Ch21.Backtracking

1

- A surefire way to solve a problem is to make a list of all candidate answers and check them
 - If the problem size is big, we can not get the answer in reasonable time using this approach
 - List all possible cases? → exponential cases
- By a systematic examination of the candidate list, we can find the answer without examining every candidate answer
 - *Backtracking* and *Branch and Bound* are most popular systematic algorithms

** Surefire = 확실한, 특림없는

- The Backtracking Method
- Application
 - Rat in a Maze
 - Container Loading

Backtracking

- A systematic way to search for the solution to a problem
- No need to check all possible choices \rightarrow Better than the brute-force approach
- Three steps of backtracking:
 - Define a solution space
 - Construct a graph or a tree representing the solution space
 - Search the graph or the tree in a depth-first manner to find a solution

4

Backtracking Steps (1 & 2)

• Step 1: Define a solution space

- Solution space is a space of possible choices including at least one solution
 - In the case of the rat-in-a-maze problem, the solution space consists of all paths from the entrance to the exit
 - In the case of chess, the solution space consists of all possible locations of checkers
- Step 2: Construct a graph or a tree representing the solution space
 - Solution space can be represented either by a tree or by a graph, depending on the characteristic of the problem
 - In the case of the rat-in-a-maze problem, the solution space can be represented by a graph
 - The solution space for container loading is a tree

Backtracking Step (3)

- Step 3: Search the graph or the tree in a depth-first manner to find a solution
 - Two nodes
 - a live node (node from which we can reach to the solution)
 - an E-node (node representing the current state)
 - We start from the start node (node representing initial state)
 - Initially, the start node is both a live node and an E-node
 - Try to move to a new node (node representing a new state we have never seen)
 - Success → Push current node into the stack if it is live, and make the new node a live node & E-node
 - Fail → Current node *dies* (i.e. it is no longer live) and we move back (*backtrack*) to the most recently seen live node in the stack
 - The search terminates when
 - we have found the answer, or
 - we run out of live nodes to back up to

- The Method
- Application
 - Rat in a Maze
 - Container Loading

- A maze is a tour puzzle in the form of a complex branching passage through which the solver must find a route
 - A maze is a graph
 - So, we can traverse a maze using DFS / BFS
- Backtracking → Finding solution using DFS
 - Worst-case time complexity of finding path to the exit of n*n maze is $O(n^2)$

Backtracking in "Rat in a Maze"

- 1. Prepare an empty stack S and an empty 2D array
- 2. Initialize array elements with 1 where obstacles are, 0 elsewhere
- 3. Start at the upper left corner
- 4. Set the array value of current position to 1
- 5. Check adjacent (up, right, down and left) cell whose value is zero
 - If we found such cell, push current position into the stack and move to there
 - If we couldn't find such cell, pop a position from the stack and move to there
- 6. If we haven't reach to the goal, repeat from 4

Rat in a Maze Code

```
Prepare an empty stack and an empty 2D array
Initialize array eléments with 1 where obstacles are, 0 elsewhere
 ←
Repeat until reach to the goal {
   a[i][j] \leftarrow 1;
if (a[i][j+1]==0) {
                               put (i,j) into the stack
                                i++; }
                                put (i,j) into the stack
   else if(a[i+1][j] = = 0) {
   else if (a[i][j-1]==0) {
                               put (i,j) into the stack
                                put (i,j) into the stack
   else if (a[i-1][j]==0) {
   else pop (i,j) from the stack;
}
```


Rat in a Maze Example (1)

Organize the solution space

Rat in a Maze Example (2)

• Search the graph in a depth-first manner to find a solution

Push (1,1) & Move to (1,2)

• Search the graph in a depth-first manner to find a solution

Push (1,2) & Move to (1,3)

Rat in a Maze Example (4)

• Search the graph in a depth-first manner to find a solution

Pop (1,2) & Backtrack to (1,2)

Rat in a Maze Example (5)

• Search the graph in a depth-first manner to find a solution

Live node stack

Pop (1,1) & Backtrack (1,1)

15

Rat in a Maze Example (6)

• Search the graph in a depth-first manner to find a solution

Push (1,1) & Move to (2,1)

Rat in a Maze Example (7)

• Search the graph in a depth-first manner to find a solution

Live node stack

Push (2,1) & Move to (3,1)

17

Rat in a Maze Example (8)

• Search the graph in a depth-first manner to find a solution

Live node stack

Rat in a Maze Example (9)

• Search the graph in a depth-first manner to find a solution

Live node stack

Push (3,2) &

Move to (3,3)

Rat in a Maze Example (10)

Search the graph in a depth-first manner to find a solution

Observation

- Backtracking solution may not be a shortest path
- Nodes in the stack represent the solution

- The Method
- Application
 - Rat in a Maze
 - Container Loading

Container Loading

- Container Loading Problem (Example 21.4)
 - 2 ships and *n* containers
 - Ship capacity: c₁, c₂
 - The weight of container *i*: w_i
 - $\sum_{i=1}^{n} w_i \le c_1 + c_2$
 - Is there a way to load all n containers?
- Container Loading Instance
 - n = 4
 - $c_1 = 12, c_2 = 9$
 - w = [8, 6, 2, 3]
- Find a subset of the weights with sum as close to c₁ as possible

Considering only One Ship

Original problem: Is there any way to load n containers with

$$\sum_{i \text{ belongs to ship}_{1}} W_{i} \leq c_{1}, \qquad \sum_{i \text{ belongs to ship}_{2}} W_{i} \leq c_{2}$$

$$\text{Because} \qquad \sum_{i \text{ belongs to ship}_{1}} W_{i} + \sum_{i \text{ belongs to ship}_{2}} W_{i} = \sum_{i=1}^{n} W_{i} \text{ is constant,}$$

$$\max(\sum_{i \text{ belongs to ship}_{1}} W_{i}) = \min(\sum_{i \text{ belongs to ship}_{2}} W_{i})$$

So, all we need to do is trying to load containers at ship 1 as much as possible and check if the sum of weights of remaining • containers is less than or equal to c_2 23

Solving without Backtracking

• We can find a solution with brute-force search

- 1. Generate n random numbers $x_1, x_2, ..., x_n$ where $x_i = 0$ or 1 (i = 1,...,n)
- 2. If $x_i = 1$, we put i-th container into ship 1
 - If $x_i = 0$, we put i-th container into ship 2
- 3. Check if sum of weights in both ships are less than their maximum capacity

- Above method are too naïve and not duplicate-free
- → Backtracking provides a systematic way to search feasible solutions (still NP-complete, though)

Container Loading and Backtracking

- Container loading is one of NP-complete problems
 - There are 2ⁿ possible partitionings
- If we represent the decision of location of each container with a *branch*, we can represent container loading problem with a *tree*
- Organize the solution space
 - Solution space is represented as a binary tree
 - Every node has a label, which is an identifier
- So, we can traverse the tree using DFS / BFS
- Backtracking = Finding solution using DFS
- Worst-case time complexity is O(2ⁿ) if there are n containers

Backtracking in Container Loading

- 1. Prepare an empty stack S and a complete binary tree T with depth *n*
- 2. Initialize the *max* to zero
- 3. Start from root of T
- 4. Let *t* as current node
- If we haven't visit left child and have space to load w_{depth(t)},
 then load it, push *t* into S and move to left child
 else if we haven't visit right child, push t into S and move to right child
- 6. If we failed to move to the child, check if the stack is empty
 - 1. If the stack is not empty, pop a node from the stack and move to there
- 7. If current sum of weights is greater than *max*, update *max*
- 8. Repeat from 4 until we have checked all nodes

Container Loading Code

```
Consider n, c1, c2, w are given
Construct a complete binary tree with depth n & Prepare an empty stack
                sum \leftarrow 0; depth \leftarrow 0; x \leftarrow root node of the tree;
max \leftarrow 0;
While (true) {
   if (depth < n && x.visitedLeft \& c1 - sum \ge w[depth]) 
      sum ← sum + w[depth]
      if (sum > max) max = sum;
      Put (x,sum) into the stack
      x.visitedLeft \leftarrow true;
      x \leftarrow x.leftChild;
      depth++; }
   else if (depth < n && !x.visitedRight) {
           Put (x,sum) into the stack
x.visitedRight ← true;
           x \leftarrow x.rightChild;
           depth++;
        else { if (the stack is empty) {
                        If sum(w) - max \le c2, max is the optimal weight
                        Otherwise, it is impossible to load all containers
                        Quit the program }
                    Pop (x.sum) from the stack;
                    depth--;}
                                     _____
                                                                                   77
```

Container Loading Example (1)

• Organize the solution space: n = 4; $c_1 = 12$, $c_2 = 9$; w = [8, 6, 2, 3]

Live node stack

Live node stack

Live node stack

Live node stack

Container Loading Example (13)

• Backtracking: n = 4; $c_1 = 12$, $c_2 = 9$; w = [8, 6, 2, 3]

- A surefire way to solve a problem is to make a list of all candidate answers and check them
 - If the problem size is big, we can not get the answer in reasonable time using this approach
 - List all possible cases \rightarrow exponential cases
- By a systematic examination of the candidate list, we can find the answer without examining every candidate answer
 - *Backtracking* and *Branch and Bound* are most popular systematic algorithms

** Surefire = 확실한, 특림없는

- The Backtracking Method
- Application
 - Rat in a Maze
 - Container Loading

