
1

Ch21.Backtracking



2

Bird’s-Eye View

� A surefire way to solve a problem is to make a list of all candidate answers and 
check them
� If the problem size is big, we can not get the answer in reasonable time 

using this approach
� List all possible cases? � exponential cases

� By a systematic examination of the candidate list, we can find the answer 
without examining every candidate answer
� Backtracking and Branch and Bound are most popular systematic 

algorithms

** Surefire = 확실한, 특림없는



3

Table of Contents

� The Backtracking Method

� Application
� Rat in a Maze

� Container Loading



4

Backtracking
� A systematic way to search for the solution to a problem
� No need to check all possible choices � Better than the brute-force approach

� Three steps of backtracking:
� Define a solution space

� Construct a graph or a tree representing the solution space

� Search the graph or the tree in a depth-first mannerto find a solution

Tree representation of a problemTree representation of a problemTree representation of a problemTree representation of a problem

solution1 solution2 … … solution7 solution8

ba
ck

tra
ck

in
g

ba
ck

tra
ck

in
g



5

Backtracking Steps (1 & 2)
� Step 1:  Define a solution space

� Solution space is a space of possible choices including at least one solution
� In the case of the rat-in-a-maze problem, the solution space consists of all paths 

from the entrance to the exit
� In the case of chess, the solution space consists of all possible locations of 

checkers

� Step 2:  Construct a graph or a treerepresenting the solution space
� Solution space can be represented either by a tree or by a graph, depending 

on the characteristic of the problem
� In the case of the rat-in-a-maze problem, the solution space can be 

represented by a graph
� The solution space for container loading isa tree



6

Backtracking Step (3)

� Step 3: Search the graph or the tree in a depth-first manner to find a solution 
� Two nodes

� a live node(node from which we can reach to the solution)
� an E-node(node representing the current state)

� We start from the start node (node representing initial state)
� Initially, the start node is both a live nodeand an E-node

� Try to move to a new node(node representing a new state we have never seen)
� Success� Push current node into the stack if it is live, and make the new node 

a live node & E-node
� Fail � Current node dies (i.e. it is no longer live) and we move back 

(backtrack) to the most recently seen live node in the stack
� The search terminates when

� we have found the answer, or
� we run out of live nodes to back up to



7

Table of Contents

� The Method

� Application 
� Rat in a Maze

� Container Loading



8

Rat in a Maze
� 3 x 3 rat-in-a-maze instance (Example 21.1)

� A maze is a tour puzzle in the form of a complex branching passage through 
which the solver must find a route
� A maze is a graph
� So, we can traverse a maze using DFS / BFS

� Backtracking� Finding solution using DFS
� Worst-case time complexity of finding path to the exit of n*n maze is O(n2)

0  0  0

0  1  1

0  0  0

0 : road

1 : obstacle

entrance

exit



9

Backtracking in “Rat in a Maze”

1. Prepare an empty stack S and an empty 2D array
2. Initialize array elements with 1 where obstacles are, 0 elsewhere
3. Start at the upper left corner
4. Set the array value of current position to 1
5. Check adjacent (up, right, down and left) cell whose value is zero

� If we found such cell, push current positioninto the stack and move to there
� If we couldn’t find such cell, pop a positionfrom the stack and move to there

6. If we haven't reach to the goal, repeat from 4



10

Rat in a Maze Code

Prepare an empty stack and an empty 2D array
Initialize array elements with 1 where obstacles are, 0 elsewhere
i ← 1
j ← 1
Repeat until reach to the goal {

a[i][j] ← 1;
if (a[i][j+1]==0) {          put (i,j) into the stack

j++; }
else if(a[i+1][j]==0) {     put (i,j) into the stack

i++; }
else if (a[i][j-1]==0) {     put (i,j) into the stack

j--; }
else if (a[i-1][j]==0) {     put (i,j) into the stack

i--; }
else pop (i,j) from the stack;

}



11

Rat in a Maze Example(1)

� Organize the solution space

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

0 1live:

1dead:

entrance
node

exit
node

new visited



12

Rat in a Maze Example (2)

� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack
O

O

E-node

Push (1,1) &Push (1,1) &Push (1,1) &Push (1,1) &
Move to (1,2)Move to (1,2)Move to (1,2)Move to (1,2)



13

Rat in a Maze Example (3)

� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

O

X
Push (1,2) & Push (1,2) & Push (1,2) & Push (1,2) & 
Move to (1,3)Move to (1,3)Move to (1,3)Move to (1,3)

E-node
X



14

Rat in a Maze Example (4)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

(1,2)

X

E-node

Pop (1,2) &Pop (1,2) &Pop (1,2) &Pop (1,2) &
Backtrack to (1,2)Backtrack to (1,2)Backtrack to (1,2)Backtrack to (1,2)

X



15

Rat in a Maze Example (5)

� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

E-node

Pop (1,1) & Pop (1,1) & Pop (1,1) & Pop (1,1) & 
Backtrack (1,1)Backtrack (1,1)Backtrack (1,1)Backtrack (1,1)

X

XX



16

Rat in a Maze Example (6)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stackE-node
X

O Push (1,1) &Push (1,1) &Push (1,1) &Push (1,1) &
Move to (2,1)Move to (2,1)Move to (2,1)Move to (2,1)



17

Rat in a Maze Example (7)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

Push (2,1) &Push (2,1) &Push (2,1) &Push (2,1) &
Move to (3,1)Move to (3,1)Move to (3,1)Move to (3,1)

O

X

X
E-node



18

Rat in a Maze Example (8)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

(2,1)

X

Push (3,1) &Push (3,1) &Push (3,1) &Push (3,1) &
Move to (3,2)Move to (3,2)Move to (3,2)Move to (3,2)

O

X

E-node



19

Rat in a Maze Example (9)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node stack

(1,1)

(2,1)

(3,1)

X

Push (3,2) & Push (3,2) & Push (3,2) & Push (3,2) & 
Move to (3,3)Move to (3,3)Move to (3,3)Move to (3,3)

O

X

X

E-node



20

Rat in a Maze Example (10)
� Search the graph in a depth-first manner to find a solution

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,3)

Live node stack

(1,1)

(2,1)

(3,1)

(3,2)

X

Finish
(3,3)

(3,2)

solution

E-node

� Observation
� Backtracking solution may not be a shortest path

� Nodes in the stack represent the solution



21

Table of Contents

� The Method

� Application
� Rat in a Maze

� Container Loading



22

Container Loading
� Container Loading Problem (Example 21.4)

� 2 ships and n containers
� Ship capacity: c1, c2 

� The weight of container i: wi

�

� Is there a way to load all n containers?

� Container Loading Instance
� n = 4
� c1 = 12, c2 = 9
� w = [8, 6, 2, 3]

� Find a subset of the weights with sum as close to c1 as possible

21
1

ccw
n

i
i +≤∑

=



23

Considering only One Ship

� Original problem: Is there any way to load n containers with    

� Because                                                 is constant,

� So, all we need to do is trying to load containers at ship 1 as much 
as possibleand check if the sum of weights of remaining 
containers is less than or equal to c2

21

21

, cwcw
shiptobelongsi

i
shiptobelongsi

i ≤≤ ∑∑

∑∑∑
=

=+
n

i
i

shiptobelongsi
i

shiptobelongsi
i www

121

)min()max(
21

∑∑ =
shiptobelongsi

i
shiptobelongsi

i ww



24

Solving without Backtracking
� We can find a solution with brute-force search

� Above method are too naïve and not duplicate-free
� Backtracking provides a systematic way to search feasible 

solutions (still NP-complete, though)

1. Generate n random numbers x1, x2, …, xn
where xi = 0 or 1  (i = 1,…,n)

2. If xi = 1, we put i-th container into ship 1

If xi = 0, we put i-th container into ship 2

3. Check if sum of weights in both ships are less

than their maximum capacity

3-1.      If so, we found a solution!

3-2.      Otherwise, repeat from 1



25

Container Loading and Backtracking

� Container loading is one of NP-complete problems
� There are 2n possible partitionings

� If we represent the decision of location of each container with a branch, we 
can represent container loading problem with a tree

� Organize the solution space
� Solution space is represented as a binary tree
� Every node has a label, which is an identifier

� So, we can traverse the tree using DFS / BFS
� Backtracking = Finding solution using DFS
� Worst-case time complexity is O(2n) if there are n containers



26

Backtracking in Container Loading 

1. Prepare an empty stack S and a complete binary tree T with depthn
2. Initialize the max to zero
3. Start from root of T
4. Let t as current node
5. If we haven't visit left child and have space to load wdepth(t),

then load it, push t into Sand move to left child
else if we haven't visit right child, push t into Sand move to right child

6. If we failed to move to the child, check if the stack is empty
1. If the stack is not empty, pop a nodefrom the stack and move to there

7. If current sum of weights is greater than max, update max
8. Repeat from 4 until we have checked all nodes



27

Container Loading Code

Consider n, c1, c2, w are given
Construct a complete binary tree with depth n &  Prepare an empty stack
max ←←←← 0;         sum ←←←← 0;       depth ←←←← 0;    x ←←←← root node of the tree;
While (true) {

if (depth < n && !x.visitedLeft && c1 – sum ≥≥≥≥ w[depth]) {
sum ←←←← sum + w[depth]
if (sum > max) max = sum;
Put (x,sum) into the stack
x.visitedLeft ←←←← true;
x ←←←← x.leftChild;
depth++; } 

else if  (depth < n && !x.visitedRight) {
Put (x,sum) into the stack
x.visitedRight ←←←← true;
x ←←←← x.rightChild;
depth++; }}}}

else  { if  (the stack is empty)  {else  { if  (the stack is empty)  {else  { if  (the stack is empty)  {else  { if  (the stack is empty)  {
If If If If sum(wsum(wsum(wsum(w) ) ) ) – max <= c2, max is the optimal weightmax <= c2, max is the optimal weightmax <= c2, max is the optimal weightmax <= c2, max is the optimal weight

Otherwise, it is impossible toOtherwise, it is impossible toOtherwise, it is impossible toOtherwise, it is impossible to load all containersload all containersload all containersload all containers
Quit the program    }Quit the program    }Quit the program    }Quit the program    }

Pop (Pop (Pop (Pop (x,sumx,sumx,sumx,sum) from the stack;) from the stack;) from the stack;) from the stack;
depthdepthdepthdepth--------;};};};}

}}}}



28

Container Loading Example (1)
� Organize the solution space: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A

B C

D E F G

H I J K L M N O

P Q R S T U V W X Y Z a b c d e

1 0

1 1

1 1 1 1

1 1 1 1 1 1 1 1

0 0

0 0 0 0

0 0 0 0 0 0 0 0

1 : selection
0 : non-selection

8888

6666

2222

3333



29

Container Loading Example (2)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B C

D E F G

H I J K L M N O

P

+8 +0

1 1

1 1 1 1

0 0

0 0 0 0

Live node stack

Push A:0 and Move to BPush A:0 and Move to BPush A:0 and Move to BPush A:0 and Move to B

max = 0

eQ R S T U V W X Y Z a b c d

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

8888

6666

2222

3333



30

Container Loading Example (3)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D E F G

H I J K L M N O

P

+6 +0

A:0

Live node stack

Push B:8 and Move to EPush B:8 and Move to EPush B:8 and Move to EPush B:8 and Move to E

max = 0

eQ R S T U V W X Y Z a b c d

8888

6666

2222

3333



31

Container Loading Example (4)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I J K L M N O

P

A:0

B:8

Live node stack

Push E:8 and Move to JPush E:8 and Move to JPush E:8 and Move to JPush E:8 and Move to J

max = 0

eQ R S T U V W X Y Z a b c d

+2 +0

8888

6666

2222

3333

x



32

Container Loading Example (5)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

A:0

B:8

E:8

Live node stack

Push J:10 and Move to UPush J:10 and Move to UPush J:10 and Move to UPush J:10 and Move to U

max = 0

eQ R S T U V W X Y Z a b c d

+3 +0

8888

6666

2222

3333

x



33

Container Loading Example (6)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

A:0

B:8

E:8

J:10

Live node stack

max = 0

eQ R S T
U:10
{8,2}

V W X Y Z a b c d

Set max Set max Set max Set max 10, Pop J:10 and Backtrack to J10, Pop J:10 and Backtrack to J10, Pop J:10 and Backtrack to J10, Pop J:10 and Backtrack to J

8888

6666

2222

3333

x

x



34

Container Loading Example (7)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

A:0

B:8

E:8

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V W X Y Z a b c d

Pop E:8 and Backtrack to EPop E:8 and Backtrack to EPop E:8 and Backtrack to EPop E:8 and Backtrack to E

8888

6666

2222

3333

x

x



35

Container Loading Example (8)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

A:0

B:8

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V W X Y Z a b c d

Push E:8 and move to KPush E:8 and move to KPush E:8 and move to KPush E:8 and move to K

+0

8888

6666

2222

3333

x

x



36

Container Loading Example (9)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P

A:0

B:8

E:8

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V W X Y Z a b c d

Push K:8 and move to VPush K:8 and move to VPush K:8 and move to VPush K:8 and move to V

+3 +0

8888

6666

2222

3333

x

x



37

Container Loading Example (10)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P

A:0

B:8

E:8

K:8

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V:11
{8,3}

W X Y Z a b c d

Set maxSet maxSet maxSet max11, pop K:8 and Backtrack to K11, pop K:8 and Backtrack to K11, pop K:8 and Backtrack to K11, pop K:8 and Backtrack to K

8888

6666

2222

3333

x

x



38

Container Loading Example (11)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P

A:0

B:8

E:8

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V:11
{8,3}

W:8
{8}

X Y Z a b c d

8888

6666

2222

3333

x

x

pop E:8 & Backtrack to E; pop E:8 & Backtrack to E; pop E:8 & Backtrack to E; pop E:8 & Backtrack to E; pop B:8 & Backtrack to B;pop B:8 & Backtrack to B;pop B:8 & Backtrack to B;pop B:8 & Backtrack to B; pop A:8 & Backtrack to A;pop A:8 & Backtrack to A;pop A:8 & Backtrack to A;pop A:8 & Backtrack to A;



39

Container Loading Example (12)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P

Live node stack

max = 10

eQ R S T
U:10
{8,2}

V:11
{8,3}

W:8
{8}

X Y Z a b c d

8888

6666

2222

3333

x

x

Process the right Process the right Process the right Process the right subtreesubtreesubtreesubtree of A node with the same previous mannerof A node with the same previous mannerof A node with the same previous mannerof A node with the same previous manner



40

Container Loading Example (13)

� Backtracking: n = 4;  c1 = 12, c2 = 9 ; w = [8, 6, 2, 3]

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G:0
{}

H I
J:10
{8,2}

K:8
{8}

L:8
{6,2}

M:6
{6}

N:2
{2}

O:0
{}

P

Live node stack

max = 11

e:0
{}

Q R S T
U:10
{8,2}

V:11
{8,3}

W:8
{8}

X:11
{6,2,3}

Y:8
{6,2}

Z:9
{6,3}

a:6
{6}

b:5
{2,3}

c:2
{2}

d:3
{3}

+8

+0

+0

+3

ship1

max

ship2: {8,6,2,3}-{8,3}={6,2}

8888

6666

2222

3333

x

x



41

Bird’s-Eye View

� A surefire way to solve a problem is to make a list of all candidate answers and 
check them
� If the problem size is big, we can not get the answer in reasonable time 

using this approach
� List all possible cases � exponential cases

� By a systematic examination of the candidate list, we can find the answer 
without examining every candidate answer
� Backtracking and Branch and Bound are most popular systematic 

algorithms

** Surefire = 확실한, 특림없는



42

Table of Contents

� The Backtracking Method

� Application
� Rat in a Maze

� Container Loading


