!'_ Ch21.Backtracking

w

=

c

5

s L)
&

-

4

o '
o

W

m

o

m

o
Eu'
=

‘L Bird’s-Eye View

= A surefire way to solve a problem is to makkst of all candidate answers and
check them

= If the problem size is big, we can not get the ansmwezasonable time
using this approach

= List all possible cases® exponential cases

= By a systematic examination of the candidate listcarefind the answer
without examining every candidate answer

= Backtracking andBranch and Bound are most popular systematic
algorithms

** Surefire =st&lst EE Q=
[

SNU Internet DatzaBase Lab.

‘L Table of Contents

= The Backtracking Method

= Application
« Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2 [
n

o
rI'
w

=

Backtracking

U ystematic way to search for the solution to@bmm

= No need to check all possible choiceBetter tharthe brute-force approach
= Three steps of backtracking:

= Define a solution space

Constructa graph or a tree representing the solution space
Search the graph or the treeainlepth-first manndo find a solution

Tree representation of a problem

S

solution1 solution2 solution7 solution8 4
SNU Internat DataBase Lab.

Backtracking Steps (1 & 2)

= Step 1. Define a solution space
= Solution space is a space of possible choices inguatifeast one solution
= In the case of the rat-in-a-maze problem, the swligpace consists afl paths
from the entrance to the exit

= In the case of chess, the solution space condistémossible locations of
checkers

= Step 2. Construct graph or a treeepresenting the solution space
= Solution space can be represented either by atti@eagraph, depending
on the characteristic of the problem
= In the case of the rat-in-a-maze problem, the soligmace can be
represented by graph

= The solution space for container loading isee

S

SNU Internet DatzaBase Lab.

‘_L Backtracking Step (3)

= Step 3: Search the graph or the tree arepth-first manner to find a solution

= Two nodes
= a live nodgnode from which we can reach to the solution)
= an E-nodgnode representing the current state)

= We start from the start node (node representiri@irstate)
= Initially, the start node is both live nodeandan E-node
= Try to move tca new nodé€node representing a new state we have never seen)

s Success? Push current node into the stack if it is live, amake the new node
a live node & E-node

= Fail > Current nodalies (i.e. it is no longer live) and we move back
(backtrack) to the most recently seen live node in the stack

= [he search terminates when
= we have found the answer, or
= We run out of live nodes to back up to

(D ;

SNU Internet DatzaBase Lab.

‘L Table of Contents

= [he Method

= Application
= Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

Rat iIn a Maze

o rat-in-a-maze instance (Example 21.1)

entran(:eo O O O : road
1 : obstacle
011

O O O exit

= A maze is a tour puzzle in the form of a complexibheng passage through
which the solver must find a route

= A maze is agraph
= S0, we can traverse a maze using DFS / BFS
= Backtracking= Finding solution using DFS
= Worst-case time complexity of finding path to thet @in*n maze is O(®)
[

h
SNU Internet DatzBase Lab

i Backtracking in “Rat in a Maze”

1. Prepare an empty stack S and an empty 2D array

2. Initialize array elements with 1 where obstacles @relsewhere
3. Start at the upper left corner

4. Set the array value of current position to 1

5. Check adjacent (up, right, down and left) cdibge value is zero
= |f we found such cellpush current positiomto the stack and move to there
= If we couldn’t find such cellpop a positiofrom the stack and move to there

6. If we haven't reach to the goal, repeat from 4

S

SNU Internet DatzaBase Lab.

i Rat iIn a Maze Code

Prepare an empty stack and an empty 2D array
Initialize array elements with 1 where obstacles are, 0 elsewhere

i — 1
1
Repeat until rleach to the goal {
if (a[fl][]+1] =0) { put (i,j) into the stack
j++; i
I++: }

else if (a[i][j-1]==0) { put (I,]) into the stack

J-

else if (a[i-1][j]==0) { put §|,]) into the stack
I__

else pop (i,j) from the stack;

i else if(ali+1][j]==0) { put (i,j) into the stack

‘L Rat In a Mazé&xample(1)

= Organize the solution space

entrance

ive: @ ‘

new visited

dead: <:::>

11

‘L Rat In a Mazé&xample(2)

= Search the graph in a depth-first manner to fisdlation

Live node stack

L

12

‘L Rat In a Mazé&xample(3)

= Search the graph in a depth-first manner to fisdlation

h
SNU Internet DatzBase Lab

E-node

o)
Da A
@’@’@

Push (1,2)
Move to (1

&
,3

)

Live node stack

L

(1,1)

13

i Rat In a Mazé&xample(4)

= Search the graph in a depth-first manner to fisdlation

E-node Live node stack

‘ Pop (1,2) &
! ! ! Backtrack to (1,2)
&

2 (1,1)

éﬁ 5
SNU Internet DatzaBase Lab.

‘L Rat In a Mazé&xample(b)

= Search the graph in a depth-first manner to fisdlation

E-node Live node stack

® |

Pop (1,1) &
)

@ @ @ Backtrack (1,1

(1,1)

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

‘L Rat In a Mazé&xample(6)

= Search the graph in a depth-first manner to fisdlation

E-node Live node stack

0 Push (1,1)
eo-@-@

&
1)

ﬁ 5
SNU Internet DatzaBase Lab.

16

‘L Rat In a Mazé&xample(7)

= Search the graph in a depth-first manner to fisdlation

Live node stack

L

Push (2,1) &

@’@ Move to 3,1)

E-node @

O

(1,1)

ﬁ 5
SNU Internet DatzaBase Lab.

‘L Rat In a Mazé&xample(8)

= Search the graph in a depth-first manner to fisdlation

Live node stack

L

Push (3,1) &

@’@ Move to 3,2)

(2,1)
(1,1)

E- node

h
SNU Internet DatzaBase Lab.

‘L Rat In a Mazé&xample(9)

= Search the graph in a depth-first manner to fisdlation

Live node stack

Push (
@ Move to)

(3.1)

(02){a3) =

E-node

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

Rat In a Mazé&xample(10)

arch the graph in a depth-first manner to fisdlation

e

Live node stack

’ Finish
CEONES

(3,2)
PP o
E-node (1’1)

s Observation
[

— = Backtracking solutiomay not be a shortest path
é’ﬁﬁ = Nodes in the stack represent the solution

SNU Internet DataB:

20

‘L Table of Contents

= [he Method

= Application
« Rat in a Maze
» Container Loading

w

=

[

2

(]

o

-

@
U'
]

b

m

2
n

o
rI'
w

=

21

i

Container Loading i
o ntainer Loading Problem (Example 21.4)

= 2 ships andh containers >
Ship capacity: g ¢,
The weight of containar w,

n
" Y wsc+c i
| 2
=1 _
Is there a way to load allcontainers? LT I!I!-

= Container Loading Instance
= N=4
= ,=12,6=9
= W=]8, 6, 2, 3]

= Find a subset of the weights with sum as close &3 possible

éﬁ
SNU Internet DatzaBase Lab.

i Considering only One Ship

= Original problem: Is there any way to load n comeas with

QW g, Q2w <g

| belongsto ship; | belongsto ship,

n
= Because Z\Ni + Z\Ni :Z\Ni IS constant,

| belongsto snip; i belongsto ship, =1
max(> w)=min(> w)
I belongsto ship, I belongsto ship,

= S0, all we need to do is trying to load contairsrship 1as much
as possibland check if the sum of weights of remaining
» containers is less than or equal o c

23

i Solving without Backtracking

= We can find a solution with brute-force search

1. Generate n random numbers x;, X, ..., X,
wherex. =0or1 (i=1,..,n)

2. If x. = 1, we put i-th container into ship 1
If x, = 0, we put i-th container into ship 2

3. Check if sum of weights in both ships are less
than their maximum capacity

3-1. If so, we found a solution!

3-2. Otherwise, repeat from 1

= Above method are too naive and not duplicate-free

=» Backtrackingprovides a systematic way to search feasible
, Ssolutions (still NP-complete, though)

SNU Internet DatzaBase Lab.

i Container Loading and Backtracking

Container loading is one of NP-complete problems
= There are 2possible partitionings

= |f we represent the decision of location of each @metr with abranch, we
can represent container loading problem witrea

= Organize the solution space
= Solution space is representecbasnary tree
= Every node has a label, which is an identifier

= SO0, we can traverse the tree using DFS / BFS
= Backtracking #inding solution using DFS
= Worst-case time complexity is O)af there are n containers

(D .

SNU Internet DatzaBase Lab.

Backtracking in Container Loading

Prepare an empty stack S and a complete binaryl ath depthn
Initialize themax to zero
Start from root of T
Lett as current node
If we haven't visit left child and have space taleg,,q

then load itpusht into Sand move to left child

else if we haven't visit right chilghush t into Sand move to right child
6. If we failed to move to the child, check if the #tas empty
1. If the stack is not emptyop a noddrom the stack and move to there
If current sum of weights is greater thaax, updatemax
Repeat from 4 until we have checked all nodes

a ~ 0 N PF

© N

(D

SNU Internet DatzaBase Lab.

26

Container Loading Code

Consider n, cl1, c2, w are given

Construct a complete binary tree with depth n & Prepare an empty stack
max < 0; sum < 0; depth < 0; x < root node of the tree;
While (true) {

if (depth < n && Ix.visitedLeft && c1 — sum = w[depth]) {
sum < sum + w[depth]
if (sum > max) max = sum;
Put (; x,sum‘z into the stack
X.visitedLeft < true;
X < X.leftChild;
depth++; }
else if (depth < n && Ix.visitedRight) {
Put (x,sum) into the stack
x.visitedRight < true;
X < x.rightChild;
depth++; }
else {if (the stack is empty) {

If sum(w) — max <= c2, max is the optimal weight
Otherwise, it is impossible to load all containers
Quit the program }

Pop (x,sum) from the stack;

depth——;}

Container Loadingxample(1)

ganize the solution space: n =4;=cl2,¢=9;w=[8, 6, 2, 3]

1 : selection
0O : non—selection

Live node stack

Container LoadingExample(2)

= Backtrackingn=4; ¢=12,6=9;w=][8, 6, 2, 3]

+8 @ +()
S max = 0
1O 6 10
1O 102 1O 10
0000000

Push A:0 and Move to B

29

Live node stack

Container Loadin@Example(3)

= Backtrackingn=4; ¢=12,6=9;w=][8, 6, 2, 3]

h Push B:8 and Move to E

Container Loadin@gExample(4)

= Backtrackingn=4; ¢=12,6=9;w=

i

Push E:8 and Move to J

[8, 6, 2, 3]

Live node stack

B:8
A:0

G o

6
E
D ONN O
2

Container Loadin@Example(5)

= Backtrackingn=4; ¢=12,6=9;w=[8, 6, 2, 3] E:8
B:8
@ A:0

i

Live node stack

G o

6
g
D ONN O
2

Push J:10 and Move to U

Container Loadin@Example(6)

= Backtrackingn=4; ¢=12,6=9;w=][8, 6, 2, 3]

i

.
8
18} 5

Eg8
D , (2

Live node stack

J:10
E:8
B:8
A0
max = 0

Set max €10, Pop J:10 and Backtrack to J

Container Loadin@gExample(7)

= Backtrackingn=4; ¢=12,6=9;w=

5

[8, 6, 2, 3] E:8

Live node stack

B:8
A:0

G max = 10

NOSRO
LD
B

Pop E:8 and Backtrack to E

Container Loadin@Example(8)

= Backtrackingn=4; ¢=12,6=9;w=

i B

[8, 6, 2, 3]

Live node stack

B:8
A:0

G max = 10

6
E:8
{8}
2
-
{8.2}
U:10
.....00.00

Push E:8 and move to K

Container Loadingxample(9)

= Backtrackingn=4; ¢=12,6=9;w=

-

[8, 6, 2, 3] E:8

Live node stack

B:8
A:0

G max = 10

J:10

{8 2
i
.

Push K:8 and move to V

Live node stack

Container Loadin@gxample(10)

K:8
= Backtrackingn=4; ¢=12,6=9;w=[8, 6, 2, 3] E:8

B:8
@ A:0
3 max = 10
B:8
X 18}
D C («)y (e
o
{8 2}

U 10V
ik00.00
o

éﬁ; Set max€11, pop K:8 and Backtrack to K

o

Live node stack

Container Loadin@gxample(11)

= Backtrackingn=4; ¢=12,6=9;w=18, 6, 2, 3] E:8
B:8
@ A:0
3 max = 10
828
X 18}
s Mceo
J+10

: Q OI101010

U:10 (V:11)(W:8
) @OOHBBBEEEEE
o

éﬁ- I3 Pop E:8 & Backtrack to E; pop B:8 & Backirack to B; pop A:8 & Backirack to

Live node stack

Container Loadin@gxample(12)

= Backtrackingn=4; ¢=12,6=9;w=][8, 6, 2, 3]

w

=

<
??‘T’
'
[w]

5 i
S
° D)
z|'
L3

O max = 10
828
181

D . (7] (e

.
{82}
A U:10 (Vi1 W8
- 4

Process the right subtree of A node with the same previous manner 39

Live node stack

i Container Loadingxample(13)

= Backtrackingn=4; g=12,6=9;w=][8, 6, 2, 3]

max = 11

B)us

A /
ship1
ship2: {8,6,2,3}-{8,3}={6,2}

40

‘L Bird’s-Eye View

= A surefire way to solve a problem is to makkst of all candidate answers and
check them

= If the problem size is big, we can not get the ansmwezasonable time
using this approach

= List all possible case® exponential cases

= By a systematic examination of the candidate listcarefind the answer
without examining every candidate answer

= Backtracking andBranch and Bound are most popular systematic
algorithms

** Surefire =st&lst EE Q=
[

SNU Internet DatzaBase Lab.

i Table of Contents

= The Backtracking Method

= Application
« Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2 [
n

o
rI'
w

=

42

