Chapter 7
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the Second Law
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7.1 Entropy Changes in Reversible Processes

For reversible process,

1. Adiabatic process :

2. Isothermal process :

6q, =du+ P dv

0q, = 0,ds = 0,s = constant

52 —S1=f17=7
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7.1 Entropy Changes in Reversible Processes

3. Isothermal (and isobaric) change of phase: $§, —$§1 = =

4. lsochoric process: Sp) — 81 = C,— = Cp In ==

5. lIsobaric process : — = — — =-dP =ds
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7.2 Temperature-Entropy Diagrams

The total quantity of heat transferred in a
reversible process from state 1 to state 2

IS given by
2 Th |
qr = fl T ds
T
The T-s diagram is simple rectangle for a RN
. ITisothermal 3
Carnot cycle. The area under the curve is h
Si S Sh -
Figure7.1 T-s diagram for a Carnot cycle [1]
f Tds = Z q, =w
Since % du=20

[1] http://juanribon.com/design/carnot-cycle-pv-ts-diagram.php 2017.02.27
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7.3 Entropy Change of the Surroundings (Reversible)

The heat flow out of the surroundings at every point is equal in
magnitude and opposite in sign to the heat flow into the system.

dqin = dqoy: = dqy

For a reversible process, temperature of system and its surroundings

are eqgaul
surroundings

T +dT dT LT

dq, >0
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7.3 Entropy Change of the Surroundings (Reversible)

So,
(%)surroundings ~ (%) surroundings — (as)surroundings
and from
dssystem + dssurroundings = dsuniverser
|dS |surroundings = —|dS |system & |d5 |universe =0

surroundings
T +dT

dq, >0
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7.3 Entropy Change of the Surroundings (Irreversible)

However for an irreversible case,

AT >0
and
oq dq _
(Tr) surroundings (T+ ATT)surroundings — (As)surroundings

surroundings
T + AT

dqg, >0
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7.3 Entropy Change of the Surroundings (Irreversible)

So,

ASsystem + ASsurroundings — ASuniverse >0

(Entropy generation!)

surroundings
T + AT

dqg, >0
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7.4 Entropy change for an Ideal Gas

With du = ¢, dT, we have

Ziqr c,dT P
i +Tdv—ds

For a reversible process, For an ideal gas, P/T = R/v , so

q dT+Rdv
= C.,— S
S T v

Integrating, we have

sz—sl=cvln( )+Rln( o)
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7.5 The Tds Equations

From the combined first and second laws, Tds = du + P dv
Tds = ¢, dT —T ( )p dP (s = s(T, P))

(% Assignments) Entropy can be expressed as function of specific
volume and pressure or temperature and specific volume. Prove the

below two equations using Maxwell relations.
aoT
Tds = cp( )p dv +c, ( ),, dP (s =s(v,P))

Tds = ¢, dT + T ( )v dv (s = s(T,v))
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7.5 The Tds Equations

Let T and P be the independent variables .

The enthalpyis h= u+ P v thus,

Tds = dh — vdP

= ( )Pd + = [( )T_v]dp
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7.5 The Tds Equations

With s = s(T, P), we have

ds = ( )PdT + ( )TdP

( )Pd + = [( )T_v]dp

Since T and P are independent, it follows that

as

=2 GPr=7(Gpr —¥
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7.5 The Tds Equations

The differential ds is exact. Therefore,

9%s B d%s
dPAT OToP

d O0s d O0s
[5p Gplrlr= = I35 Gprlp

Substituting last two Equations from previous slide, we get

1 0°h 1 _ 0%h v 1 0h
= [( )T

Fr) 3

TOPAT T [ oToP (aT vl

( )T=—T( )P+v
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7.5 The Tds Equations

For a reversible process  ¢p = (

Tds = cpdT — T( )P dP

oh

oT

Finally, since pfv = (a_v)P we have

oT

Tds = cpdT — T vpdP

)o
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