Sort

w

=

[

2

(]

e

-

@
U'
]

b

m

2
n

o
rI'
w

=

31

