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12. Variational and Energy Principles

- Chap. 9 ... PVW, PCW for particles, systems of particles and trusses

no attempt is made for 3-D solids

- Chap. 10 ... PMTPE, PMCE for mechanical systems and trusses basic concepts of FEM
applied to truss

- Chap. 11 ... development of approximate solution for beam problems
recast the DE of equilibrium into integral forms
equivalence between { Weak statement of equilibrium
PVW
basic concepts of FEM applied to beam
- Chap. 12 ... stationary values of functionals (functions of functions) <- “calculus of variation”
PVW, PCW —
PMTPE, PMCE

— 3-D soli
Hu-Washizu principle 3-D solis

Hellinger-Reissner principle




12.1 Mathematical preliminaries

- Basic equations of elasticity in Chap. 1... differential calculus, PDE

- Calculus of variation ... in this section

‘ 12.1.1 Stationary point of a function

- Function of n variables, F' = F'(uy, us. ..., u,)
stationary points of this function is defined as
OF
— =0, 1=1.2.....n (12.1)
C)ui

... for a function of a single variable, corresponds to a horizontal tangent to the curve

F, \ / F, OF/0u =0 F .
) -1 r‘jF/b_‘u, —0 Minimum
BF/fj_ll_,=0 Maximum
> u, > u, > u, Saddle point

Minimum Maximum Saddle point

Fig. 12.1. Stationary points of a function.




12.1 Mathematical preliminaries

Stationary at a point, Eq. (12.1) hold and the following statment

OF N OF P OF 0
—w —w . w,, =
Ouq ! o 2 iy,

wy, Wa, ..., Wy : arbitrary quantities
convenient to use a special notation, Wi = ou; | “virtual changes in u;
JF Sus + JF St + N dF
->  —— 0u — ou .
iy ! X 2 .,

Virtual change operator, “ *, behaves in a manner similar to the differential operator, " d"

ou,, =0

“variation in F,0F™ definition

dF oF JF
OF = — dup + — dus + ... +

Oy, (12.2)

Juq g du,,
SF =0 (12.3)




12.1 Mathematical preliminaries

- Differential condition, Eq.(12.1)
variational condition, Eq.(12.3)
Eq.(12.1) implies Eq.(12.3)
Eq.(12.3) implies Eq.(12.1)

Both must hold at a stationary point

} -> two conditions are entirely equivalent

Minimum
- Determine whether a stationary point is Maximum
Saddle point
-> it is necessary to consider the second derivatives
0?F o
Z ——— dudu; >0 -> minimum (12.4)
. @ui(‘}uj
%!J: ‘.‘n
02 F
du;du; <0 -> maximum
81{.@-(")1{. j ! J




12.1 Mathematical preliminaries

- Second variation of function F

stationary point is a minimum if  §2F > 0 (12.5)
stationary point is a maximum if §2F < (

stationary point is a saddle point if the sign of §2F depends on the choice of the variation

of the independent variables

- Problem of determining a stationary point of a function of several variables.

F = F(uy,ug,...,u,), where the variables are not independent.

-> subjected to a constraint

flur.ug. ... u,) =0. (12.6)




12.1 Mathematical preliminaries

Constraint can be used to express one variable, say u,, , in terms of the others.
-> Uy, can be eliminated from F = Fl(uj,ua, ... up_1)
However, it might be cumbersome, or even impossible, to completely eliminate one variable

Alternative approach to avoid this elimination-of-variable process

at stationary point

oF oF dF
OF = — duy + —— dus + ... + - dty, =0 (12.7)
duq Oug duy,
. oF :
-> however, does NOT imply = ) for i =1.2.....n
o :

because d1; CANNOT be chosen arbitrarily since they must satisfy the constraint, Eq.(12.6)

Variation of a constraint

of

i of 0
Of:—CSU-l—F_—fOHg—F...‘F f

ot,, =0 (12.8)

duq s o,




12.1 Mathematical preliminaries

- Linear combination of Egs.(12.7) and (12.8)

6F5+ +8Fa‘ + A 6fo‘+ +af§ 0
— ou e+ — Ouy, —— ou . Uy | =
duq ! Dy, duq ! o,
A : arbitrary function of u1.us2,....u,"Lagrange multiplier”
regrouping
" [OF of
A ou; =0
lﬁui_F 8u5] i (12.9)

. du, could now be expressed in term of the (n-1) other variations, du;

- To avoid this cumbersome algebraic step, the arbitrary Lagrange multiplier is chosen

such that
OF df
— A =0
Oy, - Oy,

... with this choice, the last term in Eq.(12.9) vanishes for all du,

Eqg. (12.9) -> _ _
OF I\ of

0 1=1,2,....n—1 (12.10)

du; Jdu;




12.1 Mathematical preliminaries

- Combining the last two equations
OF+Xof=0
where all variations, du;.i = 1,2,....n are “independent”
- Eq. (12.6) 0> foA = 0 for any arbitrary o\
stationary condition -> 5+ Aof = 0F + Ao f + fON = O0(F 4+ A\f)
Modified function F+
... variation in ' = 0 for all arbitrary variations du;. i =1,2....,n, and 6\

- Summary ... initial constrained problem -> “unconstrained problem”

SFt =0, where FT=F4+\f (12.11)
modified function F'* involves (n+1) variables, w;, 2 = 1,2,...,n and A
" TOF of -
; l@uz_ +A C‘)-u.z-] Su; + f SN =0
because du;. i = 1.2.....,n and dA\ are all independent, arbitrary
oF + A of =0, :=1,2,....,n; and [f=0

ou i 19 (i

-> (n+1) equations to be solved for (n+1) unknowns




12.1 Mathematical preliminaries

- Lagrange multiplier method ... “unconstrained problem” but increase number of unknowns
from n to (n+1), additional unknown is the Lagrange multiplier.
- Multiple constraints, f; =0.i=1.2,....m

-> m Lagrange multipliers \;,i=1.2,....m

FT=F+> \fi (12.12)
1=1




12.1 Mathematical preliminaries

‘ 12.1.3 Stationary point of a definite integral

- Definite integral

b
I —/ F(y, v, x)dx (12.13)

(-)" : derivative with respect to

y(a) = a
y(x) : unknown function of x subject to BC's, {

y(b) =
[ : “functional, function of a function”
... the value of the definite integral I depends on the choice of the unknown
function y(x)

There are an infinite number of y between a and b

-> I is equivalent to a function of an infinite number of variables




12.1 Mathematical preliminaries

- Variational formalism (sec. 12.1.1)
“variation of a function” -> Jf
Fig. 12.2 ... two functions, f(z) , f(x)

Of = f(x) = f(x) = ()

U(x) : continuous and differentiable, but otherwise arbitrary function,

U(a) =v(b) =0
Of virtual change that bring the function f(x) to a new, arbitrary function f(z)
df(a) = df(b) = 0->¢f does not violate BC’s of the problem

i » X

Fig. 12.2. The concept of variation of a func-
tion.




12.1 Mathematical preliminaries

- Stationarity of functional /

b b
6126/ Fy, y )di—/dF(-y,y’,:r)dm:O
Eq.(12.2) and treating ¢ as a differential
dF OF
ol = ) o) dr =20
/a L‘?y I oy ] '
Integration by parts on the second term

b b . b
OF _(dy boF d d [OF OF
/a oy (dx)d;r Oy dr (0y)de = —/a P (c) )Oydx+[0y ]

a

Boundary term vanishes because §y(a) = dy(b) = 0->

br - -
oF d [OF
ol = — = — dyde =0
fa [@y dx (@y’)] e (12.14)

.. Euler-Lagrange equation for the problem

-> the necessary and sufficient condition for the definite integral to be at a stationary

point




12.1 Mathematical preliminaries

- Equation of elasticity ... can be viewed as the Euler-Lagrange equations associated with the

stationary condition of definite integrals I
f(x) |
- Crucial difference between on Increment Sngdef |
{ (Fig.12.3) ]" ax |
Variation 0f — e

Fig. 12.3. The difference between an incre-
ment d f and a variation 6 f.

@ differential, df... an infinitesimal change in /(%) resulting from an infinitesimal change, dx,
in the independent variable
df/dx ... the rate of change or tangent at the point

@ Of .. arbitrary virtual change that brings f(z) to f(x)

-> df and § f are clearly unrelated

- Manipulations of the two symbols are quite similar
... the order of application of the two operations can be interchanged.

d sy Qoo df _df _rds
a(dﬂ_dx(f f)_da? d;r_o(dx) (12.15)

The order of the integration and variational operations commute

b b b b b
5/ de:/ ﬁdx—/ Fd:.c:f(ﬁ—F)d:r:/ oF dzx (12.16)




12.1 Mathematical preliminaries

‘ 12.1.4 Variational and energy principles

o

Fig. 12.14 ... elastic body of arbitrary shape subjected to surface tractions and body forces as

well as geometric BC's { Prescribed displacements at point

Prescribed displacement over a portion of outer surface
) : volume of the body

S : outer surface
1. : unit vector, outer normal to
&1 @ portions of the outer surface where prescribed tractions f are applied

82 : portions of the outer surface where prescribed displacements « are applied

i Prescribed
S1 and Sy share no common points -> S = §; + Sy rescribe

tractions, S,

=1

a point of the outer surface that is traction free belong to S

Prescribed
displacements, S,

1 5 Fig. 12.4. General elasticity problem.




12.1 Mathematical preliminaries

- Body forces ... might also be applied over the entire volume
ex) gravity forces, electronic or magnetic fields
internal forces in accordance with D’Alembert’s principle
- Basic equations of elasticity in Chap.1 -> form a set of PDE’s that can be solved to find the
displacements, strain, and stress fields at all points in )V

subsequent sections ... variational and energy principles presented to provide an alternative

formalism




12.2 Variational and energy principles

‘ 12.2.1 Review of the equations of linear elasticity

> Fig. 3.1 (Page 101) ... 3 groups of the equations of elasticity
solutions of an elasticity problem involves
(D a statically admissible stress field

@ a kinematically admissible displacement field and the corresponding strain field

@ a constitutive law satisfied at all points in volume V

r--- AN . .. ... N N N N AN BN AN BN BN N NN N EE
L}
1
: .
1 Physics ; .
! " Newton’s Material
i orscience . Geometry
i . . Laws science
' origin
L}
: A
P l """" \ A v
L}
. o L Strain- | !
Equations | Equilibrium Constitutive displacement, | |}
H » actlat . i ; . - - ? 1
i of elasticity equations laws compatibility | |
i
1
I P —— ]

Fig. 3.1. The elasticity equations separated into three groups.

Active Aeroelasticity and Rotorcraft Lab.



12.2 Variational and energy principles

- Equilibrium equations
... most fundamental equations, Sec 1.1.2 and 1.1.3
derived from Newton’s law stating that the sum of all the forces acting on a differential

element should vanish.

- Equilibrium equations for a differential element of a body, Fig. 1.4

80’1 37'21 87’31
(")I] ("):1?2 81‘-3
87’12 86"2 87’32

by =0 12.17
dx1 i dro i Jxs o2 ( )
8’."’13 8T23 80’3

by =0
Oaq i dro i dag T0s

must be satisfied at all points of volume ) o (dodan) "/ (o Tt (dusfd) dx,
T+ (dr/dx) dx,

4+ =0

| . T2 T (d1,)/dx,) dx,

l» o, + (doy/dx,) dx,

T, + (d1,,/dx,) dx,

Fig. 1.4. Stress components acting on a differential element of volume. For clarity of the
1 8 figure, the stress components acting on the faces normal to 7; are not shown.
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12.2 Variational and energy principles

Traction equilibrium equations

ty =11, to=1a, t3=13 (12.18)
definition of the surface tractions -> Eq. (1.9)
surface equilibrium equations -> “force or natural BC's”

compact stress array, 0-> defined in Eq. (2.11b)

T
0 ={01,09,03.T23,T13, T12} (2.11b)

Definition 12.1 A stress field 0 , is said to be statically admissible if it satisfies the equilibrium

equations, Eq.(12.17), at all points of volume ) and surface equilibrium equations, Eq.(12.18)
at all points of surface &;

Strain-displacement relationships
... merely define the strain components that are used for the characterization of the

deformation of the body

When the displacements are small, it is convenient to use the engineering strain

components to measure that deformation at a point.

Ouq Ousg Ous “axial strain”
€1 — —. €9 — —., €2 — ——
1 Oz’ 2 dzy’ 3 Os axial strain
Jus  Ous Juy  Ous ouy  Ous (12.19)
Y23 — 4+ = — — = — e

= —, 713 —. Y12 = + -
8.’1?3 0.1’2 8I3 011?1 8.1’2 (‘):1?1




12.2 Variational and energy principles

- To compute strain components, the displacement field must be continuous and
differentiable
must be equal to the prescribed displacements over surface 52
U] = 'ﬂ.l._, Uy = ﬂ-gj us = Us (12.20)
... geometric BC's
compact strain array, €., defined in Eq.(2.11a)

T
€= {Elz 62_-.53:’“;"‘23{)-’13,’?12} (2.11a)

Definition 12.2 A displacement field, U, is said to be kinematically admissible if it is
continuous and differentiable at all points in }V and satisfies geometric BC's, Eq.(12.20), at all
points on surface Ss

Definition 12.3 A strain field, €., is said to be compatible if it is derived from a kinematically

admissible displacement field through the strain-displacement relationship, Eq.(12.19)




12.2 Variational and energy principles

- Constitutive laws ... relates the stress and strain components

mathematical idealization of the experimentally observed behavior

Sec. 2.1.1 ... homogeneous, isotropic, linearly elastic material behavior
-> frequently used highly idealized constitutive law

Many materials -> anisotropy, plasticity, visco-elasticity, or creep

- Hooke’s law, Eq.(2.10) ... simple linear relationship between the stress and strain fields

e=50 (2.10)
positive-definite, symmetric stiffness matrix, positive-definite, compliance matrix,
C .. Eq.(2.12) S .. Eq.(2.14)
- - (1 —v v v 0 0 0
L= —v 0 0 0 v 1—v v 0 0 0
, —v l=r 0 0 0 voow o 1-u 0 0 0
—v—rv 1 0 0 0 E T—2v
S == Y — 0o 0 0 0 0
= F 0 0 0 2(1+v) 0 0 (1+v)(1—2v) 2 19
0O 0 O 0 2(1+v) O 0o 0 0 0 5 0
0 0 0| 0 0 2(1+v)] o o0 ol o o 1:22;/




12.2 Variational and energy principles

‘ 12.2.2 The principle of virtual work

- Elastic body in equilibrium under applied body forces and surface tractions

-> the stress field is statically admissible

-> equilibrium equations, Eq.(12.17), are satisfied at all points in )/ and the surface

equilibrium equations, Eq.(12.18), at all points on
@O’l 87‘21 @'Tgl . 8’7‘12 30‘2 @’ng .

bi| ou ba| Ou

s /1;{[@:1?1 + Do + s + 01 uy + O + g + Ora + 02 1o

[6713 87’23 n 60'3

(12.21)

B} T
ba| dus $ dV — t—1t dudS =0.
daq + Do Oxs i 3] UB} 4 /31 [_ _] “

3 equilibrium equations X an arbitrary, virtual change in displacement then integrated over the
range of validity of the equation, volume)’

3 surface equilibrium equations X arbitrary, virtual change in displacement, then integrated
over the range of validity of the equation, surface &

stress field is statically admissible -> tracked term vanished -> multiplication by an arbitrary

quantity results in a vanishing product.




12.2 Variational and energy principles

- Integration by parts ... Green’s theorem, first term of the volume integral

—/QT§§dV+/QT(S'E_LdV—I—/ETCSE_LdS— (t—1)ToudS =0 (12.22)
v Vv

S S

11 : component of the outward unit normal along 71 , (Fig. 12.4)

=> —/gTéng+/QTc’F-z_LdVJrfEsz_{.dS— (t—1)ToudS =0 (12.23)
% v S Sy
0€ : virtual, compatible strain field
_ dou o) _ Ao
061 = — ul, (562 == HQ: 063 == — UJ3:
a;l’l (").ITQ (_');l’g (12_24)
. doug  Odus dduy  Odus douy  Odus
Y23 = - + =, 03 = —— + ——, 012 = + -
drg dro dxs dxq dxo dxq
Prescribed

=1

tractions, S,

Prescribed

i, displacements, S,

Fig. 12.4. General elasticity problem.

Active Aeroelasticity and Rotorcraft Lab.



12.2 Variational and energy principles

- Virtual displacements are now chosen to be kinematically admissible
-> 0ou =0o0on &2 -> Eq. (12.23)

" T
—/JTéedV—l—/bToudV—l—/ t oudS =0 (12.25)
1% 1% S1
R \ Y )
Virtual work done by Virtual work done by the
the internal stresses, externally applied body
SWr, EQ.(9.77a) forces and surface tractions

SW; = — / oldedy
Vv

-> §W, + 0Wg = 0

Reverse direction also holds. Eq.(12.25) -> Eq.(12.21)

=> Principle of Virtual Work




12.2 Variational and energy principles

Principle 15 (PVW) A body is in equilibrium if and only if the sum of the internal and external

virtual work vanishes for all arbitrary kinematically admissible virtual displacement fields and

corresponding compatible strain fields

equation of equilibrium, Egs. (12.17), (12.18)
o : } <- 2 entirely equivalent statement PVW

Principle of virtual work

However, for the solution of the specific elasticity problems, it must be complemented with

{ stress-strain relationships
strain-displacement relationships

- Comparison between { the present statement of PVW

that derived for beams under axial and transverse loads,

Egs.(11.42), (11.44)

... different, but physical interpretation is identical




12.2 Variational and energy principles

‘ 12.2.3 The principle of complementary virtual work

- Elastic body undergoing kinematically admissible displacements and compatible strains
-> the strain-displacement relationship, Eq.(12.19), are satisfied at all points in volume V

and the geometric BC'’s, Eq.(12.20), are satisfied at all points on surface $;

ouy | Do dug
— — 10 SE— ) — =1 0
/v{lq 011“-1] o1+ lﬁz 0;1:2] o2 + lea O;xg] 03

Ous  Ous| Ouyp  Ous|
=> Nog — ——= — — 2| § Mg — —— — —— | § 12.26
+ [,23 Os 0332] T23 + [,13 I ("):1?1] T13 ( )
Juy  Oug | T ¢
+ |72 — —— —=| 0112 p dV — [u—u]” 6tdS =0
Jrg Oy S,

6 strain-displacement relationships X arbitrary, virtual changes in stress, then integrated
Over the range of validity of the equations, volume V

3 geometric BC's X arbitrary, virtual changes in surface traction then integrated over the
range of validity of the equations, surface &

Strain field is compatible, displacement field is kinematically admissible

-> bracket term vanishes -> multiplication by an arbitrary quantity results in a vanishing

product




12.2 Variational and energy principles

- Integration by parts ... by Green’s theorem, first term of the volume integral

duy o ,
/ L dop dV = — ul 7Ly + [ uingdor dS (12.27)
(’).231 (’).231 S

111 : component of the outward unit normal along 71 , (Fig. 12.4)

/ TOQ‘ dV 050’1 0(57’21 n 8(57'31 "
C)Jfl _;1’2 8583
057‘12 C)OO’Q 00732 8(57‘13 867‘23 5(50'3
> . (12.28)
+( drq i Oxs + Oxs )ug * ( dxy i dxo i Ors ) u3] 4V

+[fo‘;ds—/ (u—0)TotdS =0. (12.
S Sa
“statically admissible virtual stress field” ... virtual stress field that satisfies equilibrium

equations in volume dooy 00191 0073y

=0
or1 + Oxo * Ors
do do do
| 712 4 ¢ 02 + 2 732 —0
Oxq R Oxs (12.29)
do do do
T13 n T23 n 03 0

Jxq Oy Jxs

And the surface traction equilibrium equations, 0t = 0 on surface 57




12.2 Variational and energy principles

- Because the virtual stresses are arbitrary, they can be chosen to be statically admissible

-> Eq.(12.28)
— / elSo dy —I—/ Wl'6tdS =0 (12.30)
% Sa
\_Y_} \ J
Y

Complementary virtual Complementary virtual
work done by the work done by the
internal stresses 01y prescribed displacements oW
Eq.(9.77b)

mg:i/E@m;
V

-> §W] +dWh =0

reverse direction also holds -> principle of virtual work




12.2 Variational and energy principles

Principle 16 (PCW) A body is undergoing kinematically admissible displacements and
compatible strains if and only if the sum of the internal and external CVW vanishes for all
statically admissible virtual stress fields

- strain-displacement relationships, Eq.(12.19) 7]  Entirely equivalent

< > PCW
Geometric BC's, Eq.(12.20)
Eq.(12.30) with Principle 7 in Chap.9 ... Principle 16 is simply a more general statement

Principle 7 (Principle of complementary virtual work) A truss undergoes com-
patible deformations if and only if the sum of the internal and external complemen-
tary virtual work vanishes for all statically admissible virtual forces.




12.2 Variational and energy principles

‘ 12.2.4 strain and complementary strain E density functions

- Sec. 10.5(Page 519) ... { strain energy density function }
complementary strain energy density function

developed for a linearly elastic, isotropic material -> Eqgs.(10.47), (10.50)

1 E
a(e) = 3 T [(1 — J/)(E% + E% + 6%) + 2v(€1€9 + €163 + €3€3) 1047
1-2v, , 9 9 (10.47)
T (723 +731 +712) | -
a(c) = L [J% + J% + a§ — 2 (o109 4+ 0103 + 0203)
_ 2F (10.50)

+ 2(1 +v) (T122 + 7223 + 79?1)] .




12.2 Variational and energy principles

- If the internal forces in the solid are assumed to be conservative
-> can be derived from a potential
internal forces ... the components of stress

potential ... the strain energy density function

- Stress in solid ... derived from a strain energy density function, a(e)

_ da(e)
o= (12.31)

-> material is said to be “elastic material”
{ assumption of elastic material } “Two equivalent

assumption of existence of a strain energy density function assumption”

- If elastic material, work done by the internal stresses
when the system is brought from one state of deformation to another
-> only depends on the two states of deformations
but not on the specific path that the system followed from one deformation state to
the other

=> This restricts the types of material constitutive laws that can be expressed in terms of

a strain energy density function




12.2 Variational and energy principles

Ex) plastic range ... the work of deformation will depend on the specific deformation history
-> no strain energy density function that describes material behavior when plastic
deformations are involved.

- Complementary strain energy ... its concept is first introduced for springs in Sec. 10.3.1

For nonlinearly elastic material

ale) +ad'(0)=€'o (12.32)
taking differential
dale) T a (o) T B
( Je —g) d§+(8g —€e| do=0

\_Y_}

=0 due to Eq.(12.31)

Then, the second parenthesis must vanish
(o)

dao

€= (12.33)

existence of strain energy density function => existence of the complementary strain energy

density function




;

[

12.2 Variational and energy principles

Eq.(12.31) ...

Eq.(12.33) ...

strain energy density function

complementary strain energy density function

Eq.(12.31) ...
Eq.(12.33) ...

definition of the stresses by means of the strain energy density function,
also constitutive laws for the elastic materials
definition of the strains by means of the complementary strain energy density

function, also constitutive laws for the elastic materials

} -> define the constitutive laws for the

elastic materials

stiffness form of the constitutive laws <- strain energy density function

compliance form of the constitutive laws <- complementary strain energy

density function

o= (12.31)

(12.33)




12.2 Variational and energy principles

() 12.2.5 PMTPE

General elastic body in equilibrium under applied body forces and surface tractions
-> PVW, Eq.(12.25), must apply

- [ dTscav+ [ Fouav+ [ iTsuds=o (12.25)
\% 1% S

Now assuming that the constitutive law for the material can be expressed in terms of a

strain energy density function, Eq.(12.31)

da(e)
e

(12.31)

g:

-> VW done by the internal stresses can be

/&s odV = f 5T Oa(‘f) dy = [Oa u dV_O/V a(u) AV = 5 A(u)

where the chain rule for derivatives is used.




12.2 Variational and energy principles

- Strain energy density _ _ _
{ Must be expressed in terms of the displacement field U
total energy E, A = [, a dV _ o _ _
using the strain-displacement relationship because PVW

requires a compatible strain field
-  PVW, Eq.(12.25) ->

—544(t_t)+be6ng+/ i oudS =0 (12.34)
\% S,

—{ body forces

_ } are assumed to be derivable from potential functions
surface tractions

P S

Ou’ du

|

O : potential of the body forces

1 : potential of the surface tractions

Active Aeroelasticity and Rotorcraft Lab.



12.2 Variational and energy principles

- 2nd and 3™ terms in Eq.(12.34)

—0A(u) + f b ou dV +/ i oudS =0 (12.34)
V S1
T -T . o™
/E_) 5ng+/ t oud f c’)u. dV — — dudS
\% S S, C)g
= —/ d0p(uw) dV — () dS = —5/ o(u) dV — O/ P(u) dS
V S1 Vv S1

= —0D(u),
fv u dV‘FIb (u) Total potential of the externally applied loads

- Introducing the result into PVW in Eq.(12.34)

—0A(u) — 0P(u) =0, or (A(w) +P(u)) =0 (12.35)

- Total potential energy of the body
I(u) = A(u) + d(u) (12.36)
-> 0l (u) =0 (12.37)

.. total potential energy must assume a stationary value w.r.t the compatible deformations

when the body is in equilibrium




12.2 Variational and energy principles

- 1stvariation of ]/

2nd variation

?a
2 _ s T ¢
5H(g)—/vc)§ e‘.’)g@goﬁdv

... strain energy density function must be a positive-definite function

> 0el'0%a/(0ede) de > 0 for all de

if the strain energy density function is NOT positive-definite, strain state will generate a
(-) strain energy -> the elastic body will generate energy under deformation

... physically impossible

Thus §2717 > (0 -> II presents an absolute minimum at its stationary points




12.2 Variational and energy principles

Principle 17 (PMTPE)
Among all kinematically admissible displacement fields, the actual displacement field that
corresponds to the equilibrium configuration of the body makes the total potential energy an
absolute minimum.
- Reverse direction also holds

Also, these equations are the Euler-Lagrange equations arising from the stationarity

condition for the total potential energy

- PMTPE -> PVW
PVW -> PMTPE

. _ _ strain energy density function
under restrictive assumptions on existences of

potential of the body forces

of the surface tractions

... PVW is more general statement but possibly less useful statement.




12.2 Variational and energy principles

‘ 12.2.6 PMCE(The Principle of Minimum Complementary Energy)

Elastic body undergoing kinematically admissible displacements and compatible strains

-> PCVW, Eq.(12.30), must appl
G ( ) PPy ngdngJr/ 4l 6t dS = 0. (12_30)
Vv Sa

- Now assuming that the constitutive law for the material can be expressed in terms of a
a'(o)

dao

stress energy density function, Eq.(12.33) ¢ =
- VW done by the internal strain in Eq.(12.30)

-> / doledV = / oot % dy = / ob(a) dV =4 / b(o)dY =54 (o)
V y da v y
A’(o): total stress energy in the body

- PCVW, Eq.(12.30)

> —6A0) +/ 75t dS = 0 (12.38)
S
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Prescribed displacements are assumed to be derivable from a potential function

x(t): “potential of the prescribed displacement”

Ex) simply y = —QTQ, but potential functions do NOT exist for all types of prescribed
displacements
2"d term in Eq.(12.38) ->

o’ i :
/ gT(s;dS:—/ A o;dS:—[ ox(t) dS:—@f (1) dS = —50'
82 32 8£ 82 82

D'(t) = fsg x(t) ... total potential of the prescribed displacements
Introducing this result into Eq.(12.38)
—0A(a) — 6P'(t), or G[A'(a) +P'(1)] =0 (12.39)

Total complementary energy of the body

IT'(c) = A'(a) + (1) (12.40)
-> 3 (o) =0 (12.41)
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Principle 18 (PMCE)
Among all statically admissible stress fields, the actual stress field that corresponds to the
compatible deformation of the body makes the total complementary energy on absolute

minimum

- 1st variation of /I’

6
ﬂ da’
onf(g):/ S o dv— [ aotds (12.42)
v o 90 S2
- 2" variation
. S (12.43)
0<11" (o) :/V MZZI R do; oo dV .

stress energy density function must be a positive-definite function of the stress components
6
aQaf
_> ~
d0o; 00
Z aJian 7 JJ

1,5=1

if NOT positive-definite, stress states will exist that generate a (-) stress energy

-> elastic body will generate energy under stress -> physically impossible
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- Reverse direction also holds
There equations are the Euler-Lagrange equations arising from the stationary condition for

the complementary energy.

- PMCE -> PCVW

PCVW -> PMCE under restrictive assumptions on existence of

{ stress energy density function

potential for the prescribed displacements
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‘ 12.2.7 Energy theorems

Sec.10.9 ... energy theorems -> corollaries of the fundamental energy principles

Clayperon’s Theorem (Theorem 10.1) } corollaries of PMTPE

Castigaliano’s 1st Theorem (Theorem 10.2)

Theorem 10.1 (Clapeyron’s theorem). The strain energy stored in a linearly elastic
structure equals the sum of the half product of the applied loads by the displacements
of their respective points of applications projected along their lines of action.

Theorem 10.2 (Castigliano’s first theorem). For an elastic system, the magnitude
of the load applied at a point is equal to the partial derivative of the strain energy
with respect to the projected load’s displacement,
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Principle of Least work (Principle 14)
Crotti-Engesser Theorem (Theorem 10.3) Corollaries of PMCE

Castigaliano’s 2"d Theorem (Theorem 10.4)

Principle 14 (Principle of least work) In the absence of prescribed displacements,
a linearly elastic system undergoes compatible deformations if and only if the strain
energy is a minimum with respect to arbitrary changes in statically admissible forces.

Theorem 10.3 (Crotti-Engesser theorem). For an elastic structure, the prescribed
deflection at a point is given by the partial derivative of the complementary energy
with respect to the driving force.

Theorem 10.4 (Castigliano’s second theorem). For a linearly elastic structure, the
prescribed deflection at a point is given by the partial derivative of the strain energy
with respect to the driving force.
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Reciprocity theorem of Betti & Maxwell (Theorem 10.5/10.6) <- direct sequence

=> All theorems are now also valid for general, 3-D structures

Theorem 10.5 (Reciprocity theorem or Betti’s theorem). A linearly elastic body
is subjected to two loading states characterized by loads of different magnitudes but
identical points of applications and lines of action. The sum of the product of the
loads in one state by the projected displacements of the other is identical to that
obtained when the two states are interchanged.

Theorem 10.6 (Maxwell’s theorem). For a linearly elastic structure, the influence
coefficient of point 1 on point 2 equals that of point 2 on point 1, for any choice of

points 1 and 2.
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PVW ... entirely equivalent to the equation of equilibrium of a 3-D solid, Eq. (12.17), (12.18)
but must be complemented with { stress-strain relationship
constitutive law

in order to solve specific elasticity problems

PCVW ... entirely equivalent to the strain-displacement relationships and geometric BC’s,
Eq. (12.19), (12.20)

—_ _
but must be complemented with{ equilibrium equations

constitutive law

Hu-Washizu’s principle ... remedies this shortcoming, equivalent to the complete set of

equations required to solve elasticity problems
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Elastic body in equilibrium under the applied body forces and surface tractions undergoing
compatible strain s whose displacement field is kinematically admissible, and for which the
stress and strain fields satisfy the material constitutive laws
-> stress fields are statically admissible

the equilibrium equations, Eq.(12.17), are satisfied at all points in V

surface equilibrium equations, Eq.(12.18), at all points on §;

strain-displacement relationships, Eq.(12.19), are satisfied at all points in V

geometric BC’s, Eq.(12.20), at all points on S2

constitutive laws, expressed in terms of a strain energy density function,
Eg.(12.31), must hold at all points in )

801 + 87-21 + 87—31 +bl -0 tl = f]_‘ t2 = fgﬁ t3 s f’3 (12_18)
dry Oxo Jrs

81"1 2 aﬂ' 2 (97'32

+bo =0 7} a 3] . .
vy Owy ' Owy =t =20 a=_ “axial strain”
‘ 0’1‘1 0’1‘2 (9;1’.‘3
87’13 C)ng (90'3
Oxry  Odxs  Oxs b3 =0 , Oup | us duy  Jus Juy  dus

:TM‘I‘TI‘Q 1"13:8-7‘13+E’ ?_-12:@+0331 (12.19)

(12.17)

Uy = uyp, U = '112, us = s (12.20)
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Combining Egs. (12.21), (12.26), (12.31) into a single integral equation

87931 0wy Oxs Oxy 071“2 Oxs

8T13 87’23 60'3 T
by | oug b dV— [ [t—]" sudsS
[6I1 N dra N drs +bs| oug v /81 [— _] uc

9 9 ) 13, 3] 0
/{[ Jl+ T21+‘T31+bl] (5u1+[.7—12+ 02+7-32+b2] dug
v

B B Ouq Sor + _ g 5o + B Jus 5
Vv ‘1 (9.1“?1 71 2 (9.1".'2 72 3 81133 73 (12'24)
dus  Ous| . duy  dus|
Yoy — =2 — 315 g — —t =231 5
+ [,23 s @2?2] T23 + [,13 s @1?1] T13
+ =5t = 22 e b av— [ ue il stds
' dra  Oxy S5
+ f L I O e e
v 861 o1 ‘1 662 72 e (963 73 3
da da ) da )
+ |- — Toz| O7v23 + —Ti3| 0Vis+ |=— —Ti2| Oyizp AV =0
23 J 1 o

-+ can be manipulated in several ways

(D terms appearing in the equilibrium equations could be integrated by parts(as is done for PVW)
@ terms appearing in the strain—displacement relationships could be integrated by parts(as is done
for PCVW)

@ both integrations by parts could be carried out

—-> three different statements of Hu-Washizu’s principle
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1st statement of Hu-Washizu’s principle

integrating by parts using Eq. (12.22) /0"15% e [ %
1V

5f O — (e =20 o (ea=02) gy = (e 02
. ale €1 oy a1 €2 Oy a2 €3 o g3

Ju Ju: (1245)
- (”/12 - % 32> T12] dy
I T
- T Su — A,T"u - u— )’ st = 0.
/vb du dy /511‘ Ju dS /32( @) 5tds =0
.. 3 independent fields: strain, stress, displacement field -> “three field principle”

PMTPE, PMCE ... single field principle, involving only displacement/stress closely related to
PMTPE, Eq. (12.34)

1st statement of Hu-Washizu’s principle

PVW/(statement of equilibrium( + constitutive laws, but no strain-displacement relationship
-> constrained minimization problem that yields all equations of elasticity

-> unconstrained minimization problem using the Lagrange multiplier

Eq. (12.45) ... 1: stress components used to enforce the corresponding compatibility

equations
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« 2nd statement of Hu-Washizu’s principle
strain-displacement relationship in Eq. (12.44) are integrated by parts using Eq. (12.27)

ouy 50 )
ﬂ ooy dV = —/ wy - o dV‘l—/’tt-lTl-lOOl dS (12.27)
V ()Tl v C):I?l S
- o oT oT

T 1 21 31
O/V [(a(g) € g) * (8Jf1 + Oy T Ay T bl) 1

87‘12 80'2 87‘32 8713 8?‘23 80‘3
b by | - d 12.46
T (3;1:1 - Dy i dxs - 2) Uz (3;1'1 T iy T s T 3) u3] v ( )

—/ (g-i)T@dS—/ W ot dS = 0.
S Sa

... Closely related to PMCE, Eqg. (12.38)

« 21 statement of Hu-Washizu’s principle
PMCE(statement of compatibility)+constitutive laws, but no equilibrium equations

-> constrained minimization problem that yields all equations

-> unconstrained minimization problem that yields all equations
Eq. (12.46) ... 1 : displacement components used to enforce the corresponding equilibrium

equations
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« 3rd statement of Hu-Washizu’s principle

Equations of equilibrium
both { } in Eq. (12.44) are integrated by parts using

Eq.(12.22) and (12.27)

douy Doz ddus doug  Doug
a(e) — e O'}—I—O'l + o3 +o + Ta3 +

Strain-displacement relationship

().Ll (9;1'2 3 8;1'3 (9;1}3 (‘_).1}2
Ao o) 0] 00 0 do
+T13 U1 s + T2 = + - il 1| 71 + — T2 + 18
()»Lg ()J,l 8;{'2 (9;1'2 ();L'l ()JIQ 8‘(:3 (12 47)
—u 801-12 800'2 8(57'23 —u (957‘13 n 3(5T23 n 8(50'3 dV '
2 041 dixrg d;cg 3 iy Jrg dixsg

/@ @dv/ i ogd5+/ ul 6t dS = 0.
v S1 Sa

.. main advantage is that no derivatives of the 3 unknown fields present

-> important implications on the way in which the unknown fields can be approximated,

because minimal continuity requirements are imposed
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‘ 12.2.9 Hellinger-Reissner’s principle

« Complexity of 3-field Hu-Washizu’s principle -> simpler, 2-field principle
eliminating the strain field in H-W principle -> Hellinger-Reissner’s principle
- 1st statement of H-W principle, Eq.(12.45)

.. Eq. (12.32) is used to eliminate the strain field
dla(e) — €' o] = —dd/(0)

-> 1st statement of Hellinger-Reissner’s principle

0/ Juq o Jus N Jus N dus
dil oLt dig 72t dig 73 8'63 8;1:2 723

Ju;  Jusg du;  Ous ,
g d (12.48)
* (043 - (9;61) T3 (()LQ dil) 12 ‘ (g) V

—/QTchdeL/i gdS—/ (w—a)T'é6tds = 0.
Vv S1 8o
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- 2" statement of H-W principle, Eq.(12.46)
... strain field is eliminated in a similar manner

-> 2nd statement of Hellinger-Reissner’s principle

- 80’1 87‘21 8’1"31 87‘12 802 8?‘32
0 by |- by |-
/V Kaxl T Owy | Ozs 1) e (0‘61 T Oy | Oxs 2) "

8’!‘13 (97'23 80’3 ’
((‘9;{:1 - Jiay N s i bg) tsma (g]] av (12.49)
—/ (i—i)TﬁgdS—f al5tdS = 0.
81 SQ

- 3rd statement of H-W principle, Eq.(12.47)

-> 3rd statement of Hellinger-Reissner’s principle

8501 657’12 857'13 85’."'12 8602 (")(5’."'23
da’
L [ “ (g) i ( a.,Ul * (9.1)2 + 8‘63 ) Uz ( 8;{;1 - 8‘52 * 8;_153

1 8(37'13 n 6(37'23 4 6503 8(51:,1 c%u.g 05u3
L — 0] —(— — 0 — d
3 ('9;:;1 8;122 (9;[23 ! 5‘;{;1 2 (9;[;2 3 (9.},'3

Adus  Jdus ddu;  Odus dduyp  Odus
723 ( disg * diry ) 13 ( dixg - dayq ) T ( diry - diy )] v

(12.50)

+/§T@dv+f ffsgds—/ Wl 6t dsS = 0.
v Sy Sa
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